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Abstract

In this paper, we supplement the set of basic and back-forth behavioural equiva-
lences for Petri nets considered in [11] by place bisimulation ones. The relationships
of all the equivalence notions are examined, and their preservation by refinements
is investigated to find out which of these relations may be used in top-down de-
sign. It is demonstrated that the place bisimulation equivalences may be used for
the compositional and history preserving reduction of Petri nets. In addition, we
consider all the mentioned equivalences on sequential nets which are a special sub-
class of general Petri nets modelling sequential systems, where no two actions can
happen simultaneously. On this net subclass all pomset equivalences merge with
the corresponding interleaving ones, and it allows us to simplify their check.

1 Introduction

The notion of equivalence is central to any theory of systems. Equivalences al-
low one to compare and reduce systems taking into account particular aspects
of their behaviour. Petri nets became a popular formal model for design of con-
current and distributed systems. In recent years, a wide range of behavioural
equivalences was proposed in the concurrency theory. The equivalences can
be classified depending of semantics of concurrency they impose. In inter-
leaving semantics, a concurrent happening of actions is interpreted as their
occurrence in any possible order. In step semantics, a concurrency of actions
is a basic notion, but their causal dependencies are not respected. In partial
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word semantics, causal dependencies of actions are respected in part via par-
tially ordered multisets (pomsets) of actions, and a pomset may be modelled
by a less sequential one (i.e. having less strict partial order). In pomset se-
mantics, causal dependencies of actions are fully respected, and pomsets of
actions should coincide to model each other. In process semantics, a structure
of a process (causal) net is respected.

The following basic notions of behavioural equivalences were proposed:

o Trace equivalences (they respect only protocols of behaviour of systems):
interleaving (=;) (8], step (=s) [8], partial word (=,,) [12|, pomset (Z=pom)
[8] and process (=) [10].

o Usual bisimulation equivalences (they respect branching structure of be-
haviour of systems): interleaving (+;) [8], step (+=,) [8], partial word (¢,,,)
[12], pomset ( [8] and process («,,) [3].

o ST-bisimulation equivalences (they respect the duration or maximality of
events in behaviour of systems): interleaving («;¢) 7], partial word
(prST) [12] pomset ( pomST) [12] and process (ﬁprST) [10]

pom)

» History preserving bisimulation equivalences (they respect the “history” of
behaviour of systems): pomset ( [12] and process (s2,,,) [10].

o Conflict preserving equivalences (they completely respect conflicts of events
in systems): multi event structure (=,,.s) [10] and occurrence (=,..) [7]-

pomh)

o Isomorphism (=) (i.e. coincidence of systems up to renaming of their com-
ponents).

Another important group of equivalences are back-forth bisimulation ones
which are based on the idea that a bisimulation relation should not only
require systems to simulate each other behaviour in the forward direction but
also when going back in the history. By now, the set of all possible back-
forth equivalence notions was proposed in interleaving, step, partial word and
pomset semantics. Most of them coincide with basic or with other back-forth
relations. The following new notions were obtained: step back step forth
(25pss) [6], step back partial word forth (&, /) [9] and step back pomset
forth (<,0ms) [9] bisimulation equivalences. In [11] we supplemented them
by several new relations in process semantics: step back process forth (<, ;)
and pomset back process forth ( bisimulation equivalences.

The third important group of equivalences are place bisimulation ones
introduced in [1]. They are relations between places (instead of markings
or processes). The relation on markings is obtained using the “lifting” of
relation on places. The main application of place bisimulation equivalences
is an effective global behaviour preserving reduction technique for Petri nets
based on them. In [1], interleaving place bisimulation equivalence (~;) was
proposed. In this paper, strict interleaving place bisimulation equivalence
(~;) was defined also, by imposing the additional requirement stating that
corresponding transitions of nets must be related by the bisimulation. In [3,4],

pombprf)
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step (~s), partial word (~,,,), pomset (~pom ), process (~,,) place bisimulation
equivalences and their strict analogues (R, RXpw, Xpom, ~pr) Were proposed.
The coincidence of ~;, ~; and ~,, was established. It was shown that all
strict bisimulation equivalences coincide with ~,,.. Thus, only three different
equivalences remain: ~j;, ~pom and ~p.. In addition, in these papers the
polynomial algorithm of a net reduction modulo ~; and ~,, was proposed.

To choose appropriate behavioural viewpoint on systems to be modelled,
it is important to have a complete set of equivalence notions in all semantics
and understand their interrelations. Treating equivalences for preservation by
refinements allows one to which of them may be used for top-down design.
To evaluate how equivalences respect concurrency, it is actual to consider
correlation of these notions on concurrency-free (sequential) nets. In addition,
it allows us to simplify check of the relations for such a net subclass because
of merging some of them. In this paper, we obtain a number of results on
solution these problems for place bisimulation equivalences.

The first result is a diagram of interrelations of place equivalences with
basic and back-forth behavioural notions from [10,11]. We prove that ~,,
implies <, and answer the question from [1]: it is no sense to define history
preserving place bisimulation equivalence. Another consequence is: the algo-
rithm of a net reduction from [3,4], based on ~,,, preserves “histories” of the
behaviour of the initial net.

The second result is concerned a notion of transition refinement. In [5],
SM-refinement operator for Petri nets was proposed, which “replaces” their
transitions by SM-nets, a subclass of state machine nets. We treat all the
considered equivalence notions for preservation by SM-refinements and estab-
lish that ~,, is the only place bisimulation equivalence which is preserved by
SM-refinements. Thus, this equivalence may be used for the compositional
reduction of nets.

The third result is a diagram of interrelations of all the equivalences on
sequential nets. A merging of most of the relations in interleaving — pomset
semantics is demonstrated. In particular, ~; coincide with ~,,,, on sequential
nets.

2 Basic definitions

In this section, we present some basic definitions used further.

2.1 Nets
Let Act = {a,b,...} be a set of action names.

Definition 2.1 A labelled net is a quadruple N = (Py, Ty, Fn,lx), where:
» Py ={p,q,...} is a set of places;
o Ty ={t,u,...} is a set of transitions;
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e Fy : (Py xTn) U (Tn x Py) — N is the flow relation with weights (N
denotes a set of natural numbers);

* Iy : Ty — Act is a labelling of transitions with action names.

Given labelled nets N and N’ A mapping §: Py UTy — Py U Ty is an
isomorphism between N and N’, denoted by §: N ~ N’  if 3 is a bijective
renaming of places and transitions of N s.t. the nets N and N’ coincide up
to it. Two labelled nets N and N’ are isomorphic, denoted by N ~ N', if
38: N~ N'.

Given a labelled net N and some transition ¢t € Ty, the precondition and
postcondition of t, denoted by °¢ and ¢* respectively, are the multisets defined
in such a way: (*t)(p) = Fx(p,t) and (¢*)(p) = Fn(t,p). Analogous definitions
are introduced for places: (*p)(t) = Fy(t,p) and (p*)(t) = Fy(p,t). Let °N =
{p € Py | *p = 0} is the set of input places of N and N° = {p € Py | p* = 0}
is the set of output places of N.

A labelled net N is acyclic, if there exist no transitions tg,...,t, € Ty
st. 2N #0 (1 <i<n)andty =t, A labelled net N is ordinary, if
Vp € Py *p and p* are proper sets (not multisets).

Let N = (Py,Tn, Fn,ly) be an acyclic ordinary labelled net and z,y €
Py UTy. Let us introduce the following notions.

e <y y & xFyy, where Fy is a transitive closure of Fy (the strict causal
dependence relation);

s Inz={y € PnUTN |y <n x} (the set of strict predecessors of x);

A set T C Ty is left-closedin N, if Vit € T (Int)NTy CT.

We denote the set of all finite multisets over a set X by M(X). A marking
of a labelled net N is a multiset M € M(Py).

Definition 2.2 A (marked) net is a tuple N = (Py,Tn, Fn,ln, My), where
(Pn, Ty, Fy,lx) is a labelled net and My € M(Py) is the initial marking.

Let M € M(Py) be a marking of a net N. A transition ¢ € Ty is
firable in M, if *t C M. If t is firable in M, its firing yields a new marking

M=M - *t+t*, denoted by M LM A marking M of a net N is reachable,

if M = My or there exists a reachable marking M of N s.t. M - M for some
t € Ty. Mark(N) denotes a set of all reachable markings of a net N.

2.2 Partially ordered sets

Definition 2.3 A labelled partially ordered set (Iposet) is a triple
p=(X,=<,l), where:

o X ={z,y,...} is some set;

o <C X x X is a strict partial order (irreflexive transitive relation) over X;

e [: X — Act is a labelling function.
4



Let p = (X, <,[) and p/ = (X', <',I') be Iposets.

A mapping 3 : X — X' is a homomorphism between p and p', denoted by
B :pLCp,ifitis a bijection and Va,y € X x <y = f(z) <" B(y), Vz €
X l(z) =U'(B(z)). We write pC p/,if 35: pC p'.

A mapping 3 : X — X' is an isomorphism between p and p', denoted by
B:p~p,if B:pC p and f71:p C p. Two Iposets p and p' are isomorphic,
denoted by p~ o, if 6 : p ~ p'.

Definition 2.4 Partially ordered multiset (pomset) is an isomorphism class
of Iposets.

2.8 Processes

Definition 2.5 A causal net is an acyclic ordinary labelled net
C= <P0,Tc, Fc, lc>, S.t.:
(i) Vr € Po |*r| <1 and |r*| <1, i.e. places are unbranched;

(ii) Vo € PcUTe | Lo o] < 00, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C' one can define Iposet
pPc = <Tc', <N ﬂ(TC X TC), lc>

The fundamental property of causal nets is [3|: if C' is a causal net, then
there exists a sequence of transition firings (a full execution of C) s.t. °C =
Lo 3 - B L, =C"st. Ly C Py (0<i<n), Po =UlyL; and Tp =
{v1,..., 0.}
Definition 2.6 Given a net N and a causal net C'. A mapping ¢ : PcUTe —
Py U Ty is an embedding of C into N, denoted by ¢ : C' — N, if:

(i) ¢(Pc) € M(Py) and o(T¢) € M(Ty), i.e. sorts are preserved;

(ii) Yv € T *p(v) = p(*v) and p(v)* = p(v*), i.e. flow relation is respected;
(iii) Yv € Te lo(v) = In(p(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if °C' = ... &3 C° is a full

execution of C, then M = ¢(°C) o)
transition firings in V.

. M p(C°) = M is a sequence of

Definition 2.7 A firable in marking M process of a net N is a pair m =
(C, ), where C' is a causal net and ¢ : C — N is an embedding s.t. M =
©(°C). A firable in My process is a process of N.

We write TI(N, M) for the set of all firable in marking M processes of a
net N and II(N) for the set of all processes of a net N. The initial process
of anet N is 1y = (Cy,pn) € II(N), s.t. T, = 0. If 7 € II(N, M), then
firing of this process transforms a marking M into M = ©(C?), denoted by
M5 M.



Let 7 = (C, ), # = (C,¢) € II(N), # = (C, ) € II(N, p(C")). A process
7 is an extension of T by process 7, denoted by © = 7, if Ty C T is a left-
closed set in C' and Tg =Tz \Te. We write 7 — 7, if 37 7 g A process

7 is an extension of 7 by one transition, denoted by 7 — 7, if w % and

Ta = {U}

3 Place bisimulation equivalences

In this section, place bisimulation equivalences are introduced. Let us recall
the definition of usual bisimulation equivalences.

Definition 3.1 Let N and N' be some nets. A relation R C M(N) x M(N')
is a *-bisimulation between N and N', x € {interleaving, step, partial word,
pomset, process}, denoted by R : N N', x € {i, s, pw, pom, pr}, if:

(i) (My, My) € R.

(i) (M,M')eR, M 5 M,
0 [T =1 7=
() <o= 0, if x = s;
= HM’: M5, (M,M') € R and
(2) per € pes if % = pw;
(b) e~ Pers if x € {i,s,pom};
(c) C =", if x=pr.
(iii) As item 2, but the roles of N and N' are reversed.

Two nets N and N' are x-bisimulation equivalent, * € {interleaving, step,
partial word, pomset, process}, denoted by N« N', if AR : N, N', * €
{7:7 87pw7p0m7p/r}'

Place bisimulations are relations between places instead of markings. A
relation on markings is obtained with use of the “lifting” of a bisimulation
relation on places.

Let for nets N and N' R C Py x Py be a relation between their places.
The lifting of R is a relation R C M(Py) x M(Py), defined as follows:
EA{,A4V)f§73 < Heun), - (0 p,)} € M(R) 2 M ={py,...pn}, M'=

Py, D}

Definition 3.2 Let N and N’ be some nets. A relation R C Py X Py
is a *-place bisimulation between N and N', x € {interleaving, step, partial
word, pomset, process}, denoted by R : N ~, N, if R : N& N, % €
{i, s, pw, pom, pr}.

Two nets N and N' are x-place bisimulation equivalent, x € {interleaving,
step, partial word, pomset, process}, denoted by N ~, N', if AR : N ~,
N', % € {i,s,pw, pom,pr}.



Strict place bisimulation equivalences are defined using the additional re-
quirement stating that corresponding transitions of nets must be (as well as
makings) related by R. This relation is defined on transitions as follows.

Let for some nets N and N' t € Ty, ' € Ty,. Then (t,t') € R <
((°t,*t) e R) A ((t°, 1) e R) A (In(t) = Ine(t)).

Definition 3.3 Let N and N' be some nets. A relation R C Py X Py is a
strict *-place bisimulation between N and N', x € {interleaving, step, partial
word, pomset, process }, denoted by R : N =, N', x € {i, s, pw, pom, pr}, if:
(i) R: N+, N
(ii) In the definition of x-bisimulation in item 2 (and in item 3 symmetrically)
the new requirement is added: Yv € Ty (¢(v), ¢'(B(v))) € R, where:
(2) B:pa C g, if x = pw;
(b) B P& ™ Pers if x € {i,s,pom};
(c) B:C=C", if x=npr.
Two nets N and N' are strict x-place bisimulation equivalent, x €

{interleaving, step, partial word, pomset, process}, denoted by N ~, N', if
IR : N =, N', % € {i,s,pw,pom,pr}.

An important property of place bisimulations is additivity. Let for nets
N and N' R : N ~, N'. Then (M;,M]) € R and (M, M}) € R implies
(My + My), (M} + M3)) € R. In particular, if we put n tokens into each
of the places p € Py and p' € Py s.t. (p,p’) € R, then the nets obtained
as a result of such a changing of the initial markings, must be also place
bisimulation equivalent.

The following proposition establishes a coincidence of most place bisimu-
lation equivalences.

Proposition 3.4 /3,4 For nets N and N':
(i) N~y N' & N~y N';
(i) N ~p N' & N2y N' & N, N

4 Interrelations of the equivalences

In this section, place bisimulation equivalences are compared with basic equiv-
alences and back-forth bisimulation equivalences. First, recall the definition
of history preserving bisimulation equivalences.

Definition 4.1 Let N and N' be some nets. A relation R C II(N) x II(N') x
B, where B=A{f |0 :Tc = Tcr, m = (C,p) € II(N), ©' = (C',¢') € II(N') },
is a x-history preserving bisimulation between N and N', x €{pomset, pro-
cess}, denoted by N<,, N', * € {pom,pr}, if:

(i) (wn,mnr,0) €R.

(ii) (m, 7", 8) e R =



ﬁsbsf 1 > Lshpwf <——ﬁsbpomf<—— ﬁsbprf

ﬁi ﬁs ﬁpw ﬁpom ﬁpr
~i ———"~pom /

=, = o) Cpom—(=
7 s pw pom pr

Fig. 1. Interrelations of the equivalences and their preservation by SM-refinements

(a) B *pc = pcr, Zf* € {pom,p?‘};
(b) C~C", if x=pr.

(iii) (7,7",8) €R, 7 =7 = 3B, #:a' =7, Blr. =6, (7,7, 5) € R.
(iv) As item 3 but the roles of N and N' are reversed.

Two nets N and N' are x-history preserving bisimulation equivalent, x €
{pomset, process}, denoted by N<>,, N', if IR : N>, N', * € {pom, pr}.

Let us note that in this definition one can use extensions of processes by one
transition only. Now we are able to prove the proposition about interrelations
of place and history preserving equivalences.

Proposition 4.2 For nets N and N': N ~,, N' = N&,,N".
Proof. See Appendix A. O

Below, the symbol © 7 will denote “nothing”, and the signs of equivalences
subscribed by it are considered as that of without any subscribtion. The
following theorem collect all the results obtained here and in [11], and clarify
interrelations of all the equivalences.

Theorem 4.3 Let <3, «»€ {=, <, ~, >}, x, %k € {_ 4, s, pw, pom, pr,iST,
pwST, pom ST, prST, pomh, prh, mes, occ, sbs f, sbpw f, sbpom f, sbpr f,
pombpr f}. For nets N and N': N <, N' = N 4» N' iff in the graph in
Figure 1 there exists a directed path from <>, to 4.

Proof. (<) By Theorem 12 from [11] and the following substantiations.
¢ The implications ~,— <>, x € {i,pom,pr} are valid by the definitions.
¢ The implication ~,,— <., is valid by Proposition 4.2.
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Fig. 2. Examples of place bisimulation equivalences

The implication ~p,,,—~; is valid by the definitions.

The implication ~,,—~,0n, is valid since Iposets of isomorphic nets are also
isomorphic.

The implication ~—~,, is obvious.

(=) By Theorem 12 from [11] and the following examples (dashed lines in
Figure 2 connect bisimilar places).

In Figure 2(a), N ~; N', but N #,,,, N', since only in the net N’ action b
can depend on a.
In Figure 2(b), N ~pom N', but N #, N', since only in the net N’ the
transition with label a has two input (and two output) places.
In Figure 2(c), N =y N', but N o; N', since any place bisimulation must
relate input places of the nets N and N'. But after putting one additional
token into each of these places only in N’ the action ¢ can happen.
In Figure 2(b), N ~pom N', but N<b ;57 N', since only in the net N’ action
a can start so that no b can begin working until finishing of a.
In Figure 2(d), N ~,, N', but N #,,.s N', since only the net N’ has two
conflict actions a.
In Figure 2(b), N ~pom N', but N4 4, N', since only in the net N’ action
a can happen so that b must depend on a.

O



In this section, we obtained a number of important results. Before, place
bisimulation equivalences have been compared with usual bisimulation ones
only. Here, we clarified their interrelations with all the basic and back-forth
ones. We proved that ~,,, does not imply neither ST- nor back-forth bisim-
ulation equivalences. The situation is quite different for ~,,. It appears to
be strict enough to imply history preserving bisimulation equivalences. This
interesting result may be used in reduction of nets modulo ~,, [3,4]. Now, we
can guarantee that the reduced net has the same histories of the behaviour as
the initial one.

5 Preservation of the equivalences by refinements

In this section, we treat the considered equivalence notions for preservation
by transition refinements. We use SM-refinement, i.e. refinement by a special
subclass of state-machine nets introduced in [5].

Definition 5.1 An SM-net is a net D = (Pp,Tp, Fp,lp, Mp) s.t

(i) YVt € Tp |*t] = |[t*| = 1, i.e. each transition has exactly one input and
one output place;

(i1) Ipin, Pout € Pp S.t. Pin # Dowr and °D = {pin}, D° = {pous}, i.e. it is
an unique mput and an unique output place.

(iii) Mp = {pin}, i.e. at the beginning there is an unique token in p,.
Definition 5.2 Let N = (P, Ty, Fy,In, My) be some net, a € In(Tx) and

D = (Pp,Tp, Fp,lp, Mp) be SM-net. An SM-refinement, denoted by
ref(N,a,D), is a net N = (Px, Ty, Fy, lzr, M3), where:

* Pg=PyU {<p7 > |p € Pp \ {pin;pout}a u € l]_\fl(a)};

« Ty = (TN\l v (@)U {{t,u) |t € Tp, uely(a)};
[ Fy(#,9), 7,7 € Py U (Tw \ I (0)):
Fp(z,y), T = (z,u), §=(y,u), u € ly'(a);
* Fy(7,9) = § Fn(z,u), y = (y,u), 7 € *u, u€ly'(a), y € py;
Fx(u,g), T = (z,u), § € *u, u € ly'(a), = € *pous;
\ 0, otherwise,
) = In (@), aeTN\r (a);
Ip(t), u=(t,u), t € Tp, u € Iy (a);
T
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equiv-
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Q
N

O--L-O—-0O ®

Fig. 3. The equivalences between <, and ~p,p, are not preserved by SM-refinements

alent after applying any refinement operator to them accordingly. The follow-
ing proposition demonstrates that some place equivalences are not preserved
by SM-refinements.

Proposition 5.3 The equivalences ~; and ~p,, are not preserved by SM-
refinements.

Proof. In Figure 3, N ~,,,, N', but ref(N,a, D)<k ;ref(N',a, D), since only
in the net ref(N', a, D) after action a; action b cannot happen. Consequently,
equivalences between <, and ~,,,, are not preserved by SM-refinements. O

The following proposition proves that ~,, is preserved by refinements.

Proposition 5.4 For nets N and N' s.t. a € In(Ty) NIx/(Tn1) and SM-net
D: N~y N' = ref(N,a,D) ~,, ref(N',a,D).

Proof. See Appendix B. O

Now we can add the results obtained to that of from [11] and present the
following theorem.
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Theorem 5.5 Let <€ {=, <, ~,~} and x € {_,i, s, pw, pom, pr,iST,
pwST, pom ST, prST, pomh, prh, mes, occ, sbs f, sbpw f, sbpom f, sbpr f,
pombprf}. For nets N and N’ s.t. a € Iy(Ty) NIn(Tn') and SM-net D :
N <, N'" = ref(N,a,D) <>, ref(N',a, D) iff the equivalence <> is in oval
in Figure 1.

Proof. By Theorem 18 from [11] and Propositions 5.3 and 5.4. O

In this section, an important result has been established. From all the
place bisimulation equivalences, only ~,,. is preserved by refinements. Thus,
it can be used for the compositional refinement of Petri nets.

For example, let us consider a net modelling a concurrent system and
the reduced (modulo some equivalence) version of this net. The initial and
the reduced nets have similar behaviour. Thus, we can use the reduced net
instead of the initial one as a model for the concurrent system. If we want to
consider the system at lower abstraction level, we use a refinement operation
which “replaces” several transitions of the nets to the subnets corresponding
to some internal structure of the system’s components. If the equivalence used
for the reduction is not preserved by refinements, we cannot use the refined
reduced net as a model anymore, since its behaviour can be different with that
of the refined initial net.

Hence, the preservation of ~,, by refinements is a powerful property, espe-
cially if to remember that this equivalence implies the history preserving one.
Consequently, the histories of behaviour of the initial net coincide with that
of the reduced net, and this property is valid at different abstraction levels.

6 The equivalences on sequential nets

Let us consider the equivalences on sequential nets, where no two transitions
can be fired concurrently in any reachable marking. Sequential nets are a
subclass of general Petri nets used to model sequential systems in which si-
multaneous occurrence of several actions is impossible. In many applications,
it is enough to use sequential systems, not concurrent, so it is worth investi-
gating equivalences on the mentioned above net subclass.

Definition 6.1 A net N = (Py,Tn, Fn,ly, My) is sequential, if VM €
Mark(N) =3t,u € Ty : *t+°u C M.
Proposition 6.2 [11] For sequential nets N and N':
i) N= N & N=pm N';
(i) NN & N N';
(ili) N, N' & Neop N,

In Figure 4, the groups of equivalences which are merged on sequential
nets, are marked by dashed lines.
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------------------- 7/--------//--------4 R
: ~; <——Npoml J
I I
_____________ ,___L:::::::::::::::__,________l
=i =s —pw —pom<—\I =pr

Fig. 4. Merging of the equivalences on sequential nets

=mes =oce ~
! !
ﬁprh<— ~pr
!
ﬁprST
~i
e

PE SIS .

| l

EZ S :pr

Fig. 5. Interrelations of the equivalences on sequential nets

Proof. (<) By Theorem 4.3.

(=) We have IR : N ~; N'. By definition of place bisimulations, R :
N&;N'. By Proposition 6.2, R : N, N'. Again by definition of place
bisimulations, R : N ~pom N'.

Proof. (<) By Theorem 4.3.
(=) By Theorem 15 from [11] and the following examples.

* In Figure 2(e), N ~; N', but N #,. N’, since only in the net N’ the

13

Proposition 6.3 For sequential nets N and N': N ~; N' & N ~p,, N'.

Theorem 6.4 Let <>, «»€ {=, <, ~, >}, x, %k € {_ i, pr,prST, prh, mes,
occ}. For sequential nets N and N' : N <>, N' = N «», N' iff in the
graph in Figure 5 there exists a directed path from <>, to 4%,,.



transition with label a has two input places.
e In Figure 2(c), N =, N', but N #; N'.

 In Figure 2(d), N ~,, N, but N #,,.; N'.
O

Thus, we obtained the complete picture of interrelations of the equiva-
lences on sequential nets which can be used to simplify equivalence check
when modelling of sequential systems.

7 Conclusion

In this paper, we examined a group of place bisimulation equivalences. We
compared them with basic and back-forth ones. All the considered equiva-
lences were treated for preservation by SM-refinements to establish which of
them may be used for top-down design of concurrent systems. We proved that
~pr implies >, and it is preserved by refinements. Hence, it may be used
for the compositional and history-preserving reduction of concurrent systems
modelled by Petri nets. In addition, we proved that on sequential nets ~;
coincide with ~,,,, and it simplifies the check of the latter relation.

Further research may consist in the investigation of analogues of the con-
sidered equivalences on Petri nets with 7-actions (7-equivalences). 7-actions
are used to abstract of internal, invisible to external observer behaviour of
systems to be modelled. Let us note that a number of interleaving place
7-bisimulation equivalences was proposed in [4,2]. For other semantics, the
corresponding relations have not been defined, and it would be interesting
to propose them and exam their interrelations. In future, we plan to define
T-analogues of all the equivalence relations considered in this paper and exam
them following the same pattern.
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A Proof of Proposition 4.2.

By Proposition 3.4, 3R : N =, N'. Then R : N4, N’ and transitions of N
and N’ are related by R. Let us define a relation S as follows: S = {(, 7, 3) |
m= (Ca 90) S H(N)7 T = (Ca 901) € H(Nl)a ﬁ = Z.dToa Vr e PC’ ((p(?"),g()’(?”)) €
R, Vv € Te (¢(v), ¢'(v)) € R}. Let us prove S : N, N'.

(i) Obviously, (7x, 7y, D) € S.
(ii) By definition of S, (w,7",8) € S = [ :pc =~ pcr and C ~ C';

(i) Let (m,7',8) €S, 7= (C,¢), # = (C,¢) and 7 > 7, 7 = (C, ).

Let us consider a transition firing ¢(*v) ) ¢(v®) in N. By definition of

S, (p(*v), ¢'(*v)) € R. Since p(*v) = $(*v), we have ($(*v), ¢'(*v)) € R.

Since R : N =, N’', we have ', M (%) M, (p(v),u') € R
and (p(v*), M') € R.

Let v* = {r1,...,m}, M' = {p},...,pL}, ¥i (1 <i < n) (§(ri),pl) €
R. Let us define a mapping ¢’ as follows: ¢'|p,urn) = ¢'s ¢'(v) =
o', Vi (1<i<n)@(r)=p,.

Since by definition of @' we have u' = ¢'(v), M = P'(v*), ¢'(*v) =
¢'(*v), then @'(*v) At @'(v*) is a transition firing in N" and (¢(v), ¢'(v))
€R, (P(v*),¢'(v*)) € R.
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Consequently, $(*v) — *¢(v) = ¢(v*) — @(v)* and ¢'(*v) — *¢'(v) =
@' (v*) — ¢'(v)*. Because of additivity of place bisimulations and since ¢
is an embedding, we have (0, 3'(*v)—*@'(v)) € R and (0, &' (v*)—@'(v)*) €
R. Consequently, ¢'(*v) = *@'(v) and @' (v*) = ¢'(v)*. Therefore ¢ is
an embedding and @ = (C, @) € II(N'). We have 7' = 7. Let us define
3 =idr,. Then (7,7, ) € S.

(iv) As item 3, but the roles of N and N’ are reversed. O

B Proof of Proposition 5.4.

Let N =ref(N,a,D), N =ref(N',a, D) and R N ~,, N'. By Proposition
3.4, R: N ~; N'. It is enough to prove N =; N'. Let us define a relation S

as follows: S = R U {((p, u), (p,u)) | p € Pp \ {Pin> Pour}, (u,u') € R}. Let
us prove S : N = N

(i) (My, M) € S, since (My, My') € R.

(ii) Let (M, M') € S and M % M. Two cases are possible:
(a) u=u € Ty;
(b) uw=(t,u), t € Tp, u € Ty, In(u) = a.
Let us consider the case (b), since the case (a) is obvious. Let *¢t =
{p}, t* = {q}. Then we have:

u, tep?; u®, te® ;
'<t,u> _ Din <t,U/>. _ Pout

(p, u), otherwise. (q,u), otherwise.

Four cases are possible:

(a) te pz.n n .pout;
(b) £ € Pf, \ *Pout;

C) le .pout \p;n;
(d) t € p;n U .pout-

Let us consider the case (d), since the cases (a)—(c) are simpler. We have
*(t,u) = (p,u) € M. Since (M, M') € S, by definition of S we have:
Ju' € Ty : (u,u') € R and ((p,u), (p,u)) € S, (p,u') € M'. Since
*(t,u') = (p,u'), then (*(t,u),*(t,u')) € S, *(t,u') € M'.

Then 30" : M "5 M. We have: I((t,u)) = Ip(t) = Ly ({t,u).
Since (t,u)* = (g, u), by definition of S we have ({q, u), (¢,u')) € S. Since
(t,u)* = (g, u'), then ({t,u)*, (t,u)*) € S.

Hence, ((t,u), {t,u’)) € & and (M, M) € S.

(iii) As item 2, but the roles of N and N are reversed. O
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