ГОСКОМПTET СССР ПО ДЕЛАМ НАУНГ И В ВЫСНЕП ПЕКОЛЫ НОВОСНВТРСЕИVI OPДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНI ГОСУДАРСТВЕННЬМ УНИВЕРСГТТЕТ ти. Ленинстого комсомола

MEXAHHKO-MATEMATMYECKVM ФARYJIGTET

TAPACDK МГОРБ BAЛEPBEBIप

Дипломная работа

IIPVBE

Научный руководитель

Новосибирск 1992

Введение

Для описания тараллельных систем и процессов и исследования их поведенческих своиств были предложены различные модели параллельности. В зависимости от представления параллельности они могут бытв разбиты на 3 гругиы!.

$$
\begin{aligned}
& \text { 1. Паралиельность-тоследовательный недетерминизм. }
\end{aligned}
$$

$a \| b=a b$ คa

То есть a предиествует b или b предыествует a.
2. Параллельность-одновременность или недетерминизм.

последовательныи
В зтом случае вынолнение двух атомарных деиствий а и в может Быть представлено формулои:

$$
a \| b=a b \sqrt{b a} \sqrt{2 t b}^{\text {ath }}
$$

То есть a предшествует в или b преднествует a или a и в выполняются одновременно.
3. Гругпа параллельных моделеи, основанная на концепиии процесса, в соответствии C которой он рассматривается как частично угорядоченное множество дейтвий.

Отношение предиествования деиствий определяется как прихинная зависимость деиствии в модели. Это отношение задает частичныи порядок на действиях. Позтому два действия параллельны, если они причинно независимы. Таким образом, параллельный процесс, злементы которого частично упорядочены отнонением тредшествования, Может быть полностью представлен частично упорядоченным множеством. Поведение параллельных недетерминированных процессов описывается множеством их "чистьх" параллельных подпроцессов. Каждыи процесс в таком множестве- результат недетерминированного выбора между конфликтующими действиями. Но часто необходимо иметь дело с конфликтами семантического уровня и выражать поведение системы с конфликтами (или недетерминированного троцесса) в качестве некоторого семантического объекта.

По этои причине вводится отношение альтернативы. Два действия a и b альтернативны, если выполнение a исключает выполнение b и наоворот.

Среди формальных моделеи для описания паралиельных смстем и процессов алгебраические исчисления и логики процессов занимают осовое место. В зтих исчислениях процесс описывается алгебраическои (или погическои) формулои, и проверка своиств процесса выполмяется посредством зквивалентностеи, аксиом и гравил вывода.

1. Синтаксис AFP 2

Пусть $a=\left\{\hat{a}_{8} b_{s} C_{g w-}\right\}$-конечныи алфавит символов деиствии сбазис деиствий гроцесса).

Деиствия комбинируются в процесс с помоиью операций ;

после aтого- b.
Процесс (ай) описывает два возможных поведения: если выбирается выполнение деиствия a, то в не случается и наоворот.

формула (а\|lb) представляет процесс,в котором деиствия а и в выполняются параллельно.

Предполагается, что каждое действие имеет свое уникальное имя. Нагример, формула (аус) (ыус) описывает процесс, в котором действия а и в выполняются параллельно, а тольво затем выполняется с. Таким образом, выполнения действия с в подпроцессах (аз̆с) и (ьээс) синхронизированны.

Алгебра AFP $_{2}$ содержит механизмы для огисания как самих процессов, так и их свойтв. Для выражения и проверки различных свойств процессов к базису деиствий процесса добавляются другие множества.
 выражают факты, что соответствующие действия не выполняются во время протекания процесса из-за выполнения некоторых альтернативныг им деиствии.
$\Delta_{a}=\left\{\delta_{a}, \delta_{b}, \delta_{c^{s, n}}\right\}-а л ф а в и т$

тугиковых

деиствия, которые не могут выполняться
деиствий, огтисываюыий деиствия, которые не могут противоречия или ошибки в описании процесса.

Вводятся также дополнительные операции: \vee (дизъюнкция или объединение), " "Не случится"), i" "Не случится ошибочно").

Формула (P, V) определяет процесс, в котором выполняется либо подпроцесс P, либо 曰. В зтом случае множество возможных поведений процесса-объединение множеств поведений подпроцессов P и Q.

Операция $\pi^{\text {-модифицированное отрицание. } \boldsymbol{\eta}^{\mathrm{P}} \text { означает, что процесс }}$ P не случится, то есть выполняются не-действия из P.
 случается в результате некоторой ошибки, то есть любое действие из P не случается во время функиионирования процесса в результате некоторых противоречивых требовании в описании процесса.

1) a, $_{,}, \delta_{a}$, rде $\mathbf{a} \in \alpha, \bar{a} \in \bar{a}, \delta_{a} \in \Delta_{a}$-элементарные формулы;

2. Денотационная семантика AFP $_{2}$

Семантика процесса,которыи описывается формулой AFP_{2} есть множество частичных порядков,то есть совокупность частично упорядоченныгх множеств с порядхом по предшествованию действий при выполнении данного процесса.

Частично упорядоченное множество-пара (V, \langle), состояиая из: -множества вершин, моделирующих действия, не-деиствия и тугиковые действия процесса, то есть $V \leq a$ пй $^{\prime} \triangle_{\alpha}$;
-частичного порядка над V, где $a<b$ интерпретируется так: деиствие a обязательно предшествует b в процессе.

Над частично упорядоченными множествами вводятся операции $;, \overline{\mathrm{V}}, \|, \pi$, $\overline{\text {, и о орерация модифицированного объединения } \mathrm{U} \text {, определяемын }}$

8 [Ch89],[Ch90-1].
Пусть
$\left.\mathbb{D}_{2}{ }^{[P]}\right]$ совокупность
частично
упорядоченныг множеств, связанных с процессом P . Денотационная семантика AFP_{2} определяется так:

1) $\left.\mathbb{D}_{2}[a]=(\{a\}, \varnothing), \mathbb{D}_{2}[\bar{a}]=(\{\bar{a}), \varnothing), \mathbb{D} f_{2} \delta_{a}\right]=\left(\left\{\delta_{a}\right\}, \varnothing\right)$
$2 \mathrm{HD}_{2}[\mathrm{PF} \| \mathrm{G}]=\mathrm{D}_{2}\left[\mathrm{PP} \| \mathrm{D}_{2}[\mathrm{CG}\right.$
$3)\left[D_{2}[P ; \theta]=\left[D_{2}[P] ; D_{2}[0]\right.\right.$
$4) \mathbb{D}_{2}\left[P \bar{V}[\theta]=\mathbb{D}_{2}[P] \bar{V} \mathbb{D}_{2}[Q]\right.$
$5) D_{2}\left[P \vee \operatorname{Va]}=\mathbb{D}_{2}[P] \mathcal{D} D_{2}^{[\theta]}\right.$
${ }^{6)} \mathbb{D}_{2}{ }_{2} 1^{P]}=1^{[D}{ }_{2}^{[P]}$
$\left.7 \mathbb{D}_{2}{ }^{[11} P\right]={ }_{11} \mathbb{D}_{2}[\mathrm{~F}]$
 Тогда $\mathbb{D}_{2}[P]=\left\{\left(\left\{b, \overline{a_{,}} \bar{c}\right\}, \emptyset\right)_{,}(\{a, c, b \overline{\}}, \emptyset)\}\right.$ состоит из двух частично упорядоченных множеств.

3. Аксиоматизация AFP $_{2}$

Рассмотренная семантика для процессов задает эквивалентность. Два процесса P и Q эквивалентны, $P \approx \approx_{e}$, тогда и только тогда, когда $\mathbb{D}_{2}[P]=\mathbb{D}_{2}[Q]$.

B [Ch90-1, $\mathrm{c}_{\mathrm{L}}^{\mathbf{4}, \mathrm{p}-14] \text { вводится понятие контекста ©г. Это }}$ выражение $с$ нулем или волее пустых "дыр", которые могут быть заполнены другими выражениями. $\mathbb{C [P] ~ п р е д с т а в л я е т ~ р е з у л ь т а т ~}$ помешения формулы P в каждую "дыру".

Два процесса, описываемые формулами P и
 любого контекста $\mathbb{C D}$.

В [Сһ90-1, с.5.р. 17$]$ доказывается следуюиая лемма.
Лемма: $P \approx \approx^{G} \Leftrightarrow P \approx \approx^{Q}$
Вводится система аксиом θ_{2} в соответствии $с$ отношениөм эквивалентности \approx_{e}

B следуюиих равенствах P, Q, R овозначают формулы
$A_{1} P_{2}, a \in \alpha_{3} a \in \alpha_{0}, \delta_{a} \in \Delta_{d}$
1.Ассоциативность
$1.1 P\|(Q \| R)=(P \| G)\| R$
$12 \mathrm{PV}(G \bar{Q} R)=(\mathrm{PV} G \overline{\mathrm{~V}} \mathrm{R}$

2.Коммутативность
2.1 P 1 G=G月P
2.2 PV̄G=GUP
$2.3 P \vee Q=Q P^{P}$
З. Дистрибутивность

$3.2 P_{5}(\mathrm{Q} \| R)=\left(\mathrm{P}_{3} \mathrm{O}\right) \|\left(\mathrm{P}_{5} R\right)$

$3.4 \mathrm{P}_{3}(\mathrm{~A}, ~ \mathrm{R})=\left(\mathrm{P}_{g}(\mathrm{Q}) \vee(\mathrm{P} ; \mathrm{R})\right.$
$3.5(P \vee B \| R=(P \| R) \sqrt{ }(B \| R)$
$3.6 P \bar{V}(Q \| R)=(P \bar{V}) \|(P \bar{U})$
4.АксМомы для \bar{V} и п

$\left.4.2 \pi^{(P \| Q)=(} \pi^{P}\right) \|\left({ }_{7} \mathrm{Q}\right)$

4.5 па=a
$4.67^{a=a}$
$4.7 \prod^{\delta}=\bar{a}$
S.Структурные своиства
5.1 ayP= $=\| \mathrm{AP}$
5.2 P;ā=Pl|a
$5.3 \mathrm{P} \|\left(\mathrm{P}_{9}(\mathrm{O})=(\mathrm{P},(\mathrm{O})\right.$
5.4 에 $\left(P ;{ }_{3}(\mathrm{C})=\left(\mathrm{P}_{3}(\mathrm{n})\right.\right.$
$5.5 \mathrm{P}_{\mathrm{Q}} \mathrm{O}, \mathrm{R} \mathrm{R}=(\mathrm{P}, \mathrm{C}) \|(\mathrm{B}, \mathrm{R})$

5.7 P\|P=P
$5.8 \mathrm{P} V=F$
$5.9 \mathrm{TP} \mathcal{P}=\mathrm{P}$
G. Аксиомы для тугиковых депствий и п
6.1 all $\bar{a}=\delta_{a}$
6.2 aga=6 a
6_{3} all $_{a}=\delta_{a}$
$6.4 \quad \delta_{a}{ }^{\mathrm{FP}}=\delta_{a} \|_{\pi}^{n P}$
b.5 Pis $\delta_{a}=\mathrm{Pll} \delta_{a}$
$6.6 \delta_{a}\left\|_{n} P=\delta_{a}\right\|_{n} P$
$6.7 \pi^{2} a=\delta$
6. $8 \pi^{a}=\delta$
$6.9 n^{5}=\delta_{a}$
$6.10{ }^{\sim}(P \| G)={ }_{\pi} P \|_{\pi}^{n}$
$6.11{ }_{n}\left(P_{5}(G)={ }_{n} \mathrm{P} \|_{\eta_{n}}^{\mathrm{Q}}\right.$
$6.12 \pi^{(P \vee}(\mathbb{Q})={ }_{H} P \vee 7^{Q}$

Для доказательства полноты системы аксиом θ_{2} вводится понятие канонической формы формулы AFP $_{2}$.

4-Каноническая форма Формулы AFP_{2}

Содержимое ФорМулы P , cont $(\mathrm{P})_{5}$-множество символов из o(P)Uo(P)UА (P), огределяемое так:

1) cont $(a)=\{a), \operatorname{cont}(\bar{a})=\{\bar{a}\}_{y}, \operatorname{cont}\left(\delta_{a}\right)=\left\{\delta_{a}\right\}$
 СИMBOAOB П И Н.
 $\Delta(P)=\left\{\delta_{a}\right.$ \{aecx(P)\}

II-конъюнктивний терм-формула, содержацая только операции || и ; над символами объединенного алфавита alful a.
\|-конъюнкция- $\|$-конъюнктивный терм, имеюиии вид $P_{1}\|\ldots\| P_{n}=\| P_{i=1}^{n}$
Нормальная $\|$-конъюнкция- $\|$-конъвонкция, для которой истинны следуюиие утверждения:
1)каждая формула $\mathrm{P}_{\mathrm{i}}(1 \leq \mathrm{i} \leq n)$ имеет одну из следуюиих форм:

-лементарное предшествование (agb), где $a, b \in \alpha$ и а а $\quad \mathrm{b}$
2)если имеется формула $P_{i}(1 \leq i \leq n)$ в форме $\delta_{a}\left(\delta_{a} \in A_{\alpha}\right)$, тогда нет

другои формулы $P_{j}(1 \leq j \leq n)$ такои, что $P_{j}=\bar{b}(\bar{b} \in \overline{0})$
3) $д л я ~ п ю б ь х ~ ф о р м у л ~ P_{i}$ и $P_{j}(1 \leq i \neq j \leq n)$ таких, что व(P) $\alpha(P)$ но P_{i} и P_{j} должны иметь форму различных элементарных предиествований;
4) для пююои пары $P_{i}=(a, b)$ и $P_{j}=(\mathrm{bgc})(1 \leq i \neq j \leq n)$ суиествует терм $P_{k}=(а$ аус $)$,отисываюиии

транзитивное
замыкание отнонения

предшествования для дейтвии $a_{\boldsymbol{g}}$ и и с.
Назовем 1 (или 2 или 3 или 4)-\|-конәюнкцией \|-конъюониию, удовлетворяюиую соответственно условиям 1(или 2 или 3 или 4) из определения нормальнои $\|$-конъюнкции. Аналогично введем определение, например, $1,2,3-\|$-конъюнкиии. В соответствии с зтими определенмями нормальная $\|$-конъюнкция еств $1,2,3,4$ - $\|$-контюнкцияя.

форнула P имеет каноническую форну, если $P=P_{1} V^{\sim} V_{n}=V_{i=1} P_{i}$ то
естs $\mathrm{P}-\mathrm{V}$ - Аизъюнкния, r де:

1) ${ }_{i}(1 \leq i \leq n)$-нормальная $\|-$ коН'ююнкция;
2) любые P_{i} и $P_{j}(1 \leq i z i \leq n)$ различны;
З)лююье F_{i} и $P_{j}(1 \leq i z j \leq n)$ не префиксны друг другу, то есть если

в формуле не должно быть дизъюнктивного члена P_{j}
Аналогично отределениям для \|-конъюонкции вводим огределения 1 (или \geq или 3 илм 4) - - дизъюнкции и другие. Таким образом, көноническая Форма- $1,2,3-\vee-$ дизъюнкция. B дальнейшем будем понимать под дизъюнкциеп $V^{- \text {дизъюнкцию, под коньюнкцией }}$ \#-коньюнкцию, а под предиествованием-; предиествование.

प्र смел необкодимым ввести также следуюыее понятие.
Конвюнкция (дизъюнкция) максимальна, если она не является конъюнктивньм (дизъюнктивным) членом никакой другой конъюнкции (дизъюнкции).
 конъюнкции, так как они- конъюнктивные члень максимальнои
 левый конъюнктивный член- дизъюнкцияя.

Заметим, что конъюнкция характеризует одно из возможных поведений альтернативного прощесса и является представлением частичного порядка этого процесса.
Iример: формула $(\mathrm{a} \| \overline{\mathrm{b}}) \sqrt{(\bar{a} \| \mathrm{b}) \text { находится в канонической форме. }}$
Загисв $A=\theta_{2}$ в означает, что равенство формул A и B алгебры AFP $_{2}$ Может быть доказано с использованием системы аксиом θ_{2}

Канонические формы А и В изоморфны тогда и только тогда, когда А может Выть сведена к в (и наоворот) с использованием аксион коммутативности и ассоциативности для операций || и V.

 единственной до изоморфизма канонической форме.

Главныи результат сформулирован в виде следуюией теоремь [Ch90-1, c.6.p.22]. Теоремя2: Для пноых формул P и а алгебры AFF $_{2}$ истинно

$$
P \approx \approx^{Q} \Leftrightarrow P=\theta_{2} 0
$$

Таким образом, для любых двух формул P и Q алгебры AFP 2 мы можем выяснить, зквивалентны ли они, то есть описываются ли они однои и той же совокупностью частично упорядоченных множеств. Для Зтого достаточно свести формулы P и 0 их каноническим формам P " и и и гроверить их на изоморфизм.

5.Система правил переписывания RWS_{2}

Процесс приведения формулы $\mathrm{AFP}_{2} \mathrm{k}$ каноническому виду с помощью аксиом системы θ_{2} иногда становктся трудоемким и нетривиальным из-за того, что зквивалентности приходится приненять в ту и другую сторону.

Хотелось бы иметь систему направленных правил, которые приводили бы формулу к нужному виду. Процесс приведения желательно автоматизироватв. Для этого нужно создать систему переписывания вез циклов (то есть процесс приведения должен завериаться за конечное время), приводящуко исходнуюо формулу в один из изоморфныгк между совой канонических видов.

B соответствии c зтими требованиями мною построена система правил переписывания FWS_{2}. Перед описанием этои системы введем необходимое определение.

Замена E कормуле P подकормулы P_{i} Ha $G_{y}[P]_{j}{ }_{j}$, есть формула.
 $o \in \mathrm{C}_{38} \mathrm{H}_{3} \overline{\mathrm{~V}}_{3} \mathrm{~V}^{3}$.
B следуюиих травилах $\mathrm{RWS}_{2} \mathrm{P}, \mathrm{G}, \mathrm{R}$ овозначают формулы AFP Z^{2} $\bar{a}_{s} b_{y} c \in \overline{a_{g}} \bar{b} \in \bar{y} \delta_{d} \delta_{b} \in A$ а цифры в скобках- номера равенств системы θ_{2}, которые использовалисв при построении соответствуюиих правил.


```
    PO(GIOR) }->\mathrm{ (POG)OR
    (1.1,1.3,1.4)
```

$2.1\left(\Theta_{9}, 0\right) \in\left(\left(H_{3}\right)_{3}(\vee)^{*}\right)_{5}(V, D) \Rightarrow$
$(\mathrm{POO}) \oplus \mathrm{R} \rightarrow(\mathrm{P} \oplus \mathrm{R}) \circ(\mathrm{O} \in \mathrm{R})$
(3.1, $3.3,3.5$)

$(2.1,3.2,3.4,3.5)$

उ- $\left.1 \mathrm{PVG} \rightarrow\left(\mathrm{P} \|\left(\eta^{(\mathrm{O})}\right) \mathrm{V}_{7} \mathrm{P}\right) \| \mathrm{Q}\right)$
(4.1)

$\rightarrow\left(\mathrm{PO}(\mathrm{B}) \rightarrow(-\mathrm{P}) \mathrm{H}^{(}(-\mathrm{B})\right.$
$(4.2,4,4,6.10,6.11)$
4.2 تeर $\mathrm{DOTH}^{3} \Rightarrow$
$X(P,(B) \rightarrow(\neg P) \sqrt{ }(-Q)$
(4.3,6.12)
$4.3 \mathrm{P}=\mathrm{a}$ или $\mathrm{P}=\mathrm{a}$ илии $\mathrm{P}=\delta \mathrm{S} \Rightarrow$
$7_{7}^{\mathrm{P} \rightarrow \bar{a}}$
$(4.5,4.6,4.7)$
$4.4 P=a$ или $P=\bar{a}$ или $P=\delta \Rightarrow$
$\pi^{P \rightarrow \delta} a$
$(6.7,6.8,6.9)$
5.1 $\mathrm{F}_{5} \mathrm{BH}_{3} R \in a$ NaUA $_{c} \Rightarrow$

($5.5,5.6$)
5.2 Gealaul $a \Rightarrow$
-
(5.1)
5.3 Peallaula $a \Rightarrow$
$\mathrm{F}_{\mathrm{g}} \overline{\mathrm{a}} \rightarrow \mathrm{Plla} \bar{a}$
(5.2)
5.4 asa $+\delta_{a}$
(6.2)
$5.5 \mathrm{Q}=\mathrm{b}$ или $\mathrm{Q}=\overline{\mathrm{b}}$ или $\mathrm{Q}=\delta_{\mathrm{b}} \Rightarrow$
$\delta_{a} a^{3 G \rightarrow \delta_{a}} \|_{b}$
($6.4,6.7,6.8,6.7$)
5.6 Peallaut $\alpha \Rightarrow$
$\mathrm{Pq}_{\mathrm{g}} \delta_{\mathrm{a}} \rightarrow \mathrm{P} \| \delta_{a}$
(B.5)
6.1 $P-1$-кон'ьюнкция, (аğ)= P^{\prime} - конъюнктивный член P,

в максимальнои 1 -конъюнкции, содержащей P в качестве конъюнктивного члена, Нет члена (аус) $=\mathrm{P}^{\text { }} \Rightarrow$ $P \|(b s c) \rightarrow(P \|(b s c)) H(a, c)$ (2.1,5.6)
 в максимальной 1 -коньюнкции, содержащеи P в качестве конъюнктивного члена, нет члена (bya) $=\mathrm{P}^{0} \Rightarrow$ $P\|(b, g c) \rightarrow(P \|(b s c))\|(b g a)$ (2.1,5.6)
7.1 P- 1,4 -конъғонкция P^{3}-конъюнктивныя член $P_{s} P^{\prime \prime}=$ или $P^{\prime}=b \Rightarrow$ $P \|(a s b) \rightarrow[P]^{P}{ }^{P}(a g b)$
(2.1,5.3. 5.5 .4)
 $\mathrm{P}^{\circ}=(\mathrm{b}$ ga) \Rightarrow
Plla \rightarrow P
(2.1,5.3,55.4)
$7.3 \mathrm{P}-1,4$-конъюнкция, P^{*}-конъюнктивный член $P, P^{\prime}=a \quad$ или $P^{\prime}=\delta \quad \Rightarrow$ $p \| \bar{a} \rightarrow[P]_{\delta}^{p}$
(2.1, 6.1)
$7.4 \mathrm{P}-1,4$-конъюнкция $\mathrm{F}^{\circ}=\overline{\mathrm{a}}$ или $\mathrm{P}^{\circ}=\delta \Rightarrow$
$p \| a \rightarrow[p]_{\delta}^{p}$
$(2.1,6.1,6,3)$
$7.5 \mathrm{P}-1,4$-конъюнкция $\mathrm{P}^{2}-$ конъюнктивныд член $P, P^{7}=$ или $P^{2}=\bar{a} \Rightarrow$ $P \| \delta_{a} \rightarrow[P]_{\delta}^{P}$
(2.1,6.3)
 $P\left\|\bar{a} \rightarrow[P]_{\delta_{b}}^{P=}\right\| \delta_{a}$
$(1.1,1.4,2.1,3.1,5.1,5.2,5,7,6.1,6.4,6,7,6.11)$
$7.7 \mathrm{P}-1,4$-конъюнкция ${ }_{5} \mathrm{P}^{3}-$ конъюнктивныи член $\mathrm{P}_{5} \mathrm{P}^{3}=\left(\mathrm{b}_{\text {ga }} \mathrm{a}\right) \Rightarrow$ $P\left\|\bar{a} \rightarrow[P]_{b}^{P}\right\| \delta_{a}$
$(1,4,21,5.2,6.1,6.5)$
 $\mathrm{P}\left\|\delta_{a} \rightarrow[P]_{\delta_{b}^{P}}^{P}\right\| \delta_{a}$
$(1.1,1.4,2.1,5.4,5.7,6.4,6.7,6.11)$
 $\mathrm{P}\left\|\delta_{a}+[P]_{b}^{P}\right\| \delta_{a}$ ($1.4,2,1,6.5$)
 $P\left\|(a b b)+[P]_{S_{a}}^{P_{b}^{\prime}}\right\| \delta_{b}$
$(1.4,2.1,5.1,5.2,5.7,6 \mathrm{~m} 1,6.4,6.7)$
$7.11 P-1,4$-конъюнкция, $p^{*}-$ конъюнктивныи член $P, P^{\circ}=\bar{a}$ или $p^{0}=\delta$ а \Rightarrow $P\left\|(b=a) \rightarrow[P]_{\delta}^{P \prime}\right\| b$
$(1.1,1,4,2.1,3.1,5.1,5.7,6-1,6.5,6.7,6.11)$
$7.12 P-1,4-$ конъюнкция,$P^{\prime}=Q$-конъюнктивньпи член $P \Rightarrow$

PHG \rightarrow P

(5.7)
8. $1 \mathrm{P}-1,3,4$-конъюнкция, $\mathrm{P}^{\circ}=\delta \mathrm{a}^{- \text {конъюнктивный член } \mathrm{P} \Rightarrow}$
$P\|\bar{b} \rightarrow P\| \delta_{b}$
(2.1,4.5,6.6,6.8)
8. $2 \mathrm{P}-1,3,4$-конъюнкция, $\mathrm{P}^{0}=\overline{\mathrm{b}}$-конъюнктивный член $\mathrm{P} \Rightarrow$
$P\left\|\delta_{a} \rightarrow[P]_{\delta_{b}}^{P^{\prime}}\right\| \delta_{a}$
(2.1,4.5,6.6,6.8)
$9.1 \mathrm{P}-1$-дизъюнкция, $\mathrm{P}^{\prime}=\mathrm{G}$-дизъะонктивный член $\mathrm{P} \Rightarrow$
$P V_{Q \rightarrow P}$
(2.3,5.8)
10.1 P- 1,2-дизъюнкция, Q -нормальная конъънкция, P '-дизъюнктивный

$P \vee B \rightarrow P$
(2.3,5.9)
10.2 P- 1,2 -дизъюнкция,, 1 -нормальная конъюнкция, P^{\prime}-дизъюнктивныи

$\operatorname{cont}\left(P^{\prime}\right) \eta^{\alpha \leq} \operatorname{cont}(\mathbb{P})^{\prime} \eta^{\alpha} \Rightarrow$
$P \vee B \rightarrow[P]_{Q}^{P}$
(2.3,5.9)

Сделаем краткий обзор системы правил переписывания.
Для избежания бесконечных цепочек вывода вида
 ассоциативности 1.1.

В систему RWS_{2} нельзя включать правила коммутативности, применение которых может привести к бесконечным цепочкам вида
 симметричные правила, необходимые при отсутствии правил коммутативности. На зтой идее основаны гравила дистрибутивности группт 2.
Прммер: В системе θ_{2} нет аксиомы, симметричнои аксиоме 3.5 $(\mathrm{P}, \sqrt{ }(\mathrm{B}) \| \mathrm{R}=(\mathrm{P} \| \mathrm{R}) \vee(\mathrm{Q} \| \mathrm{R})$ Поэтому, если мы не включим в нашу систему правил нового симметричного правила, основанного на аксиоме
 виду (allb) falle.

Правило 3.1 позволяет избавиться от символа \bar{v}, а правила гругпы 4 -от символов пи $\boldsymbol{\pi}$.

Правила группы 5 используются для удовлетворения свойству 1

нормальнои кон'ьюнкции.
В связи с отсутствием гңавил коММутативности возникают и трудности другого рода, связанные с удалением друг от друга
 применить некоторую аксиому. Тогда, в дополнение к подходу, основанному на введении симМетричных правил, применяется другои. Рассмотрим формулу Р园 (или PVㄱ. B подформуле P, являюиеися
 (к $P^{\prime} V^{0 D}$ триненима некоторая аксиома из θ_{2}.

На этои идее основаны травила гругіы 6, предназначенные для удовлетворения свойтву 4 нормальнои конъюнкции, грутиы ? необходимыө для выполнения своиства 3, правила гругны 8 для удовлетворения своюству 2, а также травила групा 9 и 10 , нужные для

 правила 7.3 и 7. 7.
В первом случае, три трименении трави/та $7.3 \quad$ ($\left.P=a \| b_{8} B=\overline{a_{9}} P^{2}=a\right)$ получаем форнулу δ alb.
 получаем δ a $\|$.

Кроме того, для изঠежания бесконечных цепочек вывода вида

правилах гругщы 6 конъюнктивныи член-транзитивное замыкание отнонения тредиествования ииется в максимальной 1 -конъюнкции, содержацей данную. Правило применяется только тогда, когда такого члена в Максимальнои 1 -кон'ьюнкции нет. Этот трием предохраняет от бесконечного увеличения длины формулы в процессе ее приведения.

Необкодммо отметить, что правила 7.6-7.11,8.1,8.2 основаны Ha новых аксиомах, поиученных из аксном θ_{2} :
all $(a y b)=\delta$ 具 δb
$\delta_{a} H(a s b)=\delta_{a} \| \delta_{b}$
$\bar{a} \|(b, a)=\delta \quad H b$
$\delta_{a} \|(b ; a)=\delta_{a} H b$
$\delta_{a} H b=\delta_{a} \| \delta_{b}$
Iрд\#tap: Первая из аксиом получается по следукией цепочке равенств, в которой над знаками равенств указаны номера применяемых аксиом, а звездочка обозначает их применение справа налево:

$\delta_{a}\left\|(7 \mathrm{~b}) \stackrel{6.7}{ } \delta_{a}\right\| \delta_{b "}$

Рассмотрим пример на свойство 3 каноническои форны.
ITPMMEр: Формула

приводится с помоыью правил гругпы 10 к виду, удовлетворяюинему

Докажем серию важных утверждении о системе RWS_{2}.
УтверкдениеI: Если к Формуле AFP $_{2}$ не применимо ни одно из правил групп $1-5$,то она является дизъюнкцией 1 -конъюнкции. Доказательство:

Заметим, что, если к формуле не грименимо правило 1.1 ,то все скобки, объединяюцие подФормулы, соединенные одинаковыми знаками операций, смещены влево. В дальнейшем будем предполагать, что все формулы уже обладают этим свойтвом.

Если к формуле не применимы правила 1.1 и 3.1 ,то в зтой формуле нет операции \widetilde{V}.

Очевидно также, что с помощью правил группы 4 мы избавляемся от п и \#. Если в формуле есть зти символы, стояиие перед сложными подформулами,то к неи обязательно применимы правила труппы 4 , смещаюцие знаки операций п и п $^{\boldsymbol{K}}$ элементарным подформулам видов $\mathrm{a}, \overline{\mathrm{a}}, \delta \mathrm{\delta}$. Затем, при применении превил 4.3 и 4.4, знаки п и $\overline{1}$ исчезают. Итак, если $к$ Формуле не применимы правила гругп $1,3,4$, эта формула-вез символов $\bar{v}, \not \approx и$ и .

Если,в дополнение к этому,к Формуле не применимы правила группы 2 , приводящие формулу к виду $P={\underset{i=1}{n} \sum_{i=1}^{n} p_{i j}}_{\text {TO }}^{\text {то }}$ Формула является

дизъюнкциеи конъюнкций $с$ членами $P_{i j}$, являюцимися предшествованиями или элементарными формулами.
 $P_{i j}=\left(Q_{i j} j R_{i j}\right)$ или $P_{i j}=Q_{i j}$ rде $Q_{i j} R_{i j} \in \mathbb{U a U} U_{\alpha}$

Правила 5. $2-5.6$ позволяют избавиться от символов из $\overline{a U \Delta} \Delta_{a}$ и одинаковых символов в двучленных предшествованиях. Таким образом, если к Формуле не применимы правила гругп $1-5$, она является дизъюнкцией конъюнкций c членами вида a, \bar{a}, δ_{a} или (а弓b),ахぁ, то есть эта Формула-дизъюнкция 1 -конъюнкции.

Утвередение2: Если к Формуле AFP $_{2}$ не применимо ни одно из правил групп 1-6, то она является дизъюнкцией 1,4 -конъюнкций.
Доказательство:
По утверждению 1, наша формула-дизъюнкция 1 -конъюнкции. Так как к зтой формуле не применимы правила группы 6, дополняюыие ее 1-конъюнкции новыми членами-транзитивными замыканиями отношения предшествования, то, то определению, дизъюнктивные члены этой формулы-1,4-конъюнкции.

Утверядение3: Если к формуле AFP $_{2}$ не применимо ни одно из правил

гругп 1－7，она является дизъюнкцией $1,3,4$－конъюнкций．
Доказательство：
По утверждению 2 ，формула－диззюнкиия 1,4 －конъюнкциии． Достаточно доказать，что из неприменимости правил группы 7 следует выполнение условия 3 нормальной конъюнкции для всех дизъюнктивных членов формулы．Рассмотрим ситуации，когда для дизъюнктивного члена формулы，
1,4-конзюнкциии

$$
P_{i}=\| P_{j=1}, \text { выполняется }
$$

условие：
 элементарными предшествованиями．

1）Конъюнктивные члены имеют вид а и（ады）или в и（аяb）．Тогда к конъюнкции，содержанеи эти члены，применимо правило 7.1 или 7．2．после применения которого $\left.\operatorname{arf}_{i k}{ }^{\prime} \cap^{\alpha\left(P_{i 1}\right.}\right)=0$ ．

ᄅ）Конъюнктивные члены имеют вид а и а или а и δ_{a} или а и δ_{a} Тогда к соответствуюмей конъюнкции применимо одно из правил 7．3，7．4，7．5．После его применения $\alpha\left(\mathrm{P}_{i k}\right\}^{\prime} \alpha\left(\mathrm{P}_{i 1}\right)=0$ ．

3）Конъюнктивные члены имеют вид \bar{a} и（а弓̧b）или $\overline{\mathrm{b}}$ и（а；弓b）или δ_{a} и（ақы）или δ_{b} и（а弓ы）．Тогда к конъюнкции применимо одно из правил 7．6－7．11，преобразующих конъюнкцию к виду，где $\alpha\left(P_{i k}\right) \eta^{\alpha\left(P_{i 1}\right)}=0$ ．

4）Конъюнктивные члены имеют вид а и а или а и а или δ_{a} и δ_{a} или（а；弓）и（а弓b），то есть совпадают．Тогда к конъюнкции применимо правило 7．12，уничтожаюцее лишний конъюнктивный член и выполняюыее условие $\alpha\left(P_{i k}\right){ }^{\alpha\left(P_{i 1}\right)}=0$ ．

Связи между конъюнктивными членами наглядно представляются спедуюиней схемой，в которой стрелки с номерами пунктов
доказательства этого утверждения соединяют формулы，которые могут быть на месте $P_{i k}$ и $P_{i 1}$ Эта схема показывает，что в утверждении рассмотрены все случаи невыполнимости условия 3 нормальной конъюнкции．

Значит，если для формулы не выполняется условие 3，к ней обязательно применимо какое－либо из правил группы 7 ．
Итак，при неприменммости k формуле гравил групт $1-7$ можно утверждать，что она－дизъюнкция 1，3，4－конъюнкций．

Утверкдение4: Если к формуле AFP_{2} не применимо ни одно из правил гругп $1-8$, то она я्रвляется 1 -дизъюнкцией.
Доказательство:
По утверждению 3, формула- дизъюнкция $1,3,4-$ конъююккий. Покажем, что из негрименимости правил группы 8 следует выполнение условия 2 нормальной конъюнкции для всех ее дизъюнктивных членов. Это очевидно, так как правило 8.1 или 8. ᄅ применимо к какому-то дизъюнктивному члену P_{i} Формулы P_{s} если в нем есть конъюнктивныте члены $P_{i k}$ и $P_{i l}$ имеюиие вид δ_{a} и \bar{b} (алы по своиству 3 нормальнои конъюнкции). B заключение заметим, что $1,2,3,4$-конъюнкциянормальная конъюнкция, а дизәюнкцияя нормальных коньюнкции-1-дизъюнкция.
 гругт 1-9, то она-1, 2-дизъюнкция.
Доказательство:
По утверждению 4, Формула-1-дизъюнкция. Правило 9.1 не применимо, если все дизъюнктивные члены различны,то есть если Формула-1, е-дизъюнкция.
 RWS_{2}, она находитея в канонической форме.
Доказательство:
По утверждению 5, Формула-1, 2-дизъюнкция. Очевидно, что правила групты 10 применимы только тогда,когда формула-не $1,2,3$-дизъюнкция, то есть не находится в канонической форме.

ь.описание программы CANONIC

Программа CANONIC, занимаюная около 1000 строк на языке Си, предназначена для преобразования Формулы AFP_{2} в дизъюнкцию 1-конъюнкции и основана на утверждении 1 главы 5 . Тело функции main имеет вид:

вывод предварительной инфорнации о предназначении ппрограммы и формате вводимой формулы;
представление формулы в виде цепочки;
выдача сообщения "Формула считама";
преобразование цепочки в дерево;
уничтожение цепочки;
печать формулы;
step $=1$ /; \% Homep tuara* f
do
¢
вывод step;
nar=0;/* число применений правил на ware c номером step*/
применение правил;
вывод nar;
step+ig/*следуюший шаг*/
3
while(nar! $=0$);

вывод формулы, полученной в результате выполнения правил;
 соответствии с таблицей:

Исходное обозначение символа	\bar{v}	v	I	\%	11	\#	-	δ
ИМя СИМВОЛЬ НоИ константы	ALT	DSJ	CNC	PRC	NOC	MINO	NOT	DLT
Изображение символа при вводе-выводе	澵	$+$	1	;	*	\cdots	-	*

Кроме того, формула может иметь один из следуюиих видов:

1) a
2) -a, *a
3) "a, "a
4) ${ }^{*}(P),{ }^{\sim}(P)$
5) a \#b, $a+b$, $a t b$, $a \not b$
6) $a^{\|}(P), a+(P), a l(P), a s(P)$
7) (P) \# , (P) +a, (P) ia, (P) ga

где P и G-формулы видов $2-8$,а и b-символы эленентарнык действий. Как видно из описания формата формулы, она не должна иметь внешних скобок.

в процессе ввода формула представляется в виде двусвязной цепочки с элементами тига typelink (cm. приложение), которые содержат указатели на левого и правого соседеи, а также один символ.
Пример: Формула (азв) представляется в виде такои цепочки:

помоцью Функции writetree (проверка правильности преобразования в дерево).

Потом начинается процесс применения k формуле правил гругн 1-5. Ha каждом ware \subset номером step просматриваюотся все правила, и, если они грименимы, применянтся, а число прменении правил на данном ware, паг, увеличивается. В конце wara проверяется, равно
ли число примененных на нем правил нулю. Если это так, то ни одно из правил групи $1-5$ не применимо $к$ формуле, а это, по утверждению 1 главы 5 означает, что она является дизъюнкциеи 1 -конъюнкций. В этом случае циклическое применение правил заканчивается, формула. выводится на зкран функцией writetree, и грограмма заканчивает раб̈оту. В противном случае номер нага увеличивается на едмницу, и к Формуле опять применяются правила.

Рассмотрим остальные функции, используемые в программе.
Функция соруtreе служит для копмрования одного дерева во вновь создаваемое другое, то есть делает копию дерева.

Функция leaf выдает 1, если данное дерево представляет Злементарную формулу, то есть является листом. Инаке выдается 0 .

Тела правил rulell-rule5s имеют следуюиий вид.
if(root? =NULL)
f
if fпраиио непосредственно применимо $к$ дереву $с$ указателем на корень root)
\&
установка указателеи на поддеревья, соответствуюиие подформулам в правиле вывода;
вывод информации о применяемон правиле и печать поддеревьев;
преобразование дерева;
увеличение значения nar на 1;
вывод новои формулы;
3
else
$\{$
применение правила к левому поддереву;
применение правила $*$ правому поддереву;
3
3
Заметим, что правило непосредственно применимо к дереву, если оно применимо ко всему зтому дереву (то есть формула, соответствуюная дереву, интерпретируется как левая часть некоторого правила перегисывания).

Правило косвенно применимо к дереву, если оно негосредственно применимо к некоторому его поддереву, за исключением самого этого дерева.

Правило применимо к дереву, если оно непосредственно или косвенно трименимо к нему.
Прммер: Правило 1.1 косвенно применимо $к$ дереву, соответствуюиему Формуле all $\mathrm{b}_{\boldsymbol{g}(\mathrm{cg} \mathrm{d}) \text {), а именно, } к \text { правому его поддереву, корневая }}^{\text {а }}$ верыина которого содержит первыи символ предиествования ;

Таким образом, при применении правила $к$ дереву просматриваются все его поддеревья, пока указатель на корень текуиего поддерева, root, не станет равным NuLL. Tо есть, если правило применимо к дереву, оно применяется.

Волее подробное огисание программы- в приложении, где содержится ее текст с комментариями.

7．Примеры работы программы CANONIC

В атои главе гриведены гримеры равоты грограммы CANONIC на различных Формулах．В гроцессе работы программы они приводятся к диз＇ьюнкции 1 －кон＇ьюнкции．
1）формула аच̄（bэсс）
this program is writed by Tarasyuk $\mathrm{L} \mathrm{V}_{\text {．}}$
program CANONIC transforms AFP2－formula
to disjunction of the 1－conjunctions
AFP2－formula may has one of the next forms
1）a
2）－a 票a
3）＂a～a
4）＂（p）～(p)
5）a \＃$a b$ $a+b$ asb
6）$a \#(p) \quad a+(p) \quad a(p) \quad a s(p)$
7）（p）来a（p）＋a（p）：a（p）दूa
8）(p) 米 $(q) \quad(p)+(q) \quad(p) H(q) \quad(p)$ sin (q)
where p and q are formulas types $2-8$
input formula
sign of end is EOF
formula has been read
your formula is：
a＊（besc）
step 1
rule 3.1 is applyed
p＝a
$\mathrm{q}=(\mathrm{b}, \mathrm{c})$
new formula is：

rule 4.1 is applyed
$p=b$
$q=c$
new formula isu

rule 4.3 is applyed
$p=b$
new formula is：

rule 4.3 is applyed
$p=c$
new formula is：
（al（ $(-b))(-c)))+\left(\right.$（＂$\left.\left.^{2} a\right)(b, c)\right)$
rule 4.3 is applyed
$p=a$
new formula 1 s：
（ $\left.a^{\prime}((-b) H(-c))\right)+\left(\left(-a H\left(b \xi_{c} c\right)\right)\right.$
number of applyed rules on step 1 is 5
step 2
rule 1.1 is applyed
$p=a$
$q=(-b)$
$r=(-c)$
new formula iss
（（ahi（－b））$(-c))+((-$ aH（bsc $c))$
number of applyed rules on step 2 is 1

```
step
number of applyed rules on step 3 is 0
out form is:
((at(-b))
2) Формула (agb)э(c⿱亠⿻口丿
this program is writed by Tarasyuk I.V.
program CANONIC transforms AFP2-formula
to disjunction of the 1-conjunctions
AFP2-formula may has one of the next forms
1) a
2) -a *a
3) "a ~a
4) "(p) "(p)
5) a*b a+b alb atb
6) a#(p) a+(p) a!(p) as(p)
7) (p)挑a (p)+a (p)'a (p);a
8) (p)#(q) (p)+(q) (p)i(q) (p)%(q)
where p and q are formulas types 2-8
input formula
sign of end is EOF
formula has been read
your formula iss
(ayb)z(c;-d)
step 1
rule 1.1 is applyed
p=(a;b)
q=E
r=d
new formula iss
((a;b);sc)gd
rule 5.1 is applyed
p=a
q=b
r=c
new formula is:
(((agb):(b,gc))(a%c));ci
number of applyed rules on step 1 is 2
step 2
rule 2.1 is applyed
p=((agb)H(b;c))
q=(as,C)
r=d
new formula is:
(({a;b)H(b;c))
rule 5.1 is applyed
p=a
q=c
r=d
new formula iss
```



```
number of applyed rules on step 2 is 2
step 3
rule 1.1 is applyed
p=(((agb)&(bşc))
q=((asc):(c;%d))
r=(a*d)
```

```
new formula is:
((((agb);(b;c));g));((agc);(c;c)))H{(asd)
rule 2.1 is applyed
p=(agb)
q={b;c)
r=d
new formula is:
((((asb)sd):((bogc)%d))H((asc)|(cşc)))!(asd)
rule 5.1 is applyed
p=a
q=b
r=d
new formula is:
```



```
rule 5.1 is applyed
p=b
q=c
r=d
new formula iss
```



```
number of applyed rules on step }3\mathrm{ is }
step 4
rule 1.1 is applyed
```



```
q=(asc)
r=(c;od)
new formula is:
```



```
number of applyed rules on step 4 is 1
step 5
rule 1.1 is applyed
p=({(agb);(b;\mp@code{D);(agd))}
```



```
r=(b;gd)
new formula is:
```



```
number of applyed rules on step 5 is 1
step 6
rule 1.1 is applyed
p={((agb))(b;gd));(asg))
q=(b;ec)
r=(cegd)
new formula is:
```



```
number of applyed rules on step 6}\mathrm{ is 1
step }
number of applyed rules on step 7 is 0
out form is:
```


3) формула all $b^{\left(\bar{c}_{\xi} \delta_{d}\right)}$
this program is writed by Tarasyuk I.V.
program CANONIC transforms AFP2-formula
to disjunction of the 1-conjunctions
AFP2-formula may has one of the next forms

1) a

2）－a＊a
4）（b）a
5）ato $a+b$ abb a
6）$a \neq(p) a+(p) a(p) a g(p)$
7）（p）得a（p）＋a（p）ia（p）ga
B）(p) it $(q) \quad(p)+(q) \quad(p) H(q) \quad(p) g(q)$
where p and q are formulas types $2-8$
input formula
sign of end is EDF
formula has been read
your formula is：

step 1
rule 2.2 is applyed
$p=a$
$\mathrm{q}=\mathrm{b}$
$\mathrm{F}=\left((-\mathrm{c}) ;\binom{\right.$（ }{ d }$)$
new formula iss
$\left(a a^{\prime}\right)+(a!((-c)=(\% d)))$
rule 5.2 is applyed
$p=(-\mathrm{c})$
$q=($ 草d）
new formula is：

number of applyed rules on step 1 is 2
step 2
rule 1.1 is applyed
pira
qu（ -c ）
$r=\left(\right.$ Hal $^{(1)}$
new formula is：
（atb）$+((a)(-c))\left(\begin{array}{c}(d))\end{array}\right.$
number of applyed rules on step 2 is 1 step 3
rumber of applyed rules on step 3 is 0 out form iss

this program is writed by Tarasyuk I．V． program CANONIC transforms AFP2－formula to disjunction of the 1－conjunctions AFP2－formula may has one of the next forms 1）a
2）－a＊a
3）‘a＊a
4）＂（p）～(p)
5）$a \neq b \mathrm{a} b \mathrm{~b} \mathrm{a} b \mathrm{~b} \mathrm{a} b$
6）a \＃（p）$a+(p)$ aif $p) a(p)$
7）（ p ）\＃a（ p ）＋a（p）ia（p）ga
$8)(p)$ 畨 $(q)(p)+(q) \quad(p) H(q) \quad(p) s(q)$
where p and q are formulas types $2-8$
input formula
sign of end is EDF
formula has been read

```
your formula is:
"(a+(bas(-c)))
step 1
rule 4.2 is applyed
p=a
q=(b;g(-c))
new formula is:
("a)+(")
rule 4.4 is applyed
p=a
new formula is:
(尔a)+(*)(bs(-c))
rule 5.3 is applyed
p=b
q=(-c)
new formula is:
(辇a)+("(bi(-c)))
number of applyed rules on step 1. is 3
step 2
rule 4.1 is applyed
p=b
q=(-c)
new formula is:
(*a)+(("b)!("(-c)))
rule 4.4 is applyed
p=b
new formula is:
(*a)+((鉉))""(-c))
rule 4.4 is applyed
p=(-c)
new formula is:
(*a)+((*b))(*c))
number of applyed rules on step 2 is 3
step 3
number of applyed rules on step 3 is 0
out form is:
(*a)+((紬);(象c))
```

5）Форнула（6 $a^{\text {з（byb））} \delta_{c}}$
this progran is writed by Tarasyuk IoV． program CANONIC transforms AFF2－formula
to disjunction of the 1 -conjunctions
AFP2-formula may has one of the next forms

1）a
2）－a＊a
3）＂a＂a
4）＂（p）～p ）
5）a 䉼b $a+b$ alb agb
6）a＂（p）$a+(p)$ ai（p）$a g(p)$

where p and q are formulas types $2-8$
input formula
sign of end is EDF
formula has been read
your formula is：

```
((事a)%(b;gb))%(事c)
step 1
rule 1.1 is applyed
p=(*a)
q=b
r=b
new formula is:
```



```
rule }5.1\mathrm{ is applyed
p=(%a)
q=b
r=b
new formula is:
```



```
rule 5.4 is apllyed
p=b
q=b
new formula is:
```



```
rule }5.5\mathrm{ is applyed
p=(*)a)
q=b
new formula is:
```



```
rule }5.5\mathrm{ is applyed
p=(*)a)
q=b
new formula is:
```



```
number of applyed rules on step 1 is 5
step 2
rule 1.1 is applyed
p=((<*a)(*b)H(*b))
q=(尔a)
r=(*b)
new formula is%
```



```
rule 2.1 is applyed
p=(f((*)a)H(*b)M(毅)H(*)
```



```
    r=(家c)
    new formula is:
```



```
    rule 5.5 is applyed
    p=(乵)
    q=(*)
    new formula is:
```



```
    number of applyed rules on step 2 is 3
    step 3
    rule 1.1 is applyed
```



```
    q=(*b)
    r=(事C)
    new formula is:
```



```
    rule 2.1 is applyed
```



```
q=(*a)
r=(榇)
new formula is:
```



```
rule 5.5 is applyed
p=(象a)
q=(凖c)
new formula iss
```



```
number of applyed rules on step }3\mathrm{ is }
step 4
rule 1.1 is applyed
p=((f(*)
q=(*a)
r=(争c)
new formula is:
(()(C((*)aH(*b))\(*b))
rule 2.1 is applyed
p=((宗a)H(*b))
q=(家)
r=(综)
new formula is:
```



```
rule 5.5 is applyed
p=(施)
q=(莗c)
new formula is:
```



```
number of applyed rules on step 4}\mathrm{ is 3
step 5
rule 1.1 is applyed
```



```
q=(*b)
r=(*)
new formula is:
```



```
rule 2.1 is applyed
p=(萐a)
```



```
r=(%c)
new formula is:
```



```
rule 5.5 is applyed
p=(事a)
q=(#c)
new formula is?
```



```
rule 5.5 is applyed
p=(勏)
q=(㣰c)
new formula is&
```



```
number of applyed rules on step 5 is 4
step 6
rule 1.1 is applyed
p={(象a)(家c)}
q=(榢)
r=(㮃c)
```

new formula is：

number of applyed rules on step 6 is 1
step 7
number of applyed rules on step 7 is 0
out form iss

8）Формула（allb）s $\mathcal{S}_{\text {e }}$
this program is writed by Tarasyuk IoV．
program CANONIC transforms AFP2－formula
to disjunction of the 1 －conjunctions
AFP2－formula may has one of the next forms
1）a
2）$-a$ 米a
3）＂a＂a
4）${ }^{7}(p) \quad$＂(p)
5）a \＃b $a+b$ atb $a \not b$
6）a（p）$a+(p)$ al（p）$a_{5}(p)$
7）（ p ）巷a（ p ）＋a（p）ia（p）ga
8）(p) 粠 $(q) \quad(p)+(q) \quad(p) i(q) \quad(p) ;(q)$
where p and q are formulas types $2-8$
input formula
sign of end is EOF
formula has been read
your formula iss
（aib） 3 （章c）
step 1
rule 2.1 is applyed
$p=a$
$\mathrm{q}=\mathrm{b}$
$r=($ 東 C ）
new formula 1 iss

rule 5.6 is applyed
$p=a$
$\mathrm{q}=(\mathrm{F} \mathrm{C}$ ）
new formula isa
（at（＊）））（bss（ce））
rule 5.6 is applyed
$p=b$
$\mathrm{q}=($ 東c）
new formula is：

number of applyed rules on step 1 is 3
step 2
rule 1.1 is applyed
$p=\left(a!\left(\begin{array}{l}\text { 耍c）}\end{array}\right)\right.$
$q=b$
$r=\left({ }^{(} \mathrm{c}\right.$ ）
new formula is：

number of applyed rules on step 2 is 1
step 3
number of applyed rules on step 3 is 0
out form is：

Припожение：Текст программы CANONIC \subseteq комментариями

```
/桊program CANONIC*/
#include <stdio.h>
*include <stdlibn>
#include <ctypeah>
struct treeel
{
    char treesmb[2]s
    struct treeel %father,*)
}
struct chainel
{
    char chainsmb;
    struct chainel *leftg*right;
3:
typedef struct treeel typevert?
typedef struct chainel typelink!
#define NEWVERT (typevert wmalloc(sizeof(typevert))
#define NEWL.TNK (typelink *)malloc(sizeof(typelink))
偣define ALT "軺
#define DSJ ***
#define CNC #
#define PRC ":
#define NOC mos
#define MNO w*
#define NOT =->
#define DLT "**
typevert *ancestor;
main()
}
int nar,step,letters
```



```
/苂аг-число гримененных гравил на wаге с номером
step; letter-очередной считываемыи
символ; currlink,lastlink-yказатели соответственно на текуиее и
предыдущее звенвя цепочки; start,finish-указатели соответственно на
первое и последнее звенья щеточки曹/
```

／䒠предварительная информация и ввод форму лы＂／
printf("this program is writed by Tarasyuk I.V. $\left.\ln ^{\prime \prime}\right)_{g}$
printf"program CANONIC transforms AFP2-formulaln")
printf("to disjunction of the 1-conjunctions $\left.{ }^{\prime \prime} n^{2}\right)$
printf("AFP2-formula may has one of the next forms $\mathrm{In}^{\prime \prime}$)
printf("1) a(n")s
printf("2) \%ca \%cain" ${ }_{3} \mathrm{NOT}_{3}, \mathrm{DL} \mathrm{T}_{3}$
printf("3) \%ca \%caln", NOC, MNO);


```
printf("5) a%cb a%cb a%cb a%cb\n",ALT,DSJ,CNC,PRC)%
printf("b) a%c(p) a%c(p) a%c(p). a%c(p)\n",ALT, DSJ,CNC,FRC);
printf("7) (p)%ca (p)%ca (p)%ca (p)%ca\n",
printf("g) (p)%c(q) (p)%c(q) (p)%c(q) (p)%c(q)\n",yALT,DSJ,CNC,
PRC)
printf("where p and q are formulas types 2-8\n")
printf("input formula\n")
printf("sign of and is EOF(nn);
/\mp@code{преобразование формулы # иепочку*/}
currlink=NEWL_INK%
lastlink=NEWLINK;
while((Cletter=getchar())==\mp@subsup{}{}{*}\\mp@subsup{n}{}{*})
    #
currlink->chainsmb=letter:
start=NEWL INK:
start=lastlink=currlink;
while((letter=getchar()):=EOF)
\varepsilon
```



```
    \varepsilon
        currlink=NEWILINK;
        currlink->left=lastlinks
        lastlink->right=currlink;
        currlink->chainsmb=letter;
        lastlink=curr-link;
    3
}
finish=NEWLLINHG
finish=currlink;
printf("formula has been read\n")%
/*греооразование цепочки в деревс漳/
ancestor-NEWVERT;
ancestor->soni=arncestor->}->\operatorname{son}2=NLLLL
transfct(start, finishgancestor)s
ancestor=ancestor }->\mathrm{ son2;
free{ancestor->father):
ancestor->father=NULL.g
/*уничтожение цепочк橉/
dispchain(start,finish);
/*вывод Формулы по дереву*/
printf("your formula is:\n")
writetree(ancestor)gprint f(")\n"),
/* применение гравил к формуле*/
step=15
do
&
printff"step %d\n",step)s
nar=O
rulell(ancestorgznar);
rule21(ancestor,*nar)*
rule22(ancestor,&nar)
rule3l(ancestorg&nar);
```

```
    rule41(ancestors*nar):
    rule42(ancestor,&nar)g
    rule43(ancestor g*nar)
    rule44(ancestor,&nar)
    ruleSl(ancestor,&nar)
    rule52(ancestor,*nar);
    FuleS3(ancestor,&nar)%
    ruleS44(ancestor,&nar)%
    ruleS5(ancestorg&mar)%
    rule56(ancestor,knar)
    printf("number of applyed rules on step %d is %d\n";step,nar)s
    step+*;
)
while(nar!=0)%
```

/*вывод Формулы, полученнои р результате применения правили/
printf("cout form iss pr"") $^{\text {m }}$
writetree(ancestor) apprint $f\left({ }^{\prime \prime} \backslash n^{" 1}\right.$).
3/*end canonic*/
transfct(begin, end, forefath)
/革функиия греооразования цепочки в дерево章/
typelink 縕egin,*ends
typevert forefath;
/繖gingend-указатели соответственно на первое и последнее звенья
цепочки; forefath-указатель на верыину дерева, к которой нужно
грисоединять очереднуно вериину娄/
\{
int depths
typelink 臬car:
typevert 㬌vertex, subvert;

указатель, движуиинся по неп; vertex, subvert- указатели
соответственно на верыину-отца и вериину-сына в текуыем фрагменте
дерева絭/
if(begin=mend)/車case 1索/
\{
vertex=NEWVERT;
vertex \rightarrow treesmb[0]=begin \rightarrow chainsmbs
vertex->treesmb[1] $={ }^{3} \backslash 0^{\prime}$;
vertex $->\operatorname{son} 1=$ vertex $->\operatorname{son} 2=$ NLLLL
vertex->father=forefaths
if(forefath $->\operatorname{son} 2=$ Nul $\mathrm{N} L$)
forefath->son $2=$ vertexg
else
forefath->soni=ver tex
3

¢
vertex NEWVERT
vertex->treesmb[o]=begin->chainsmb;
vertex \rightarrow treesmb[1] mend->chainsmb;
vertex->soni=vertex->son2=NILLL;
vertex $->$ father $=$ forefath
iffforefath $->\operatorname{son} 2==$ NLLL 1)

```
        forefath->
    else
        forefath }>\mathrm{ Sonl=vertexs
    3
    else ift(tbegin->chainsmb==NCOChtbegin->chainsmb==NNON&&
                    (end->chainsmb!=`)`))/要case 3*/
    &
        vertex=NEWVERT;
        vertex->treesmb[0]=begin->chainsmbs
        vertex ->treesmb[1]=\\0';
        vertex -> sont=NuLLL;
        vertex->father=forefath;
        if(forefath->son2==NLHL.)
        forefath->
    else
        forefath->son1=vertex;
        subvert=NEWVERT;
        subvert->treesmb[0]=end->chainsab;
        Subvert->treesmb[1] =}=1\mp@subsup{0}{}{*
        subvert-2\operatorname{son}=\mathrm{ subvert - - son2=NLHLL;}
        subvert->father=vertev;
        vertex->5onZ=subverts
3
else iff(tbegin->chainsmb==NOCHGbegin->chainsmb==NNO))&&
            (end->chainsmb==3}\mp@subsup{=}{}{3})\mathrm{ ) /真case 4*/
\varepsilon
    ver tex=NEWVERT;
    vertex->treesmb[0]=begin->chainsmbs
    vertex->treesmb[1]="\0%;
    vertex->\operatorname{son}=vertex->son2=NHLL:
    vertex->father=forefath;
    if(forefath->}\operatorname{son}2=m=NLLLL
        forefath->son2=vertexg
    else
        forefath->gonl=vertex%
    transfct(begin->right->right,yend->left,}ver tex)%
3
else if(begin-)chainsmb!="(")&&(end->chainsmb!=>}\mp@subsup{)}{}{7}))/\mathrm{ /象case 5%/
f
    vertex=NEWVERT:
    vertex ->treesmb[0]=begin->right->chainsmb;
    verten->treesmb[1]=>}\\mp@subsup{O}{}{\prime
    vertex->father=forefath;
    iffforefath->
        forefath }->\operatorname{son}2=vertew
else
    forefath->soni=vertexg
subvert=NEWVERT:
subvert->treesmb[0]=end->chainsmbs
subvert->treesmb[1]=*\0%
subvert-> sont=subvert - > son 2=NulLL;
subvert->father=vertex;
vertex->son2=subvert;
subvert=NEWVERT;
subvert->treesmb[o]=begin->chainsmb;
subvert }->\mathrm{ treesmb[1]=*}\\mp@subsup{0}{}{\prime
subvert->\operatorname{son}=subvert-3}\operatorname{son}2=N|lLL.
Subvert->father=vertex;
```

```
    vertex->soni=subvert;
3
else if(begin->chainsmb!=`(%) /*case o%/
&
    vertex=NEWVERT;
    vertex->treesmb[0]=begin->right ->chainsmby
    vertex->treesmb[1]="}10\mp@subsup{0}{}{\prime
    vertex->son2=NuLL;
    vertex->father=forefath,
    if(forefath->}\operatorname{son}2===N|LL
        forefath->son2=vertex;
    else
        forefath->sonl=vertexs
        subvert=NEWVERT;
        subvert->treesmb[0]=begin->chainsmbs
        subvert->treesmb[1]=}\\\mp@subsup{O}{}{\prime
        subvert }->\mathrm{ soni=subvert }->\mathrm{ son 2=NLILL;
        subvert->father=verten;
        vertex->sonl=subvertg
        transfct(begin->right->right->right, end->left,vertex),
3
else if(end->chainsmb!=>`)//家case 7%/
{
    vertex=NEWVERT;
    vertex->treesmb[0]=end->left->chainsmbs
    vertex->treesmb[1]="\O*
    vertex->soni=N|HLL
    vertex->father=forefathg
    if(forefath->5on2==NLHLL)
        forefath->
    else
        forefath->}>>\operatorname{son}1=vertex
    subvert=NEWVERT:
    subvert->treesmblO]=ernd->ehainsmbs
    subvert->treemsmb[1]="\0";
    subvert-> son1=subvert->}\operatorname{son2=NLILLs
    subvert->father=vertex;
    vertex->son2=subvert?
    transfct(begin->right,end->left->left->left,vertex)%
3
else/靽ase B素/
{
    car=NEWL INK;
    carmbegin->right:
    for-(depth=1gdepthi=Oscar=car->right)
    \ell
        if(car->chainsmb==**) depth++g
        if(car->chainsmb==")") depth--
    3
vertex=NEWVERT:
vertex->treesmb[0]=car->chainsmb;
vertex->treesmb[1]m=`07%
vertex->5onl=vertex->son2=NLLLL;
vertex->father=forefaths
```



```
    forefath->
else
    forefath->5onl=vertews
```

```
    transfct(car-3right->rightyend->left,verten)%
    transfct(begin->right,car->left->left,vertex)
    3
3/*end transfct*/
dispchain(begin,end)
/&функция уничтожения цепочки%/
typelink *begin,*endy
/*begin, end-указатели соответственно на начало и конец цепочк沙/
{
    typelink 車car;
    /%саг-указатель, перемемаюииися по цепочке⿱⿱亠䒑木斤/
    car=NEWL. TNK:
    car=encls
    if(begint=end)
    {
        do
    f
        car=car->lefty
        free(car->right)s
    3
    while(car:=begin);
    3
    free(car)
3/*end dispchain*/
wiritetree(root)
/䒠首/
typevert 首root:
/%root-указатель на корень дерева*/
\ell
    if(root:=NLLLL)
    \varepsilon
        if(!isalpha(root->treesmbLOI))&&(root!=ancestor)) putchar("(")
        writetree(root->soni);
        putchar(root->treemsmb[0]):
        if(root->treesmb[1]:=*\0') putchar-(root->treesmb[1]);
        writetree(root->\operatorname{son2)}
        if(%isalpha(root->treesmb[o]))&%(root!=ancestor)) putchar(z)")
3
3/*end writetree*/
copytree(young,old)
/\mp@code{фнкция когирования дерева*/}
typevert 詈young,sold;
/%old-указатель на корень дерева. с которого делается копияя с
соответствуюыимм указателем young*/
&
    typevert *s1,*s2%
    /*51,52-указатели соответственно на первого и второго сbновепи
когмруемой вериины нового дерева⿻丷木/
```

```
    young->treesmb[0]=old->treesmb[0]g
    young->treesmb[1]=ald->treesmb[11%
    if(old->son1!=Nu!.L)
    \ell
        s1=NEWVERT;
        s1->father=young:
        young->sonl=s1,
        copytree(51,old->mon1);
    3
    else young->5on1=NULL;
    if(old->son2!=NLLLL)
    \varepsilon
        52=NEWVERTB
        52->father=young:
        young->}\operatorname{son}2=5
        copytree(52,old->son2)
    3
    else young->
3/*end copytree*/
int leaf(root)
/新ниия, определяюиая, является ли дерево листом/
typevert *root;
/*root-указатель на корень дерева*/
\varepsilon
    if(iroot->treesmb[0]==NOT)HGroot->treesmb[O]==DLTH:
        isalpha(root->treesmb[O1))
        return 1:
    else
    return O;
3/\mp@code{#nd leaf%/}
rulell(rootgacidrnar)
typevert 隹root:
int 宗addrnars
{
typevert *ps*qs*r"
if(roots=NuLL)
\varepsilon
if(f(root->treesmb[0]==PRC)&&(root->son2->treesmb[o]==PFC)%
                            ((root->treesmb[0]==[CNC)&&(root-> son2->treesmb[0]==CNC):i
                            ((root->treesmb[0]==DSJ)&&(root->son2->treesmb[0]==DSJ))
    \ell
        p=NEWVEFT:
        q=NEWVERT;
        r=NEWVERT;
        p=root-> sonis
        q=root->
        r=raot->\operatorname{son}2->\operatorname{son}2
        printf("rule 1.1 is applyed\rn")
```



```
    printf("q=")swritetree(q)gprint.f("\n");
    printf("r=")gwritetree(r)gprintf("\n")g
    root->soni=q->father:
    root-> son2=p:
    q->father->soni=rg
    q->father }->\operatorname{son}2=q
    r>father=root;
    root->son2=r:
    p->father=q->father:
    q->father->soni=p:
        (*)addrnar)+*%
        printf("new formula is:\n")g
        wr-itetree(ancestor)gprint f(")n");
    3
    else
    \ell
        rule11(root->Eon1,addrnar)g
        rule11(root-3-son2,addrnar)
    3
}
*/*end rule11涼/
rule21(root, addrnar)
typevert *root:
int %addrnar;
&
    typevert *ps*q|,*r,家next;
    char chg
    if(root!=NLNLL)
    {
    if((%root->treesmb[O]==PRC)&&(root->son1->treesmb[O]==CNC)#
            (<root->treesmb[O]==PRC)&&{raot->soni->treesmb[0]==DSJ)|
            (<root->treesmb[O]==CNC)s&(root->son1->treesmb[0]==0SJ))
    {
        p=NEWVERT;
        q=NEWVERT;
        F=NEWVERT;
        p=root }->\mathrm{ son l-> son1g
        q=root->soni->son2;
        r=roct->5on2%
        printf("rule 2.1 is applyed\n");
        print ff"p=");(writetree(p)%print f(")}\mp@subsup{f}{}{\prime\prime
        print.f("q=")%writetree(q)sprintff"\
```



```
        ch=root->treesmbrolg
        root->treesmb[0]=raot->sani->treesmb[0];
        root->goni->treesmb[0]=ch;
        next=NEWVERT;
        next ->treesmb[0]=ch;
```

```
        next->treesmb[1]=*\0*;
        next->father=root;
        root->\operatorname{son}2=nexts
        r>>ather=next;
        next->}\operatorname{son}2=r:
        q->fathermnext;
        next->
        next=NEWVERT:
        copytree(next,r)s
        next->father=p->father;
        p->father->
        (%addrnar)++%
        printf("new formula iss\n")g
        writetree(ancestor)sprintf("\n"),
    }
    else
    \kappa
        rule21(root->son1,addrnar);
        rule21(root->
        3
    }
3/家end rule21素/
rule22(root,adidrnar)
typevert *root:
int waddrnar:
f
    typevert 䉼,*q,*r,*)
    char chs
    if(root?=NLHLL)
    \varepsilon
        if(f(root->treesmb[0]==FRC)&&(roct->son2->treesmb[0]=mCNC)H
            (iroot->treesmb[0]==PRC)&&(root->son2->treesmb[0]==DSJ)H
            ((root->treesmb[0]==CNC)多(root->son2->4reesmb[O]==DS3))
        &
        p=NEWVEFT:
        q=NEWVERT;
        r=NEWVERT:
        p=root->sont;
        q=root->\operatorname{son}2->
        r=root->\operatorname{son}2->\operatorname{son}2;
        printf("rule 2.2 is applyed\n");
        print f("p=")gwritetree(p)gprint:f(")
        printf("q=");writetree(q);printf("\n);
        print.f("r=")swritetree(r)sprint f("\n")
        ch=root->treesmbcol:
        root->treesmb[0]=root->son2->treesmb[0]s
        root->\operatorname{son}2->treesmb[0]=ch%
        next=NEWVERT:
        next->treesmb[0]=ch:
```

```
        next->treesmb[1]=>\O"s
        next->father=root;
        root->soni=next;
        p->father=next;
        next->
        q->father=next;
        next->son2=q
        next=NEWVERT:
        copytree(next,p)
        next->father=r->father:
        r->>father->
        (*adidrnar)++%
        printf("new formula iss\n")
        writetree(ancestor)gprintf("\n")
    3
    else
    f
            rule22(root->sonigaddrnar);
            rule22(root->son2,addrnar)
    3
3
3/宗end rule22%/
rule31(root,addrnar)
typevert *root:
int *addrnar!
\varepsilon
```



```
if(root!=N⿱一𫝀口LL)
&
    if(root->treesmb[0]==AL.T)
    \varepsilon
        p=NEWVERT;
        q=NEWVERT;
        p=root->sonl;
        q=root->san2;
    printf("rule 3.1 is applyed\n")
    printf("p=")gwritetree(p)sprintf("\n")
    printf("q=")%writetreetq)gprint f(")nn");
    root->treesmb[0]=CNC5
    next=NEWVERT;
    next-> treesmb[0]=NOC:
    next->treesmb[1]=>\ \O
    next->father=roots
    root->son2=next;
    q->father=next;
    next-> son2=q;
    next-> soni=NLHLL
    vertex=NEWUERT;
```

```
        vertex->treesmb[0]=DSI%
        vertex->treeesmb[1]=}\\\mp@subsup{O}{}{7
        vertex->father=root->fatherg
        i%froot->father!=N!⿰纟LL)
        E
            if(root->father->)sorn2=mroot)
                root->father-> son2=vertexg
            else
            root->&ather->5oni=vertewe
        3
        else
            ancestor=vertext
        vertex->5onil=raotg
        raot->-father=vertest
        mext=MEWVERT:
        next->treessmb[O]=CNE:
        next->trexesmb[1]=>\0",
        rext - - father=vartews
        vertex->5on2=next多
        next=NEWVERT,
        next->tyemsmb[0]=NOC:
        next->treesmmb[1]=>\O*
        next->father=vertex->san2;
        vartex-> son2->5on1=next:
        next->ymm1=NullLL
        next=NEWUVERT,
        copytree(riext,p)s
        next->father=vertex->5on2->monis
        vertax->5an2->5an}1->\operatorname{son}2=rneyt
        next=NEWVERTT
        copytreee(next,g)
        next->father=vertex-35on2%
        vertex->}\operatorname{son}2-3\operatorname{son}2=next:
        (*adclrmar)++%
        printf("rnewt formula is:\n")
        ouritetree(ancestor)aprinttf("\n")
        3
        else
        \varepsilon
            rule_3i(root->son1, adctrraar-)
            rule3l(root-> son2,addrnar)g
        3
3
```



```
Pule41(rootyaddrnar)
typevert *root;
int 素addrnar=
r
```



```
    char chs
```

```
if(root!=NULL)
{
    if((lroot->treesmb[O]==NDCH(root->treesmb[0]==MNO)*&
            ((root->son2->treesmb[0]==CNC):(root->son2->treesmb[0]==PRC))
    {
        p=NEWVERT;
        q=NEWVERT;
        p=root }->\operatorname{son}2->\operatorname{son}1
        q=root->
    printf("rule 4.1 is applyed\n"),
    printf("p=")%writetree(p)%print f(")n")
    printf("q=")swritetree(q)sprintf(")
    vertex=NEWVERT:
    vertex=p->father;
    vertex->treesmb[0]=CNC%
    ch=root->treesmbLolg
    vertex->father=root->father;
    if(root->father!=NULL)
    {
        if(root->father->son2==root)
            root->father->son2=vertex;
        else
            root->father->son1=vertex;
    3
    else
        ancestor=vertex;
    free(root);
    next=NEWVERT;
    next }->\mathrm{ treesmb[0]=ch;
    next->treesmb[1]=*\O"#
    next->father=vertex;
    vertex->soni=next;
    next->5on2=p;
    p->father=nextg
    next->}\operatorname{son}=\mathrm{ NLILL;
    next=NEWVERT;
    next }->\mathrm{ treesmb[0]=ch:
    next->treesmb[1]=>\0"
    next->father=vertex;
    vertex->son2=next:
    next->
    q->father=next;
    next->}\operatorname{soni=NuLL:
    (宗adidrnar)++$
    printf("new formula is:\n");
    writetree(ancestor)gprintf("\n")
)
else
&
    rule41(root->soni,addrnar)
    rule41(root-> son2yaddrnar)
3
```

```
3
3/拳end rule4i*/
rule42(rontsaddrnar)
typevert *root;
int waddrnar:
\varepsilon
```



```
    char ch:
    if(root!=NLUL)
\varepsilon
    if((%root->treesmb[0]==NOC)*(root->treesmb[O]==MNO))&&
        (root->}\operatorname{son}2->treesmb[0]==DSJ)
    {
        p=NEWVERT;
        q=NEWVERT;
        p=root->\operatorname{son}2->\operatorname{son}\mp@subsup{1}{3}{}
        q=root->\operatorname{son}2->\operatorname{son}2;
        printf("rule 4.2 is applyed\n")g
        printff"p=")gwritetree(p)sprintf("\n")
        printf("q=");writetree(q)aprintf("\n")
        vertex=NEWVERT:
        vertex=p->father;
        ch=root->treesmb[0]g
        Vertex->father=root->father;
        if(root }->\mathrm{ father!=NulLL)
    &
        if(roat->father->son2==root)
        root->father->\operatorname{son}2=vertex
        else
        root->father->soni=vertex,
    3
    else
        ancestor=vertex;
    freed(root)s
    next=NEWVERT;
    next->treesmb[0]=ch?
    next->treesmbL1]=>}1\mp@subsup{0}{}{\prime
    next->father=vertex;
    vertex->sani=next;
    next->\operatorname{son}2=p;
    p->father=next;
    next->
    next=NEWVERT:
    next->treesmb[0]=ch:
    next->treesmb[1]=}\mp@subsup{}{}{\prime}\\mp@subsup{0}{}{\prime}
    mext->father=vertex;
    vertex->}\operatorname{son}2=next
    next }->\operatorname{son}2=
    q->father=next;
    next-3-soni=NULL;
```

```
        (㐘addrnar)++%
        printf("new formula iss\n")
        writetree(ancestor)gprintf("\n")s
        3
        else
        {
        rule42(root->son1,addrnar)
        rule42(root->son2,addrnar)s
    3
    3
3/\mp@code{wend rule42%%/}
rule43(root,addrnar)
typevert wrootz
int *addrnar;
\varepsilon
    typevert #ps
    char ch;
    if(root:=NLLL)
f
    if((root->treesmb[0]==NOC)*&leaf(root->son2))
    {
        p=NEWVERT;
        p=root->}->\operatorname{son}2
        printf("rule 4.3 is applyed\n")
        print f("p=")gwritetree(p)gprintf(")
        p->father=root->father:
        if(root->father!=NLHLL)
        \varepsilon
            if(root->father->son2=mroot)
            root }->\mathrm{ father }->\operatorname{son}2=p
            else
                root->father->son1=\rho;
        3
        else
            ancestor =p;
        free(root)s
        if(p->treesmb[O]=N0T)
        \varepsilon
            if(p->treesmb[0]==D& T)
                ch=p->treesmbli];
            Else
                ch=p->treesmb[0]y
            p->treesmb[0]=NOT;
            p->treesmb[1]=chs
        3
        (*addrnar)++%
        printf("new formula iss\n")
        writetree(ancestor)gprint f("\n")
    3
    else
    \varepsilon
```

```
                rule43(root->50ni,addrnar)s
            Fule43(root->sor2,addrnar)s
        3
        3
    3/榇end rule43%/
    rule44(root,gaddrnar)
    typevert *root;
    int *addrnar:
    &
        typevert %ps
        char chs
        if(root:=NLHLL)
    <
        if(troot->treesmb[0]==NNO)s:*leaf(root->=gn2))
        f
            p=NEWVERT:
            p=root -> son2;
        printf("rule 4.4 is applyed\r");
        printf("p=")swr-itetcree(p)sprintf(")
        p->father=root->father;
        if(root->father!=NLHL)
        \varepsilon
            if(root->father->son2=mroot)
            root->father->san2=ps
            else
            root }->\mathrm{ father }->\mathrm{ son }=\mp@subsup{p}{\mathrm{ : }}{
        3
        else
            ancestor=p;
        free(root)s
        if(p->treesmbrol:=DL.T)
        f
            if(p->treesmb[O]==NOT)
            ch=p->treesmbr13:
            else
                ch=p->treesmb[0]%
            p->treesmbto]=DLT;
            p->treesmb[1]=ch;
        3
        (%addrnar)++%
        printf("new formula is#\\n")
        writetree(ancestor)gprintf("\n");
        3
        else
    f
        rule44(root-> soni,addrnar);
        rule44(root->son2,addrnar)
    3
}
%/車end rule44%/
```

ruleSi(root, addrnar)
typevert \%root:
int waddrnar;
ε

if(root! =MULL)
ε
if(1 root->treesmb[0]==PRC)\&\&(root->son1->treesmb[0]=mRC)\&\&
leaf(root->son1->son1)
leaf(root->son2))
\&
$\mathrm{p}=\mathrm{NEWVERT}$;
q=NEWVERT:
$\mathrm{r}=$ NEWVERTs
$p=r o o t->\operatorname{son} 1->\operatorname{son} 15$
$q=r a 0 t->\operatorname{son} 1->\operatorname{son} 2$;
$r=r a o t->\operatorname{son} 23$
printf("rule 5.1 is applyed $\left.\backslash n^{\prime \prime}\right)^{\prime 2}$
print $f\left(\text { " } p={ }^{\prime \prime}\right)_{\text {g }}$ writetree(p)sprint $\left.\left.f f^{\prime \prime}\right) n^{\prime \prime}\right)_{3}$

root $->$ treesmb[0] $=\mathrm{CNC}$?
next = NEWVERT;
next \rightarrow treesmb[0] $=\mathrm{PRC}_{5}$
next->treesmb[1]=" ${ }^{\prime} 0^{\prime}$ s
next->father $=$ roots
root->son2=next:
rext->5on2=r"
$r \rightarrow$ father $=$ nexts
next=NEWVERT:
copytree(next, q);
next $->$ father $=r \rightarrow$ father:
$r \rightarrow$ father $->\operatorname{son} 1=n e x t$:
vertex=NEWVERT;
vertex->treesmb[0] $=\mathrm{CNC}_{3}$
vertex $->$ treesmb[1] $={ }^{7} 0^{\circ}$
vertex->father=ract->fathers
if(root->father ${ }^{\text {i }}=$ MLILL)
e
if(root $->$ father $->\operatorname{son} 2==$ root)
root $->$ father $\rightarrow>\operatorname{son} 2=$ vertex
else
root->father-> sonl=vertew
3
else
ancestor =yertek
vertex $->\operatorname{son} 1=$ root:
root->father=vertex;
nest = NEWVERT;
next->treesmb[0]=PRC:

```
        next->treesmb[1]=>\\0
        next->father=vertex;
        vertex->50n'2=next;
        next=NEWVERT:
        copytree(next,p);
        next->Father=vertex->son2;
        vertex->\operatorname{son2->sonl=next;}
        next=NEWVERT;
        copytree(next,yr)
        next->father=vertex->son2;
        vertex->>\operatorname{son2->}\operatorname{son}2=next:
        (*addrnar)++%
        printf("new formula iss\n")s
        writetree(ancestor)pprintf("\n")
    3
    else
    f
        ruleSt(root->son1,addrnar)s
        rulest(root->son2,addrnar)
    3
3
%/*end ruleS1%/
rule52(root,adidrnar)
typevert 首root:
int 卑addrnar;
\varepsilon
    typevert * * ps%q;
if(root!=NLLLL)
\varepsilon
    if(froot->treesmb[0]==PRC)&&(root-> son1->treesmb[0]==N0T)&&
            leaf(rout->son2))
    \varepsilon
        p=NEWVERT;
        q=NEWVERT;
        p=root->sonis
        q=root->5sn2"
        printf("rule 5.2 is applyed\n")多
        printf("p=")swritetree(p)sprintf("\
        printf("q=")gwritetree(q)gpr intf("\n"):
        root->treesmb[0]=[CNC
        (*addrnar)+4;
        printf("new formula iss\n")
```



```
    3
    else
    &
        rule52(root->soni,gaddrnar);
        rule52(root->son2,addrnar)
    3
```

```
    3
3/*end rule52%/
rules3(root,adidrnar)
typevert 隹qot;
int &addrnar!
{
    typevert 涫榇;
    if(root!={NLLLL)
    \varepsilon
```



```
                leaf(root->sonil)
        \ell
            P=NEWVERT;
            q=NEWVERT;
            p=root-> soni=
            q=root-> son2.
            printf("rule 5.3 is applyed\n")g
            printf("p=*")
            printf("q=")%writetree(q)%orintf(")
            ract->treesmb[0]=CNC:
            (*addrnar)++%
            printf("new formula issin");
            writetree(ancestor)sprint f("\n")
    3
    else
    \varepsilon
            rule53(root->son1,addrnar);
            rule53(root->son2,addrnar)
        3
    3
%/कend rule53*/
ruleS4(root,adirnar)
typevert *root:
int *addrnar;
4
typevert *p,*qg
if(root!=NLHLL)
&
    iff(root->treesmb[0]==PRC)&⿱彐⿰冫⿰亅⿱丿丶丶⿱⿰㇒一丶⿴⿱冂一⿰丨丨丁心
            isalpha(root->soni->treesmbLou)&&isalpha(root->son2->
            treesmb[0])&&
            (root->5oni->treesmb[0]==_root->5on2->treesmb[0]y)
    &
        p=NEWVEFT;
        q=NEWVERT:
        p=rcoot->sonis
        q=root->
    printf("rule 5.4 is apllyed\n")
```

```
        print:f("p=")弦ritetree(p)sprintf(")
        printf("g=")gwritetree(q)gprintf(")n")
        root->treesmb[0]=DL.T;
        root->treesmb[1]=p->treesmb[0];
        roct->\operatorname{sont=root }->\operatorname{son}2=N|ILL;
        free(p);
        free(q):
        (得addrnar)++!
        printf("new formula iss\n");
        writetree(ancestor)gprintf("\n"),
        3
        else
        C
            rule54(root->son1,addrnar)%
            rule54(root->son2,addrnar)%
        3
3
3/*end rule54%/
rule5s(root,addrnar)
typevert 蒌root:
int *addrnar"
f
    typevert *ps%q!
    char ch:
    if(root:=NLILL)
&
    if((root->treesmb[0]==PRC)&&(root->soni->treesmb[0]==DLT)&&&
            leaf(root-> mon2))
        f
            p=NEWVERT;
            q=NEWVERT;
        p=root}->\operatorname{son
        q=root->\operatorname{son2;}
            printf("rule 5.5 is applyed\n");
            printff"p="")
            printf("q=")gwritetree(q)sprint.f!"\n")%
        root->treesmb[0]=CNC;
        if(q->treesmb[0]!=DLT)
        f
            if(q->treesmb[0]==NOT)
            ch=q->treesmb[1];
            else
                ch=g->treesmb[0],
            q->treesmb[0]=DLLT⿱
            q->treesmb[1]=ch;
        3
（象addrnar）++
        printf("new formula is:\n")%
```

```
    writetrep(ancestor)gprintf("\n"):
    3
    else
    \ell
        ruleS5(root->5onl, addrnar):
        rule55(root->son2gaddrnar)
    3
    3
3/尔end rule5S%/
rulesb(roat,gadirnar)
typevert 秀root;
int waddrnar;
{
typevert *p,*q!
if(root!=NULLL)
&
    if(iroot->treesmb[0]=mPRC)&&(root->-son2->treesmb[O]=mDL T)&&
        leaf(root->son1))
    &
        p=NEWVERT;
        q=NEWVERT:
        p=root->5on1,
        q=root-> son2"
        printf("rule 5.6 is applyed\n");
        printf("p=")swritetree(p)%print f(")nn")
        printf("q=")swritetree(q)斿rintf("\n"):
        root }->\mathrm{ treesmb[O]=[NC;
        (*addrnar)++$
        printf("new formula is:\n")
        writetree(ancestor)gprint.f(4)
    3
    else
    &
        ruleSG(root->gonigaddrnar)s
        rule56(root->son2gaddrnar)
    )
}
y/*end rule56%/
```


Питература:

[Kot7B] Kotov,V.EsAn algebra for parallelism based on Petri net5.L.NCS, Vol 64, pm39-55,1978.
[P81] Petersonghumpetri net theary and modelling of छystems.Prentice Halls1981. СИмеется перевод на русский язык. Дж. Питерсон: Теория сетей Петри и моделирование систем. М. . Мир, 1984).
[Ch89] Charkasova, A. AP Posets with non-actionssA model for concurrent nondeterministic processes.Arbeitspapiere der GMD, $403,1989$.

Cherkasovas.A.AAlgebra AFP 2 for concurrent nondeterministic processesafully abstract model and complete axiomatization.Reihe Informatic, H $72,1990$.
[Ch70-2] Cherkasova, ${ }^{2}$.saA fully abstract model for concurrent
nondeterministic processes based on posets with non-actions.Computer science/Department of software technology, Report CS-R $9031{ }_{g} 1990$.

оглавление:

Введение 2

1. Синтаксис AFP. a
2. Денотационная семантика AFP_{2} 3
3. Аксиоматизация AFP_{2} 4
4. Каноническая форма формулы AFP 2 6
5. Система правил переписывания RWS_{2} 8
6. Описание программы CANONIC 16
7. Примеры работы программы CANONIC 18
Приложение: Текст программы САNDNIC с комментариями. 26
Питература 46
