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Abstract : Algebra dtsP B(C'is a discrete time stochastic extension of finite Petri box calculus (P BC")

enriched with iteration,
The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs (LDTSPNSs) called

discrete time stochastic Petri boxes (dts-boxes).

We propose and investigate step stochastic bisimulation equivalence.

This equivalence is used for the reduction of transition systems and Markov chains.
The mentioned equivalence is applied to compare stationary behaviour,

A method of modeling and performance evaluation based on stationary behaviour analysis and reduction

for concurrent systems is outlined applied to the shared memory system.

Keywords : stochastic Petri net, stochastic process algebra, Petri box calculus, iteration, discrete time,
transition system, operational semantics, dts-box, denotational semantics, Markov chain, performance

evaluation, stochastic equivalence, reduction, shared memory system.
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Introduction

Algebra P BC and its extensions
e Petri box calculus P BC' [BDH92]
e Time Petri box calculus ¢ P BC [Kou00]
e Timed Petri box calculus 7' P BC' [MF0O0]
e Stochastic Petri box calculus s P BC' [MVF01,MVCCO03]
e Ambient Petri box calculus AP BC' [FM03]
e Arc time Petri box calculus at P B(C' [Nia05]
e Generalized stochastic Petri box calculus gs PP BC' [MVCRO08]
e Discrete time stochastic Petri box calculus dts P BC' [Tar05,Tar06]

e Discrete time stochastic and immediate Petri box calculus dtsi P BC' [TMV10]
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Syntax

The set of all finite multisets over X is ]Nf(

The set of all subsets of X is 2~ .

Act = {a,b, ...} is the set of elementary actions.

Act = {a, I;, ...} is the set of conjugated actions (conjugates) s.t. @ # a and a=a.
A = Act U Act is the set of all actions.

L= ﬂ\f}fl is the set of all multiactions.

The alphabetof a« € Lis A(a) = {z € A | a(x) > 0}.

An activity (stochastic multiaction) is a pair (c, p), where

a € Land p € (0;1) is the probability of multiaction .

S L is the set of all activities.

The alphabet of (o, p) € SLis Ao, p) = A(a).

The alphabetof I' € IN?* is A(T') = U(q, pyer A(a).

For (cv, p) € SL, its multiaction partis L(cv, p) = « and its probability partis (v, p) = p.
The multiaction part of I' € ﬂ\f}«% is L(I') = > (o, pyer @
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The : sequential execution ;, choice [|, parallelism

, relabeling [ f], restriction rs,
synchronization sy and iteration [x].

Sequential execution and choice have the standard interpretation.

Parallelism unlike that in standard process algebras.

—_—

Relabeling functions f : A — A are bijections preserving conjugates: Vo € A f(2) = f(z).
Fora € L, let f(a) =) . f(x) Forl' € ]N}«Sﬁ, let f(I') = > (0. per(f(a@),p).

A

Restriction over an action a: any process behaviour containing a a

Let o, 8 € L be two multiactions s.t. fora € Act we havea € canda € Sora € aand a € 3.

Synchronization of aw and 3 by a is ab, 0 = 7:

alz)+ B(x)—1, z=aorx =a;
a(z) + B(x), otherwise.

In the iteration, the subprocess is executed first,

then the one is performed zero or more times, finally, the one is executed.
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Static expressions specify the structure of processes.

Definition 1 Let (cr, p) € SLand a € Act. A static expression of dtsPBC'is

E:= (a,p) | E;E | E|E | E||E | E[f] | Evsa| Esya | [ExE<E].

Stat Expr is the set of all static expressions of dtsPBC.

Definition 2 Let (o, p) € SLand a € Act. A regular static expression of dtsPBC'is

B = (a,p) | B:E | E)E| E|E | Elf] | Evsa| Esya| [ExD+E],
where D ::= («a,p) | D;E | D||D | D|f] | Drsa | Dsya | |DxD+E].

RegStatExpr is the set of all regular static expressions of dtsPBC'.
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Dynamic expressions specify the states of processes.
Dynamic expressions are combined from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 Let B € StatExpr and a € Act. A dynamic expression of dtsPBC'is

G:=E|E|GE|EG|GIE|E[|G|G|G|G[f]|Grsa|Gsyal
GxExE| | [ExG*E]| | [ExExG].

DynFExpr is the set of all dynamic expressions of dtsPBC.
A regular dynamic expression: its underlying static expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsPBC.
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Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.

Let I/, F', K € RegStatExpr and a € Act.

Inaction rules for overlined and underlined regular static expressions

s
e

= &
=
4
=

— —

E:F = EF
E||F = E||F

E|F = E|F

Frsa= FErsa
Esya= FEsya
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Let £, F' € RegStatExpr, G, H, CN¥, H € RegDynFExpr and a € Act.

Inaction rules

G=G, oe{;,[]}  G=G, oe{;,[]} G=G H=H _ G=G
GoE=GoE EoG=FEoG G||H=G| H G||H=G| H Gl f]=GIf]
G=G, oe{rssy} G=>G G=>G G=G
Goa=Goa [GxExF|=[GxExF] [ExG*F|=[ExG*F| [ExFxG|=[E+«F*G]

An operative regular dynamic expression (z: no inaction rule can be applied to it.
OpRegDyn Expr is the set of all operative regular dynamic expressions of dtsP BC.

We shall consider regular expressions only and omit the word “regular”.

Definition 4 = (:> U <:)* is the structural equivalence of dynamic expressions in dtsPBC.
(G and G’ are structurally equivalent, G~G", if they can be reached each from other by applying

inaction rules in forward or backward direction.
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Action and empty loop rules
Action rules: execution of non-empty multisets of activities at a time step.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (o, p), (B, x) € SL, E, F € RegStatExpr, G,H € OpRegDynFExpr,
G,H € RegDynExpr, a € ActandI', A € ]NJ‘:«SE \ {0}, TV € ]N}SE.

Action and empty loop rules

0 7~ wa,p LG ;
ElG— G B (a, p) Hep)} (a,p) SC1 G%G’si{”ﬂ}
GoE—GoE
o G2G oelll py GG po _ HOH
EoGLEoG G|HSG|\H G|HSG|H
P3 GLG, HSH [, __GoG R GL @G, a,ag A(D)
TiA S, o 70 ~ S r
G|H— G| H G[f]—G[f] Grsa—Grsa
I1 GHa 12 GHa I3 GHa
~ ' +{(a,p)}+{(B:x)} | ~
Sv1 aLaG Sv2 G sy a - G sy a, a€a, GES
Y G sy anG sy a Y M H{(a®abpx)}t | =
y y G sy a »G sy a

11
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Transition systems
Definition 5 Letn € IN. The numbering of expressionsis ¢ ::= n | (¢)(¢).

Num is the set of all numberings of expressions.

The content of a numbering ¢ € Num is

{¢}, L € IN;

Cont(r) = Cont(11) U Cont(1z), = (11)(t2).

|Gl~ = {H | G = H} is the equivalence class of G € RegDynFExpr w.r.t.
Definition 6 The derivation set D R(() of a dynamic expression G is the minimal set:
¢ [G]~ € DR(G);
o if[H]~ € DR(G)and 3T H - H then [H]~ € DR(G).
Let G be a dynamic expression and s, § € DR(G).

~ F ~
The set of all multisets of activities executable from s is Fxec(s) ={I' | 3H € sdH H — H}.
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LetI' € FExec(s) \ {0}. The probability that the multiset of activities I is ready for execution in s:

PEI.s) = [] »- I (1-).

(a,p)el’  {{(B:x)}€Ezec(s)|(B,x) ¢}

H{(B,x)}EEa;ec(s)(l —x), FExec(s)# {0},

1, otherwise.

In the case I' = () we define PF'((), s) =

Let ' € Fxec(s). The probability to execute the multiset of activities [ in s:

PF(T,s)
PT(I',s) = :
( | S) ZAEEazec(s) PF(A’ S)

The probability to move from s to s by executing any multiset of activities:

PM(s,3) = > PT(T,s).

(T'|3Hes 3Hes HSHY
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Definition 7 The (labeled probabilistic) transition system of a dynamic expression (7 is
TS(G) = (Sg, La,Ta, S(;), where

e the set of statesis S¢ = DR(G);
e the set of labelsis Lo C E\f}«% x (0; 1];

e the set of transitions is

T = {(s, (T, PT(T,)),3) | s € DR(G), 3H € s 3H € § H — H);
e the initial state is s = [G]~.
A transition (s, (I', P), 5) € T is written as s pd.
We write 53 if dP s £>7> Sands—5if a0 s - 5.

Definition 8 Let G, G be dynamic expressions and T'S(G) = (Sqa, La, Ta, sa),
TS(G") = (Sgr, Lcr, Ter, S+ ) be their transition systems. A mapping 3 : Sg — Sg is an
isomorphism between T'S(G) and T'S(G"), 5 : TS(G)=TS(G"), if

1. Bis abijection s.t. B(sa) = sqv;
2.Vs,5€ ScV s 5p § & B(s) S B(S).

TS(G) and T'S(G") are isomorphic, T'S(G)~TS(G"),if 38 : TS(G) ~ TS(G").
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For B € RegStatExpr,letTS(E) =TS(E).
Definition 9 G and G’ are equivalent w.r.t. transition systems, G—=;.G’, it T'S(G)~TS(G").

Definition 10 The underlying discrete time Markov chain (DTMC) of a dynamic expression (7,
DTMC(G), has the state space D R(G) and transitions s—p§, if s — sand P = PM (s, §).

For E € RegStatExpr,let DTMC(E) = DTMC(E).
For a dynamic expression (&, a discrete random variable is associated with every state of DT M C(G).

The random values (residence time in the states) are
the probability to stay in the state s € D R((G) for k — 1 moments and leave it at moment k > 1 is
PM(s,s)*71(1 — PM(s,s)).

The mean value formula: the average sojourn time in the state s is S.J(s) = 1_P]\14(8 ot

The average sojourn time vector S.J of G is that with the elements SJ(s), s € DR(G).

Analogously: the sojourn time variance in the state s is VAR(S) = (1_PPA§4(‘E;82))2 :

The sojourn time variance vector VAR of G is that with the elements V AR(s), s € DR(G).
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TS(E)

[E1*E9 *ESD
<

({a},p)g,

[E1xEgo*xEg]

(1—x)(1—6)
(D’ 1X—X9

({c}.0),
0(1—x)

1—x6 v

1+p

({b}:x);

x(1—6)
1—x0

o CRENTR)

0,1

16

DTMC(E)

C_(Errmama)

1—p
1+p

Y

qCEENTR)

1

EXPRIT:The transition system and the underlying DTMC of E for E = [(({a}, p)1[]|({a}, p)2) * ({b}, x) * ({c}, )]

Let E1 = ({a}, p)[|({a}, p), B2 = ({0}, X), B3 = ({c},0) and E = [E} * Es x E3].

The identical activities of the composite static expression are enumerated as:

E=[(({a}, p)1[]({a}, p)2) * ({b}, x) * ({c},0)]. The derivation set DR(E) of E consists of
S1 = [[El ES E2 S E3H%7 SS9 = [[El *E—Q* Eg“z, S3 — [[El ES E2 ES Eg]]%
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The average sojourn time vector of Eis

1 1 — 0
SJ:< Rl X),oo>.

2p " O(1 —x
The sojourn time variance vector of Eis

1—p* (1-0)(1—x0)
4p> ~ 02(1—x)?

VAR = (

=)

17



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dts P BC 18

Algebra of dts-boxes

Definition 11 A discrete time stochastic Petri box (dts-box) is N = (Pn, Tn, W, An), where

e Py and Ty are finite sets of places and transitions, respectively, s.t. Py U Ty # () and
Py NTy = 0;

o Wy :(Py xTyn)U(Tn x Py) — IN is afunction of the weights of arcs between places and

transitions and vice versa;
e A\ is the place and transition labeling function s.t.
— AN|py : Py — {e, i, x} (it specifies entry, internal and exit places);
~ ANn|ry TN —{o]0C ]N}SE x SL} (it associates transitions with the relabeling relations).
Moreover, Vt € Ty °t # () #~ t°.
For the set of entry places of N, °N = {p € Py | An(p) = e}, and the set of exit places of NV,
N°® ={p € Py | An(p) =x},itholds: °N £ () # N°and ®*(°N) = () = (N°)*.
A dts-box is plain if Vi € Ty An(t) € SL,i.e., An(t) is the constant relabeling.

A marked plain dts-box is a pair (N, M ), where IV is a plain dts-box and M € W;DN is its marking.
Let N = (N,°N)and N = (N, N°).
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Denotational semantics

N(oz,p)L

o

O

Orf]

9;

O
d

®

Oid

Nod

a | Us g

Usy q

S D
X 9

The plain and operator dts-boxes

&
Q.

k]

Uic

k]

—

19

sk ok |
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Definition 12 Let (o, p) € SL, a € Actand E, F, K € RegStatFExpr. The denotational
semantics of dtsPBC'is a mapping Box ;s from RegStatExpr into plain dts-boxes:

1. Boxas((a, p).) = Nia,p).;
2. Box ;s EOF) @o(Bomdts(E)aBoxdts(F))v SIS {; ) Hv ||}’

(

(
3. Boxgss(E|f]) = O (Boxgs(E));
4. Boxgis(Eoa) = O.4(Boxgss(E)), o € {rs,sy};
(

5. Boxgs([E*F+K|) = O, (Bovgs(E), Boxas(F), Boxgs(K)).

For E € RegStatExpr,let Boxgs(E) = Boxgis(E) and Boxg,s(E) = Boxgs(E).

We denote isomorphism of transition systems by =,
and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.
"0 1 For any static expression E we have T'S(E)~RG(Boxgs(E)).
_ 1 For any static expression £ we have DT M C(E)~DTMC (Boxgs(E)).
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N DTMC(N)
1-p
1+p
tl {a'}ap)l {a'}ap)Z t2 12—pp
Y
({0} £ 010)
0, (1_1X—)§<19_9) ts3, xl(i;g) 11_—X09
({c}.0)] t4 £, 8= 0(1—x)
T1—x6 1—x6
Y Y
0,1 1

BOXIT:The marked dts-box N = Boxas(F) for E = [(({a}, p)1[]({a}, p)2) * ({0}, x) * ({c},0)], its
reachability graph and the underlying DTMC
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Stochastic equivalences

Step stochastic bisimulation equivalence

We consider L(I") € ﬂ\ff for I' € ﬂ\f}?ﬁ, i.e., the multisets of multiactions.

Let G be a dynamic expression and H C DR(G). Fors € DR(G) and A € ﬂVfL we write s> pH,
where P = PM 4 (s, H) is the overall probability to move from s into the set of states H via steps with

the multiaction part A:

PMa(s,H) = > PT(T,s).

(T|35€H s53, L(I)=A}

A A
We write s—H if 3P s —p H.

A
We write s—pH if 3A s — H, where P = PM (s, H) is the overall probability to move from s into

the set of states H via any steps:

PM(s,H)= Y  PT(T,s).

{T|35€H s—35}
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Definition 13 Let GG and G’ be dynamic expressions. An equivalence relation
R C (DR(G)U DR(G"))? is a step stochastic bisimulation between G and G', R : G+ G, if:

1. ([Gl~, [(']<) € R.
2. (51,52) €R = VH € (DR(G)UDR(G'))/x VA € INF

A A
s1 —=p H & s9 —=p H.

Two dynamic expressions G and GG’ are step stochastic bisimulation equivalent, G<> . .G’, if

IR : G+ . .G

Rss(G,G") =|{R | R : G+ .G} is the union of all step stochastic bisimulations
between G and G

_ 2 Let G and G’ be dynamic expressions and G+« . .G’. Then R¢s(G, G') is the

largest step stochastic bisimulation between GG and G
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Interrelations of the stochastic equivalences

_<>SS - 5 -— ~

Interrelations of the stochastic equivalences

- 2 Let <. «» € {<». = ~}and x, ++ € { 55, {s}. For dynamic expressions G and G’

G, G = G«», . G

iff in the graph above there exists a directed path from <, to «» .
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Validity of the implications

e The implication — is proved as follows. Let 3 : G—,.G’. Then R : G G’, where
R ={(s,8(s)) | s € DR(G)}.

e The implication ~ — is valid, since the transition system of a dynamic formula is defined based

on its structural equivalence class.

Absence of the additional nontrivial arrows

(a) Let E = ({a}, 5)and E' = ({a}, £)1[|({a}, 5)2. Then E<>__E', but E-*, E’, since T'S(E)
has only one transition from the initial to the final state while TS(F) has two such ones.

(b) Let E = ({a}, 2); ({a}, 5) and E' = ({a}, 5); ({a}, 1)) sy a. Then E—, . E’, but E#F/,

since F and E’ cannot be reached from each other by applying inaction rules.
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() N N (b) N N

® @ @ o
SRR ! |

({a},3) ({a},3) ({a},3) ({a},3) ({a},3)

ts
5 b dw

({a},3) ({a},3)
l l
OO

Dts-boxes of the dynamic expressions from equivalence examples of the theorem above

In the figure above N = Boxg:5(E) and N’ = Box g;,(E’) for each picture (a)—(b).
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Reduction modulo equivalences
An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expression GG and a step stochastic autobisimulation R : GG G,

let K € DR(G)/xr and s1, s2 € K.

~ ~

We have VK € DR(G)/r VA € INF\ {0} 51 5p K & 55 Bp K.

The equality is valid for all 51, so € IC, hence, we can rewrite it as Kipl%, where
P = PMA(K,K) = PMA(Sl,IC) = PMA(SQ,IC).

We write K-S i IP K Bp Kand CKifJAK 3 K.

~

The similar arguments: we write K—/C, where P = PM (K, K) = PM (s1,K) = PM(s2,K).

27

~



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dts P BC 28

Rss(G) = J{R | R : G+>..G} is the largest step stochastic autobisimulation on G.

Definition 14 The quotient (by ) (labeled probabilistic) transition system of a dynamic expression

GisTSe, (G)=(Se Lo Tes ,5e ), where
e S, = DR(G)/r,. ()
o L, C(INfF\{0}) x (0;1];
o To,. = {(K,(A,PMA(K,K)),K) | K € DR(G)/R..cc). K K};
= {[G]~}.

The transition (I, (4, P), K) € T will be written as KA 5K,
For £ € RegStatExpr,letTS,, (F)=TS,_ (E).

Definition 15 The quotient (by ) underlying DTMC of a dynamic expression G, DT'MC., (G),

—SS

has the state space DR(G) /.. () and the transitions C —p K, where P = PM (K, K).

For £ € RegStatExpr,let DTMC,, (F)=DTMC, (F).

——S8s —SS
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Stationary behaviour

Theoretical background

The elements P;; (1 <, < n = |DR(G)|) of (one-step) transition probability matrix (TPM) P for
DTMO(G):

PM(s;,s:), S; — S;;
p_ | PMsus) ;

0, otherwise.

The transient (k-step, k € IN) probability mass function (PMF) ¥ (k] = (1 [k], .. ., ¥, |k]) for
DTMC(G) is the solution of )| k] = [0]P*,

1, s;=|G]x;

where [0] = (¥1]0], ..., 1, [0]) is the initial PMF: 1);[0] =
0, otherwise.
We have |k + 1] = ¢ |k|P, k € IN.
. | p(P—E)=0
The steady-state PMF ¢ = (11, ..., ¥y,) for DT M C(G) is the solution of - ,
p17 =1

where 0 is a vector with n values 0, 1 is that with 1 values 1.
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When DT M C(G) has the single steady state, 1) = limy_, o ¥ [k].
Fors € DR(G) with s = s; (1 < i < n) we define 1|k|(s) = ¢;[k] (k € IN) and ¢ (s) = ;.
Let G be a dynamic expression and s, § € DR(G), S, S C DR(G).

The following are based on the steady-state PMF.

e The average recurrence (return) time in the state s (the number of discrete time units or steps

required for this) is w( 7

e The fraction of residence time in the state s is 1(s).

e The fraction of residence time in the set of states S C D R((G) or the probability of the event
determined by a condition that is true for all states from .S is ZSES P(s).

Zses P(s)
2 seg ¥(s8)”

e The relative fraction of residence time in the set of states S w.r.t. thatin .S is

e The steady-state probability to perform a step with an activity (a, p) is
ZsEDR(G) ¥(s) Z{m(a,p)er} PT(L,s).

e The probability of the event determined by a reward function 7 on the states is

ZseDR(G) P(s)r(s).
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Steady state and equivalences

_ 3 Let G, G’ be dynamic expressions with R : G G’. Then
VH € (DR(G)UDR(G"))/r

dooows)= > ().

sEHNDR(G) s'€HNDR(G")

Let GG be a dynamic expression and 1) be the steady-state PMF for DT M C'(G),
Y., _be the steady-state PMF for DT'MC,, (G).

By the proposition above: VH € DR(G)/r..(c) V. (H) = D seq ¥(5).

31
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Definition 16 A derived step trace of a dynamic expression Gis > = A;--- A, € (Wf)* where
T T Ty .

ds € DR(G) s = s1 =5 -+ =% s, L(T;) = A; (1 <1 < n).

The probability to execute the derived step trace X in s:

PT(Z, 8) = Z H?:l PT(FZ, 5@'—1)-

(T1,....Tn|s=s02s13- s, L(T:)=A; (1<i<n)}

S 3 Let G, G be dynamic expressions with R : G« .G’ and ¥ be a derived step trace of (&
and G'. ThenVH € (DR(G)UDR(G"))/»r

d o W)PT(E,s)= Y Y()PT(S,s).

sEHNDR(G) s'€HNDR(G')
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N N’

Ok Ok
l —sto

({a},3) ({a},3)
#fs

'
N ey © G
({v},3) {b},5)1 {b},3)2

l l l

ALY
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Stop = ({c}, 3) rs cis the process that performs empty loops with probability 1 and never terminates.

LetE:[({a},%)*(({b} 5); ({c}, 5)1ll({c}, 5)2)) * Stop] and
E' = [({a}, 3) = (({b}, 2)1: ({c}, ))H(({b}a%)m({c}»%)z))*Stop]-

We have E— ., E’, hence, EH E’

DR(FE) consists of

s1= [[(a}, 3) = ({0}, 1): (e}, Dull({e}, 1)) * Stop]Jx,
52 = [[({a}, 1) = ({0}, 1): (e}, Dull({e}, 1)) * Stop]Jx,
53 = [[({a}, ) * ({6}, 3); ({eh, Dal({e}, 5)2)) * Stop]Ja.

DR(E') consists of

s1 = [[({a}, 3) = ({6}, 5)15 ({e}, )0}, 5)2: ({e}, 3)2)) * Stop]]~,
sy = [[({a}, 5) = ({0}, 5)15 (e}, 5) 1) I(({0}, 3)2: ({c}, 5)2)) * Stopl;
s = [[({a}, 3) = ({0}, 3)1: ({e}, 5)0) ({0}, 3)2; ({c}, 5)2)) * Stop]]~,
sy = [[({a}, 3) = ({6}, 5)1: ({ed, D)0 ({1}, 3)25 ({e}, 3)2)) * Stop]]~.
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The steady-state PMFs v for DT M C(E) and 1)’ for DT MC(E') are

1 1 1 11
—(0,=,=), 0w =(0,=,~~).
w (7272)7¢ (727474)

Consider H = {s3, s5, s} }. The steady-state probabilities for H coincide:

S enprm ¥(8) = ¥(ss) = £ = L+ 1 = @ (s) + 1 (s4) = Xyemnprin ()
Let > = {{c}}. The steady-state probabilities to come in the equivalence class H and start the step
trace 3 from it coincide as well: ¢ (s3)(PT({({c}, 5)1},s3) + PT({({c}, 2)2},83)) =
s(at+3)=5=7 147 1=v(s5)PT{({c}, 2}, s5) +¥'(si) PT({({c}, )2} 54).
In the figure above N = Boxg;s(E) and N' = Boxg;.(E').
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Simplification of performance analysis

The method of
1. The system under investigation is specified by a static expression of dtsPBC'
2. The transition system of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry,

a step stochastic autobisimulation equivalence for the expression is determined.
4. The quotient underlying DTMC of the expression is constructed.

5. The steady-state probabilities and performance indices based on this DTMC are calculated.

36
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Shared memory system

A model of two processors accessing a common shared memory [MBCDF95]

Processor 1 Memory Processor 2

The diagram of the shared memory system

After activation of the system, two processors are active, and the common memory is available. Each
processor can request an access to the memory.

When a processor starts an acquisition of the memory, another processor waits until the former one ends

its operations, and the system returns to the state with both active processors and the available memory.
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a corresponds to the system activation.

r; (1 <1 < 2) represent the common memory request of processor i.

b; and e; correspond to the beginning and the end of the common memory access of processor 1.
The other actions are used for communication purpose only.

The static expression of the first processor is

By = [({z1}, 3) = ({1} 2): ({01, wn ks 3)s ({en, 21}, ) * Stop].
The static expression of the second processor is

By = [({z2}, 3) * (({r2}, 2): ({2, 92}, 3); ({e2, 22}, 5)) * Stop].
The static expression of the shared memory is

B3 = [({a,71,72}, 5) * ({71}, 5): ({21}, 5) ({82}, 5): ({21, 3))) * Stop].

The static expression of the shared memory system with two processors is

E = (E1||E3||E3) sy x1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS L1 IS T IS Y1 IS Yo IS 21 IS 2.
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Interpretation of the states

S1: the initial state,

So: the system is activated and the memory is not requested,

S3: the memory is requested by the first processor,

S4:. the memory is requested by the second processor,

S5:. the memory is allocated to the first processor,

Sg. the memory is requested by two processors,

s+7. the memory is allocated to the second processor,

Sg: the memory is allocated to the first processor and the memory is requested by the second processor,

Sg: the memory is allocated to the second processor and the memory is requested by the first processor.
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{{r1}.3),
({e2}. D}, 3

{({r2},3),
({e1}. 1. %

The transition system of the shared memory system

40
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The TPM for DT MC(E) is

I 2000 0 0 0 0
0+ 3+ # 0 %+ 0 0 O
0 0 2 0 & 2 0 3 O
000 2 0 2 & 0 3
0 £ 0 £ 2 0 0 2 0
000 00 &+ 0 = =
0 £ s 00 0 2 0 3
000 % 0 0 0 2 0
00 £ 00 0 0 0 =

The steady-state PMF for DT M C(E) is

(8

(0

16 80 &0 16 391 16 560 560

210377017 7017 701’ 2103 701’ 21037 2103

)

41
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The average sojourn time vector of Eis

The sojourn time variance vector of £ is

4 24 24 24 153 24
AR = — 12,12 ).
Ak (56’9’25’25’25’ 6425 )

Transient and steady-state probabilities of the shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 00
U1 [K] 1] 0.5129 | 0.2631 | 0.1349 [ 0.0692 | 0.0355 | 0.0182 | 0.0093 | 0.0048 | 0.0025 | 0.0013 0
Va2 [k] 0O | 0.1045 | 0.0573 | 0.0331 | 0.0207 | 0.0143 | 0.0110 | 0.0094 | 0.0085 | 0.0081 | 0.0078 | 0.0076
Y3 [k] 0 | 0.0587 | 0.0845 | 0.0989 | 0.1063 | 0.1101 | 0.1121 | O0.1131 | 0.1136 | 0.1138 | 0.1140 | 0.1141
Vs [K] 0 | 0.0094 | 0.0154 | 0.0190 | 0.0209 | 0.0218 | 0.0223 | 0.0226 | 0.0227 | 0.0228 | 0.0228 | 0.0228
Ve [K] 0 | 0.1265 | 0.1577 | 0.1714 | 0.1785 | 0.1821 | 0.1840 | 0.1849 | 0.1854 | 0.1857 | 0.1858 | 0.1859
Vs [k] 0 | 0.0599 | 0.1611 | 0.2123 | 0.2386 | 0.2521 | 0.2590 | 0.2626 | 0.2644 | 0.2653 | 0.2658 | 0.2663

We depict the probabilities for the states s1, S2, S3, S5, Sg, Sg only, since the corresponding values
coincide for s3, s4 as well as for s5, s7 and for sg, Sg.
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Performance indices

e The average recurrence time in the state so, the average system run-through, is

1 _ 2103 _ 7
75 = 16 = 1314¢.

e The common memory is available in the states so, S3, S4, Sg only.

887
2103"
The steady-state probability that the memory is used, the shared memory utilization, is

| _ 887 _ 1216
2103 — 2103"

The steady-state probability that the memory is available is 19 + 13 + ¥4 + YPg =

e The common memory request of the first processor ({1}, 3 ) is only possible from the states
S$9,84, S7.
The request probability in each of the states is a sum of execution probabilities for all multisets of
activities containing ({r1}, 2).
The steady-state probability of the shared memory request from the first processor is
V2 2 qri(my. pyery PTW 52) + %0 ) py gy gyery PTT 54) +
Y72 qri(griy.pyery PTT, 57) =

2108 (1 T 2) T 701 (§ + 5) + 701 (5 T 5) = 2109



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dts P BC

{z1},

N[~

o

{Tl}’%

O

{b1,y1},

1
2

N3

({a,77,53},3)

(o) =

-~
8
N
—~
N[

o

{T2}7%

os

O

{vi}.3 {vz2},

1
2

{b2,y2}, %

{61 )Zl})

N

os

{z1}.3 {z2},

N[~

®C

The marked dts-boxes of two processors and shared memory

)\
&

{ea,22},2

L/
O

45



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dts P BC

{e1}, 7 {ea}, 7

\ ®L/@\J ®L/

The marked dts-box of the shared memory system
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The abstract system

The static expression of the first processor is

= [({z1}, 3) * (({r}, 3): ({6, 91}, 5)s ({e, 213, 3)) * Stop].
The static expression of the second processor is

= [({z2}, 3) * (({r}, 3); ({6, 92}, 3); ({e, 223, 7)) * Stop].
The static expression of the shared memory is

Fs = [({a, 71,72}, 3) = ({71}, 2)s ({41}, 5)) ({52} 5): ({22}, 5))) = Stop).

The static expression of the abstract shared memory system with two processors is

F = (F1||Fs||F5) sy ©1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS T1 IS To IS Y1 IS Yo IS 21 IS Zo.
DR(F) resembles DR(E), and T'S(F) is similar to T'S (E).

DTMC(F) = DTMC(E), thus, the TPM and the steady-state PMF for DT M C'(F') and
DTMC(E) coincide.
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Performance indices
The are the same for the standard and abstract systems.

The . non-identified viewpoint to the processors.

e The common memory request of a processor ({7}, =) is only possible from the states
S9, 83, S4, S5, S7.
The request probability in each of the states is a sum of execution probabilities for all multisets of
activities containing ({r1}, 2).
The steady-state probability of the shared memory request from a processor is
Y2 2 qri(qry.pery PTI, 82) + 93 2 qry (), pyery PTA 53) +
Va2 vy, pyery DT 54) + 95 2 yry gy, yery PT 85) +
Y7 Zm({r},z)er} PT(T, s7) =

2105 (1 T2+ 1) T 701 (§+5) + 701 (5 T 5) + 701 (

oolw

+5) + 71 (5 +8) = 701
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The quotient of the abstract system

DR(F)/RSS@) = {IC1, [Co, [Cs, s, 5, IO }, where

IC1 = {s1} (the initial state),

Co = {32} (the system is activated and the memory is not requested),
g = {33, 34} (the memory is requested by one processor),

IC4 = {s5, 87} (the memory is allocated to a processor),

s = {36} (the memory is requested by two processors),

g = {88, 39} (the memory is allocated to a processor and the memory is requested by another

processor).

49
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TSe, (F)

—SS
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The quotient transition system of the abstract shared memory system
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The TPM for DTMC, (F)is

—SS

T2 00 0 0
0 + 2 0 % O
0.0 5 5 § 3
0 5 5 5 0 3
00 0 0 &+ =
00 5 0 0 3§

The steady-state PMF for DT MC., (F)is

—SS

o = (o

16 160 32 391 1120

721037 7017 7017 21037 2103

)
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The guotient average sojourn time vector of Fis

4 8 8 17
S =18-,-,-,—,4).
(737575787>

The quotient sojourn time variance vector of Fis

4 24 24 153
VAR = (56, - 12 ).
( 97257257 64 )

Transient and steady-state probabilities of the quotient abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 00
P [K] 1 | 0.5129 | 0.2631 | 0.1349 | 0.0692 | 0.0355 | 0.0182 | 0.0093 | 0.0048 | 0.0025 | 0.0013 0
Yo K] 0 | 0.1045 | 0.0573 | 0.0331 | 0.0207 | 0.0143 | 0.0110 | 0.0094 | 0.0085 | 0.0081 | 0.0078 | 0.0076
s [k] 0| 0.1175 | 0.1690 | 0.1979 | 0.2127 | 0.2203 | 0.2241 | 0.2261 | 0.2272 | 0.2277 | 0.2280 | 0.2282
A 0 | 0.0189 | 0.0309 | 0.0381 | 0.0418 | 0.0437 | 0.0446 | 0.0451 | 0.0454 | 0.0455 | 0.0456 | 0.0456
YL k] 0| 0.1265 | 0.1577 | 0.1714 | 0.1785 | 0.1821 | 0.1840 | 0.1849 | 0.1854 | 0.1857 | 0.1858 | 0.1859
Ykl 0 | 0.1197 | 0.3221 | 0.4247 | 0.4772 | 0.5042 | 0.5180 | 0.5251 | 0.5287 | 0.5306 | 0.5316 | 0.5326
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Performance indices

e The average recurrence time in the state /Co, where no processor requests the memory, the average

.1 __ 2103 __ 7
system run-through, is s T 131+5.

e The common memory is available in the states o, 3, /C5 only.

The steady-state probability that the memory is available is 1% + 1% + )t =
16_ 4 160 | 301 _ 887

2103 ' 701 2103 — 2103"

The steady-state probability that the memory is used (i.e., not available), the shared memory
e 887 __ 1216

utilization, is 1 — 5553 = 5753

e The common memory request of a processor {7“} is only possible from the states /Co, IC3, IC4.

The request probability in each of the states is a sum of execution probabilities for all multisets of

multiactions containing {7 }.

The steady-state probability of the shared memory request from a processor is

PM4 (Ko, K) +

~

PMA(Ks,K) +

/ —
¥ Z{A,ia{r}eA, K 2K} PMa(Ka, k) =

2108 (2 + 1) T 701 (§+5) + 701 (5 +8) = 700

/
¥ Z{A,ia{r}eA, Ko 5K}

/
V3 Z{A,z’a{r}eA, K3 5K}

ey
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The performance indices are the same for the complete and the quotient abstract shared memory

systems.

The coincidence of the first and second performance indices illustrates the result of proposition about

steady-state probabilities.

The coincidence of the third performance index theorem about step traces from steady states:

one should apply its result to the step traces {{7}}, {{r},{r}}, {{r}, {b}}, {{r}, {e}}

of F and itself,

and sum the left and right parts of the three resulting equalities.
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Overview and open questions

The results obtained

A discrete time stochastic extension dtsP BC' of finite P BC' enriched with iteration.
The step operational semantics based on labeled probabilistic transition systems.
The denotational semantics in terms of a subclass of LDTSPNSs.

The method of performance evaluation based on underlying DTMCs.

Step stochastic bisimulation equivalence of the expressions and dts-boxes.

The transition systems and DTMCs reduction modulo the equivalence.

A comparison of stationary behaviour up to the equivalence.

Performance analysis simplification with the equivalence.

The case study: the shared memory system.

Further research

Introducing the deterministically timed multiactions with fixed time delays (including the zero delay).

Extending the syntax with recursion operator.
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The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/dortllsld.pdf

Thank you for your attention!



