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Abstract : Algebra dtsPBC is a discrete time stochastic extension of finite Petri box calculus (PBC)

enriched with iteration.

The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs (LDTSPNs) called

discrete time stochastic Petri boxes (dts-boxes).

We propose and investigate step stochastic bisimulation equivalence.

This equivalence is used for the reduction of transition systems and Markov chains.

The mentioned equivalence is applied to compare stationary behaviour.

A method of modeling and performance evaluation based on stationary behaviour analysis and reduction

for concurrent systems is outlined applied to the shared memory system.

Keywords : stochastic Petri net, stochastic process algebra, Petri box calculus, iteration, discrete time,

transition system, operational semantics, dts-box, denotational semantics, Markov chain, performance

evaluation, stochastic equivalence, reduction, shared memory system.
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Introduction

Algebra PBC and its extensions

• Petri box calculus PBC [BDH92]

• Time Petri box calculus tPBC [Kou00]

• Timed Petri box calculus TPBC [MF00]

• Stochastic Petri box calculus sPBC [MVF01,MVCC03]

• Ambient Petri box calculus APBC [FM03]

• Arc time Petri box calculus atPBC [Nia05]

• Generalized stochastic Petri box calculus gsPBC [MVCR08]

• Discrete time stochastic Petri box calculus dtsPBC [Tar05,Tar06]

• Discrete time stochastic and immediate Petri box calculus dtsiPBC [TMV10]
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Syntax

The set of all finite multisets over X is INX
f .

The set of all subsets of X is 2X .

Act = {a, b, . . .} is the set of elementary actions.

Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. a 6= â and ˆ̂a = a.

A = Act ∪ Âct is the set of all actions.

L = INA
f is the set of all multiactions.

The alphabet of α ∈ L is A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where

α ∈ L and ρ ∈ (0; 1) is the probability of multiaction α.

SL is the set of all activities.

The alphabet of (α, ρ) ∈ SL is A(α, ρ) = A(α).

The alphabet of Γ ∈ INSL
f is A(Γ) = ∪(α,ρ)∈ΓA(α).

For (α, ρ) ∈ SL, its multiaction part is L(α, ρ) = α and its probability part is Ω(α, ρ) = ρ.

The multiaction part of Γ ∈ INSL
f is L(Γ) =

∑
(α,ρ)∈Γ α.
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The operations: sequential execution ;, choice [], parallelism ‖, relabeling [f ], restriction rs,

synchronization sy and iteration [∗∗].

Sequential execution and choice have the standard interpretation.

Parallelism does not include synchronization unlike that in standard process algebras.

Relabeling functions f : A → A are bijections preserving conjugates: ∀x ∈ A f(x̂) = f̂(x).

For α ∈ L, let f(α) =
∑
x∈α f(x). For Γ ∈ INSL

f , let f(Γ) =
∑

(α,ρ)∈Γ(f(α), ρ).

Restriction over an action a: any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions s.t. for a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β.

Synchronization of α and β by a is α⊕aβ = γ:

γ(x) =





α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first,

then the body one is performed zero or more times, finally, the termination one is executed.
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Static expressions specify the structure of processes.

Definition 1 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗E∗E].

StatExpr is the set of all static expressions of dtsPBC .

Definition 2 Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗D∗E],

where D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D∗D∗E].

RegStatExpr is the set of all regular static expressions of dtsPBC .
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Dynamic expressions specify the states of processes.

Dynamic expressions are combined from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 LetE ∈ StatExpr and a ∈ Act. A dynamic expression of dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |

[G∗E∗E] | [E∗G∗E] | [E∗E∗G].

DynExpr is the set of all dynamic expressions of dtsPBC .

A regular dynamic expression: its underlying static expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsPBC .
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Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.

LetE,F,K ∈ RegStatExpr and a ∈ Act.

Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]
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LetE,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃
G⇒G̃

G‖H⇒G̃‖H
H⇒H̃

G‖H⇒G‖H̃
G⇒G̃

G[f ]⇒G̃[f ]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a
G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

An operative regular dynamic expressionG: no inaction rule can be applied to it.

OpRegDynExpr is the set of all operative regular dynamic expressions of dtsPBC .

We shall consider regular expressions only and omit the word “regular”.

Definition 4 ≈ = (⇒ ∪ ⇐)∗ is the structural equivalence of dynamic expressions in dtsPBC .

G andG′ are structurally equivalent,G≈G′, if they can be reached each from other by applying

inaction rules in forward or backward direction.
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Action and empty loop rules

Action rules: execution of non-empty multisets of activities at a time step.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr,

G̃, H̃ ∈ RegDynExpr, a ∈ Act and Γ,∆ ∈ INSL
f \ {∅}, Γ′ ∈ INSL

f .

Action and empty loop rules

ElG
∅
→ G B (α, ρ)

{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2
G

Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

L G
Γ
→G̃

G[f ]
f(Γ)
−→G̃[f ]

Rs
G

Γ
→G̃, a,â 6∈A(Γ)

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F ]
Γ
→[G̃∗E∗F ]

I2 G
Γ
→G̃

[E∗G∗F ]
Γ
→[E∗G̃∗F ]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}

−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}

−−−−−−−−−−−→G̃ sy a
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Transition systems

Definition 5 Let n ∈ IN . The numbering of expressions is ι ::= n | (ι)(ι).

Num is the set of all numberings of expressions.

The content of a numbering ι ∈ Num is

Cont(ι) =





{ι}, ι ∈ IN ;

Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

[G]≈ = {H | G ≈ H} is the equivalence class of G ∈ RegDynExpr w.r.t. structural equivalence.

Definition 6 The derivation set DR(G) of a dynamic expressionG is the minimal set:

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃ΓH
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

LetG be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.
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Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ is ready for execution in s:

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1− χ).

In the case Γ = ∅ we define PF (∅, s) =





∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.

Let Γ ∈ Exec(s). The probability to execute the multiset of activities Γ in s:

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability to move from s to s̃ by executing any multiset of activities:

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).
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Definition 7 The (labeled probabilistic) transition system of a dynamic expressionG is

TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ INSL
f × (0; 1];

• the set of transitions is

TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≈.

A transition (s, (Γ,P), s̃) ∈ TG is written as s
Γ
→P s̃.

We write s
Γ
→s̃ if ∃P s

Γ
→P s̃ and s→s̃ if ∃Γ s

Γ
→ s̃.

Definition 8 LetG,G′ be dynamic expressions and TS(G) = (SG, LG, TG, sG),

TS(G′) = (SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG → SG′ is an

isomorphism between TS(G) and TS(G′), β : TS(G)≃TS(G′), if

1. β is a bijection s.t. β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

TS(G) and TS(G′) are isomorphic, TS(G)≃TS(G′), if ∃β : TS(G) ≃ TS(G′).
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For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 9 G and G′ are equivalent w.r.t. transition systems,G=tsG
′, if TS(G)≃TS(G′).

Definition 10 The underlying discrete time Markov chain (DTMC) of a dynamic expressionG,

DTMC(G), has the state spaceDR(G) and transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).

For a dynamic expressionG, a discrete random variable is associated with every state of DTMC(G).

The random values (residence time in the states) are geometrically distributed:

the probability to stay in the state s ∈ DR(G) for k − 1 moments and leave it at moment k ≥ 1 is

PM(s, s)k−1(1− PM(s, s)).

The mean value formula: the average sojourn time in the state s is SJ(s) = 1
1−PM(s,s) .

The average sojourn time vector SJ of G is that with the elements SJ(s), s ∈ DR(G).

Analogously: the sojourn time variance in the state s is V AR(s) = PM(s,s)
(1−PM(s,s))2 .

The sojourn time variance vector V AR of G is that with the elements V AR(s), s ∈ DR(G).
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[E1∗E2∗E3]

[E1∗E2∗E3]

TS(E)✞✝ ✲

✞✝ ✲
∅, 1−ρ

1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
({a},ρ)2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

✞✝ ✲
1

❄
[E1∗E2∗E3]

✞✝ ✲
∅,1

({c},θ),
θ(1−χ)
1−χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

EXPRIT:The transition system and the underlying DTMC of E for E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

LetE1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ) and E = [E1 ∗E2 ∗E3].

The identical activities of the composite static expression are enumerated as:

E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]. The derivation set DR(E) of E consists of

s1 = [[E1 ∗E2 ∗E3]]≈, s2 = [[E1 ∗E2 ∗E3]]≈, s3 = [[E1 ∗E2 ∗E3]]≈.
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The average sojourn time vector of E is

SJ =

(
1 + ρ

2ρ
,
1− χθ

θ(1− χ)
,∞

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ2

4ρ2
,
(1− θ)(1− χθ)

θ2(1− χ)2
,∞

)
.
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Algebra of dts-boxes

Definition 11 A discrete time stochastic Petri box (dts-box) is N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, s.t. PN ∪ TN 6= ∅ and

PN ∩ TN = ∅;

• WN : (PN × TN ) ∪ (TN × PN ) → IN is a function of the weights of arcs between places and

transitions and vice versa;

• ΛN is the place and transition labeling function s.t.

– ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places);

– ΛN |TN
: TN → {̺ | ̺ ⊆ INSL

f × SL} (it associates transitions with the relabeling relations).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN (p) = e}, and the set of exit places of N,

N◦ = {p ∈ PN | ΛN (p) = x}, it holds: ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ΛN (t) ∈ SL, i.e., ΛN (t) is the constant relabeling.

A marked plain dts-box is a pair (N,MN ), whereN is a plain dts-box and MN ∈ INPN

f is its marking.

LetN = (N, ◦N) andN = (N,N◦).
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Denotational semantics

(α, ρ)

♥

♥
❄

❄

N(α,ρ)ι

e

x

ti ̺[f ]

♥

♥
❄

❄

Θ[f ]

e

x

u[f ] r̺s a

♥

♥
❄

❄

Θrs a

e

x

urs a s̺y a

♥

♥
❄

❄

Θsy a

e

x

usy a ̺id

♥

♥
❄

❄

Θ;

e

u1;

̺id

♥
❄

❄
x

u2;

i

̺id

♥

♥
❄

❄

Θ‖

e

u1‖

x

̺id

♥

♥
❄

❄

e

u2‖

x

̺idu1[] ̺id u2[]

Θ[]♥

♥
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✄ �
✂ ✁❄✻

̺id

♥

♥
❄

❄

Θ[∗∗]

e

u1[∗∗]

̺id

♥
❄

❄
x

u3[∗∗]

i ̺id u2[∗∗]

The plain and operator dts-boxes
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Definition 12 Let (α, ρ) ∈ SL, a ∈ Act andE,F,K ∈ RegStatExpr. The denotational

semantics of dtsPBC is a mappingBoxdts from RegStatExpr into plain dts-boxes:

1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E◦F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E◦a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs,sy};

5. Boxdts([E∗F∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) andBoxdts(E) = Boxdts(E).

We denote isomorphism of transition systems by ≃,

and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.

Theorem 1 For any static expressionE we have TS(E)≃RG(Boxdts(E)).

Proposition 1 For any static expressionE we have DTMC(E)≃DTMC(Boxdts(E)).
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100

010

RG(N)✄✂ ✲

✄✂ ✲
∅, 1−ρ

1+ρ

∅,
(1−χ)(1−θ)

1−χθ

DTMC(N)

✲ ✛

t1,
ρ

1+ρ

✄✂ ✲

✄✂ ✲
t2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

✄✂ ✲
1

❄✄✂ ✲
∅,1

t4,
θ(1−χ)
1−χθ

❄
001

�✁✛

t3,
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

✂ ✁✻

({a},ρ)2

♥

♥

N

e

t2

({c},θ)

♥
❄

❄
x

t4

({b},χ) t3

({a},ρ)1t1

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

t 100

010

001

✲

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

BOXIT:The marked dts-box N = Boxdts(E) for E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)], its

reachability graph and the underlying DTMC
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Stochastic equivalences

Step stochastic bisimulation equivalence

We consider L(Γ) ∈ INL
f for Γ ∈ INSL

f , i.e., the multisets of multiactions.

LetG be a dynamic expression and H ⊆ DR(G). For s ∈ DR(G) andA ∈ INL
f we write s

A
→PH,

where P = PMA(s,H) is the overall probability to move from s into the set of states H via steps with

the multiaction partA:

PMA(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃, L(Γ)=A}

PT (Γ, s).

We write s
A
→H if ∃P s

A
→P H.

We write s→PH if ∃A s
A
→ H, where P = PM(s,H) is the overall probability to move from s into

the set of states H via any steps:

PM(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃}

PT (Γ, s).
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Definition 13 Let G and G′ be dynamic expressions. An equivalence relation

R ⊆ (DR(G) ∪DR(G′))2 is a step stochastic bisimulation betweenG and G′, R : G↔ssG
′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
f

s1
A
→P H ⇔ s2

A
→P H.

Two dynamic expressionsG and G′ are step stochastic bisimulation equivalent,G↔ssG
′, if

∃R : G↔ssG
′.

Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} is the union of all step stochastic bisimulations

betweenG and G′.

Proposition 2 Let G and G′ be dynamic expressions andG↔ssG
′. Then Rss(G,G

′) is the

largest step stochastic bisimulation betweenG and G′.



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dtsPBC 24

Interrelations of the stochastic equivalences

↔ss ≈=ts ✛✛

Interrelations of the stochastic equivalences

Theorem 2 Let ↔,↔↔ ∈ {↔,=,≈} and ⋆, ⋆⋆ ∈ { , ss, ts}. For dynamic expressionsG and G′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph above there exists a directed path from ↔⋆ to ↔↔⋆⋆.
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Validity of the implications

• The implication =ts → ↔ss is proved as follows. Let β : G=tsG
′. Then R : G↔ssG

′, where

R = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈ → =ts is valid, since the transition system of a dynamic formula is defined based

on its structural equivalence class.

Absence of the additional nontrivial arrows

(a) Let E = ({a}, 12 ) and E′ = ({a}, 13 )1[]({a},
1
3 )2. Then E↔ssE

′, butE 6=tsE′, since TS(E)

has only one transition from the initial to the final state while TS(E′) has two such ones.

(b) Let E = ({a}, 12 ); ({â},
1
2 ) and E′ = ({a}, 12 ); ({â},

1
2 )) sy a. Then E=tsE′, but E 6≈E′,

since E and E′ cannot be reached from each other by applying inaction rules.
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Dts-boxes of the dynamic expressions from equivalence examples of the theorem above

In the figure aboveN = Boxdts(E) and N ′ = Boxdts(E′) for each picture (a)–(b).
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Reduction modulo equivalences

An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expressionG and a step stochastic autobisimulation R : G↔ssG,

let K ∈ DR(G)/R and s1, s2 ∈ K.

We have ∀K̃ ∈ DR(G)/R ∀A ∈ INL
f \ {∅} s1

A
→P K̃ ⇔ s2

A
→P K̃.

The equality is valid for all s1, s2 ∈ K, hence, we can rewrite it as K
A
→PK̃, where

P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→K̃ if ∃P K

A
→P K̃ and K→K̃ if ∃AK

A
→ K̃.

The similar arguments: we write K→PK̃, where P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dtsPBC 28

Rss(G) =
⋃
{R | R : G↔ssG} is the largest step stochastic autobisimulation on G.

Definition 14 The quotient (by ↔ss) (labeled probabilistic) transition system of a dynamic expression

G is TS↔ss
(G) = (S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ (INL

f \ {∅})× (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K ∈ DR(G)/Rss(G), K

A
→ K̃};

• s↔ss
= {[G]≈}.

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→PK̃.

For E ∈ RegStatExpr, let TS↔ss
(E) = TS↔ss

(E).

Definition 15 The quotient (by ↔ss) underlying DTMC of a dynamic expressionG, DTMC↔ss
(G),

has the state spaceDR(G)/Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

For E ∈ RegStatExpr, let DTMC↔ss
(E) = DTMC↔ss

(E).
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Stationary behaviour

Theoretical background

The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition probability matrix (TPM) P for

DTMC(G):

Pij =





PM(si, sj), si → sj ;

0, otherwise.

The transient (k-step, k ∈ IN ) probability mass function (PMF) ψ[k] = (ψ1[k], . . . , ψn[k]) for

DTMC(G) is the solution of ψ[k] = ψ[0]Pk ,

where ψ[0] = (ψ1[0], . . . , ψn[0]) is the initial PMF: ψi[0] =





1, si = [G]≈;

0, otherwise.

We have ψ[k + 1] = ψ[k]P, k ∈ IN .

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is the solution of





ψ(P−E) = 0

ψ1T = 1
,

where 0 is a vector with n values 0, 1 is that with n values 1.
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When DTMC(G) has the single steady state, ψ = limk→∞ ψ[k].

For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define ψ[k](s) = ψi[k] (k ∈ IN) and ψ(s) = ψi.

LetG be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G).

The following performance indices (measures) are based on the steady-state PMF.

• The average recurrence (return) time in the state s (the number of discrete time units or steps

required for this) is 1
ψ(s) .

• The fraction of residence time in the state s is ψ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the probability of the event

determined by a condition that is true for all states from S is
∑

s∈S ψ(s).

• The relative fraction of residence time in the set of states S w.r.t. that in S̃ is
∑

s∈S ψ(s)∑
s̃∈S̃

ψ(s̃) .

• The steady-state probability to perform a step with an activity (α, ρ) is∑
s∈DR(G) ψ(s)

∑
{Γ|(α,ρ)∈Γ} PT (Γ, s).

• The probability of the event determined by a reward function r on the states is∑
s∈DR(G) ψ(s)r(s).
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Steady state and equivalences

Proposition 3 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ(s) =
∑

s′∈H∩DR(G′)

ψ′(s′).

LetG be a dynamic expression and ψ be the steady-state PMF for DTMC(G),

ψ↔ss
be the steady-state PMF for DTMC↔ss

(G).

By the proposition above: ∀H ∈ DR(G)/Rss(G) ψ↔ss
(H) =

∑
s∈H ψ(s).
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Definition 16 A derived step trace of a dynamic expressionG is Σ = A1 · · ·An ∈ (INL
f )

∗, where

∃s ∈ DR(G) s
Γ1→ s1

Γ2→ · · ·
Γn→ sn, L(Γi) = Ai (1 ≤ i ≤ n).

The probability to execute the derived step trace Σ in s:

PT (Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→s1

Γ2→···
Γn→sn, L(Γi)=Ai (1≤i≤n)}

∏n
i=1 PT (Γi, si−1).

Theorem 3 LetG,G′ be dynamic expressions with R : G↔ssG
′ and Σ be a derived step trace ofG

and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ψ′(s′)PT (Σ, s′).
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Stop = ({c}, 12 ) rs c is the process that performs empty loops with probability 1 and never terminates.

LetE = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop] and

E′ = [({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop].

We have E=stoE′, hence,E↔ssE
′.

DR(E) consists of

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈.

DR(E′) consists of

s′1 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈.
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The steady-state PMFs ψ for DTMC(E) and ψ′ for DTMC(E′) are

ψ =

(
0,

1

2
,
1

2

)
, ψ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider H = {s3, s
′
3, s

′
4}. The steady-state probabilities for H coincide:∑

s∈H∩DR(E) ψ(s) = ψ(s3) =
1
2 = 1

4 + 1
4 = ψ′(s′3) + ψ′(s′4) =

∑
s′∈H∩DR(E′) ψ

′(s′).

Let Σ = {{c}}. The steady-state probabilities to come in the equivalence class H and start the step

trace Σ from it coincide as well: ψ(s3)(PT ({({c},
1
2 )1}, s3) + PT ({({c}, 12 )2}, s3)) =

1
2

(
1
2 + 1

2

)
= 1

2 = 1
4 · 1 + 1

4 · 1 = ψ′(s′3)PT ({({c},
1
2 )1}, s

′
3) + ψ′(s′4)PT ({({c},

1
2 )2}, s

′
4).

In the figure aboveN = Boxdts(E) and N ′ = Boxdts(E′).
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Simplification of performance analysis

The method of performance analysis simplification.

1. The system under investigation is specified by a static expression of dtsPBC .

2. The transition system of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry,

a step stochastic autobisimulation equivalence for the expression is determined.

4. The quotient underlying DTMC of the expression is constructed.

5. The steady-state probabilities and performance indices based on this DTMC are calculated.
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Shared memory system

A model of two processors accessing a common shared memory [MBCDF95]

✲

✛

✛

✲

Processor 1 Processor 2Memory

The diagram of the shared memory system

After activation of the system, two processors are active, and the common memory is available. Each

processor can request an access to the memory.

When a processor starts an acquisition of the memory, another processor waits until the former one ends

its operations, and the system returns to the state with both active processors and the available memory.
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a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i.

bi and ei correspond to the beginning and the end of the common memory access of processor i.

The other actions are used for communication purpose only.

The static expression of the first processor is

E1 = [({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.
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Interpretation of the states

s1: the initial state,

s2: the system is activated and the memory is not requested,

s3: the memory is requested by the first processor,

s4: the memory is requested by the second processor,

s5: the memory is allocated to the first processor,

s6: the memory is requested by two processors,

s7: the memory is allocated to the second processor,

s8: the memory is allocated to the first processor and the memory is requested by the second processor,

s9: the memory is allocated to the second processor and the memory is requested by the first processor.
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The transition system of the shared memory system
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The TPM for DTMC(E) is

P =


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17
4
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0 1
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4




.

The steady-state PMF for DTMC(E) is

ψ =

(
0,

16

2103
,
80

701
,
80

701
,
16

701
,
391

2103
,
16

701
,
560

2103
,
560

2103

)
.
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The average sojourn time vector of E is

SJ =

(
8,

4

3
,
8

5
,
8

5
,
8

5
,
17

8
,
8

5
, 4, 4

)
.

The sojourn time variance vector of E is

V AR =

(
56,

4

9
,
24

25
,
24

25
,
24

25
,
153

64
,
24

25
, 12, 12

)
.

Transient and steady-state probabilities of the shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0

ψ2[k] 0 0.1045 0.0573 0.0331 0.0207 0.0143 0.0110 0.0094 0.0085 0.0081 0.0078 0.0076

ψ3[k] 0 0.0587 0.0845 0.0989 0.1063 0.1101 0.1121 0.1131 0.1136 0.1138 0.1140 0.1141

ψ5[k] 0 0.0094 0.0154 0.0190 0.0209 0.0218 0.0223 0.0226 0.0227 0.0228 0.0228 0.0228

ψ6[k] 0 0.1265 0.1577 0.1714 0.1785 0.1821 0.1840 0.1849 0.1854 0.1857 0.1858 0.1859

ψ8[k] 0 0.0599 0.1611 0.2123 0.2386 0.2521 0.2590 0.2626 0.2644 0.2653 0.2658 0.2663

We depict the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the corresponding values

coincide for s3, s4 as well as for s5, s7 and for s8, s9.
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Transient probabilities alteration diagram of the shared memory system
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Performance indices

• The average recurrence time in the state s2, the average system run-through, is
1
ψ2

= 2103
16 = 131 7

16 .

• The common memory is available in the states s2, s3, s4, s6 only.

The steady-state probability that the memory is available is ψ2 + ψ3 + ψ4 + ψ6 = 887
2103 .

The steady-state probability that the memory is used, the shared memory utilization, is

1− 887
2103 = 1216

2103 .

• The common memory request of the first processor ({r1},
1
2 ) is only possible from the states

s2, s4, s7.

The request probability in each of the states is a sum of execution probabilities for all multisets of

activities containing ({r1},
1
2 ).

The steady-state probability of the shared memory request from the first processor is

ψ2

∑
{Γ|({r1},

1
2 )∈Γ} PT (Γ, s2) + ψ4

∑
{Γ|({r1},

1
2 )∈Γ} PT (Γ, s4) +

ψ7

∑
{Γ|({r1},

1
2 )∈Γ} PT (Γ, s7) =

16
2103

(
1
4 + 1

4

)
+ 80

701

(
3
8 + 1

8

)
+ 16

701

(
3
8 + 1

8

)
= 152

2103 .
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The marked dts-boxes of two processors and shared memory



Igor V. Tarasyuk: Stochastic equivalence for modular performance evaluation in dtsPBC 46

({a}, 1
8
)

♥t
❄

e

N

({e1},
1
4
) ({e2},

1
4
)

♥ ♥
({b1},

1
4
)

♥x

({b2},
1
4
)

({r1},
1
2
)

♥
❄

❄

✠ ✡

♥t e♥t e
❅❅❘ ��✠

♥

❄

({r2},
1
2
)

♥
❄

❄

♥

❄

♥x♥x

♥
♥ ♥✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚✚❂ ❩❩⑦

��✠ ❅❅❘

✠✡

✗

✖

✘

✙

✲ ✛

✑✒

✻✻
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The abstract system

The static expression of the first processor is

F1 = [({x1},
1
2 ) ∗ (({r},

1
2 ); ({b, y1},

1
2 ); ({e, z1},

1
2 )) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2 ) ∗ (({r},

1
2 ); ({b, y2},

1
2 ); ({e, z2},

1
2 )) ∗ Stop].

The static expression of the shared memory is

F3 = [({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is

F = (F1‖F2‖F3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(F ) resemblesDR(E), and TS(F ) is similar to TS(E).

DTMC(F ) = DTMC(E), thus, the TPM and the steady-state PMF for DTMC(F ) and

DTMC(E) coincide.
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Performance indices

The first and second performance indices are the same for the standard and abstract systems.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, 12 ) is only possible from the states

s2, s3, s4, s5, s7.

The request probability in each of the states is a sum of execution probabilities for all multisets of

activities containing ({r1},
1
2 ).

The steady-state probability of the shared memory request from a processor is

ψ2

∑
{Γ|({r}, 12 )∈Γ} PT (Γ, s2) + ψ3

∑
{Γ|({r}, 12 )∈Γ} PT (Γ, s3) +

ψ4

∑
{Γ|({r}, 12 )∈Γ} PT (Γ, s4) + ψ5

∑
{Γ|({r}, 12 )∈Γ} PT (Γ, s5) +

ψ7

∑
{Γ|({r}, 12 )∈Γ} PT (Γ, s7) =

16
2103

(
1
4 + 1

4 + 1
4

)
+ 80

701

(
3
8 + 1

8

)
+ 80

701

(
3
8 + 1

8

)
+ 16

701

(
3
8 + 1

8

)
+ 16

701

(
3
8 + 1

8

)
= 100

701 .
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The quotient of the abstract system

DR(F )/Rss(F ) = {K1,K2,K3,K4,K5,K6}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and the memory is not requested),

K3 = {s3, s4} (the memory is requested by one processor),

K4 = {s5, s7} (the memory is allocated to a processor),

K5 = {s6} (the memory is requested by two processors),

K6 = {s8, s9} (the memory is allocated to a processor and the memory is requested by another

processor).
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TS↔ss
(F )
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The quotient transition system of the abstract shared memory system
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The TPM for DTMC↔ss
(F ) is

P′ =




7
8

1
8 0 0 0 0

0 1
4

1
2 0 1

4 0

0 0 3
8

1
8

3
8

1
8

0 1
8

1
8

3
8 0 3

8

0 0 0 0 9
17

8
17

0 0 1
4 0 0 3

4




.

The steady-state PMF for DTMC↔ss
(F ) is

ψ′ =

(
0,

16

2103
,
160

701
,
32

701
,
391

2103
,
1120

2103

)
.
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The quotient average sojourn time vector of F is

SJ ′ =

(
8,

4

3
,
8

5
,
8

5
,
17

8
, 4

)
.

The quotient sojourn time variance vector of F is

V AR′ =

(
56,

4

9
,
24

25
,
24

25
,
153

64
, 12

)
.

Transient and steady-state probabilities of the quotient abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ′
1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0

ψ′
2[k] 0 0.1045 0.0573 0.0331 0.0207 0.0143 0.0110 0.0094 0.0085 0.0081 0.0078 0.0076

ψ′
3[k] 0 0.1175 0.1690 0.1979 0.2127 0.2203 0.2241 0.2261 0.2272 0.2277 0.2280 0.2282

ψ′
4[k] 0 0.0189 0.0309 0.0381 0.0418 0.0437 0.0446 0.0451 0.0454 0.0455 0.0456 0.0456

ψ′
5[k] 0 0.1265 0.1577 0.1714 0.1785 0.1821 0.1840 0.1849 0.1854 0.1857 0.1858 0.1859

ψ′
6[k] 0 0.1197 0.3221 0.4247 0.4772 0.5042 0.5180 0.5251 0.5287 0.5306 0.5316 0.5326
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Transient probabilities alteration diagram of the quotient abstract shared memory system
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Performance indices

• The average recurrence time in the state K2, where no processor requests the memory, the average

system run-through, is 1
ψ′

2
= 2103

16 = 131 7
16 .

• The common memory is available in the states K2,K3,K5 only.

The steady-state probability that the memory is available is ψ′
2 + ψ′

3 + ψ′
5 =

16
2103 + 160

701 + 391
2103 = 887

2103 .

The steady-state probability that the memory is used (i.e., not available), the shared memory

utilization, is 1− 887
2103 = 1216

2103 .

• The common memory request of a processor {r} is only possible from the states K2,K3,K4.

The request probability in each of the states is a sum of execution probabilities for all multisets of

multiactions containing {r}.

The steady-state probability of the shared memory request from a processor is

ψ′
2

∑
{A,K̃|{r}∈A, K2

A
→K̃}

PMA(K2, K̃) +

ψ′
3

∑
{A,K̃|{r}∈A, K3

A
→K̃}

PMA(K3, K̃) +

ψ′
4

∑
{A,K̃|{r}∈A, K4

A
→K̃}

PMA(K4, K̃) =

16
2103

(
1
2 + 1

4

)
+ 160

701

(
3
8 + 1

8

)
+ 32

701

(
3
8 + 1

8

)
= 100

701 .
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The performance indices are the same for the complete and the quotient abstract shared memory

systems.

The coincidence of the first and second performance indices illustrates the result of proposition about

steady-state probabilities.

The coincidence of the third performance index theorem about step traces from steady states:

one should apply its result to the step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}}

of F and itself,

and sum the left and right parts of the three resulting equalities.
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Overview and open questions

The results obtained

• A discrete time stochastic extension dtsPBC of finite PBC enriched with iteration.

• The step operational semantics based on labeled probabilistic transition systems.

• The denotational semantics in terms of a subclass of LDTSPNs.

• The method of performance evaluation based on underlying DTMCs.

• Step stochastic bisimulation equivalence of the expressions and dts-boxes.

• The transition systems and DTMCs reduction modulo the equivalence.

• A comparison of stationary behaviour up to the equivalence.

• Performance analysis simplification with the equivalence.

• The case study: the shared memory system.

Further research

• Introducing the deterministically timed multiactions with fixed time delays (including the zero delay).

• Extending the syntax with recursion operator.
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The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/dort11sld.pdf

Thank you for your attention!


