
Performance preserving equivalence for

stochastic process algebra dtsdPBC

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,

Acad. Lavrentiev pr. 6, 630090, Novosibirsk, Russian Federation
itar@iis.nsk.su

Abstract. Petri box calculus (PBC) of E. Best, R. Devillers, J.G. Hall
and M. Koutny is a well-known algebra of parallel processes with a Pet-
ri net semantics. Discrete time stochastic and deterministic PBC (dts-
dPBC) of the author extends PBC with discrete time stochastic and de-
terministic delays. dtsdPBC has a step operational semantics via labeled
probabilistic transition systems and a Petri net denotational semantics
via dtsd-boxes, a subclass of labeled discrete time stochastic and deter-
ministic Petri nets (LDTSDPNs). To evaluate performance in dtsdPBC,
the underlying semi-Markov chains (SMCs) and (reduced) discrete time
Markov chains (DTMCs and RDTMCs) of the process expressions are
analyzed. Step stochastic bisimulation equivalence is used in dtsdPBC
as to compare the qualitative and quantitative behaviour, as to establish
consistency of the operational and denotational semantics.
We demonstrate how to apply step stochastic bisimulation equivalence of
the process expressions for quotienting their transition systems, SMCs,
DTMCs and RDTMCs while preserving the stationary behaviour and
residence time properties. We also prove that the quotient behavioural
structures (transition systems, reachability graphs and SMCs) of the pro-
cess expressions and their dtsd-boxes are isomorphic. Since the equivalen-
ce guarantees identity of the functional and performance characteristics
in the equivalence classes, it can be used to simplify performance analysis
within dtsdPBC due to the quotient minimization of the state space.

Keywords: Petri box calculus, discrete time, stochastic and determi-
nistic delays, transition system, operational semantics, dtsd-box, deno-
tational semantics, Markov chain, performance, stochastic bisimulation,
quotient.

1 Introduction

Process calculi, like CSP [47], ACP [8] and CCS [68] are well-known formal
models for specification of computing systems and analysis of their behaviour. In
such process algebras (PAs), formulas describe processes, and verification of the
functionality properties of their behaviour is accomplished at a syntactic level
via equivalences, axioms and inference rules. In order to represent stochastic

2 Igor V. Tarasyuk

timing and analyze the performance properties, stochastic extensions of PAs
were proposed, like MTIPP [45], PEPA [46] and EMPA [18]. Such stochastic
process algebras (SPAs) specify actions which can occur (qualitative features)
and associate with the actions the distribution parameters of their random delays
(quantitative characteristics).

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [21, 23, 22] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary
PNs. Formulas of PBC are combined from multisets of elementary actions and
their conjugates, called multiactions (basic formulas). The empty multiset of ac-
tions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transi-
tions with (multi)sets of activities, corresponding to simultaneous executions of
activities (steps). A denotational semantics of PBC was proposed via a subclass
of PNs with an interface and considered up to isomorphism, called Petri boxes.
The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [51]. In tPBC, timing information is added
by associating time intervals with instantaneous actions. tPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational
semantics was defined in terms of a subclass of labeled time Petri nets (LtPNs),
based on tPNs [67] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [63, 64], it accommodates a deterministic model of time. In con-
trast to tPBC, multiactions of TPBC are not instantaneous, but have time du-
rations. TPBC has a step timed operational semantics in terms of labeled tran-
sition systems. The denotational semantics of TPBC was defined in terms of a
subclass of labeled Timed Petri nets (LTPNs), based on TPNs [75] and called
Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [71, 72], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step
time operational semantics in terms of labeled transition systems. Its denota-
tional semantics was defined on a subclass of labeled arc time Petri nets (atPNs),
based of those from [24, 43], where time restrictions are associated with the arcs,
called arc time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt dis-
crete time, but TPBC has no immediate (multi)actions (those with zero delays).

Performance preserving equivalence for stochastic process algebra dtsdPBC 3

1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was
proposed in [60, 56, 57]. In sPBC, multiactions have stochastic delays that follow
(negative) exponential distribution. Each multiaction is equipped with a rate
that is a parameter of the corresponding exponential distribution. The (instan-
taneous) execution of a stochastic multiaction is possible only after the corre-
sponding stochastic time delay. The calculus has an interleaving operational se-
mantics defined via transition systems labeled with multiactions and their rates.
Its denotational semantics was defined in terms of a subclass of labeled contin-
uous time stochastic PNs, based on CTSPNs [65, 4] and called stochastic Petri
boxes (s-boxes). In [57], a number of new equivalence relations were proposed
for regular terms of sPBC to choose later a suitable candidate for a congruence.

sPBC was enriched with immediate multiactions having zero delay in [58,
59]. We call such an extension generalized sPBC (gsPBC). An interleaving oper-
ational semantics of gsPBC was constructed via transition systems labeled with
stochastic or immediate multiactions together with their rates or probabilities.
A denotational semantics of gsPBC was defined via a subclass of labeled general-
ized stochastic PNs, based on GSPNs [65, 4, 5] and called generalized stochastic
Petri boxes (gs-boxes).

In [80–82, 84], we presented a discrete time stochastic extension dtsPBC of
the algebra PBC. In dtsPBC, the residence time in the process states is geome-
trically distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was defined
in terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based
on DTSPNs [69, 70] and called discrete time stochastic Petri boxes (dts-boxes). A
variety of stochastic equivalences were proposed to identify stochastic processes
with similar behaviour which are differentiated by the semantic equivalence. The
interrelations of all the introduced equivalences were studied.

In [87–91], a calculus dtsiPBC was proposed as an extension with immediate
multiactions of dtsPBC. Immediate multiactions increase the specification capa-
bility: they can model logical conditions, probabilistic branching, instantaneous
probabilistic choices and activities whose durations are negligible in compari-
son with those of others. They are also used to specify urgent activities and
the ones that are not relevant for performance evaluation. The step operational
semantics of dtsiPBC was constructed with the use of labeled probabilistic tran-
sition systems. Its denotational semantics was defined in terms of a subclass of
labeled discrete time stochastic and immediate PNs (LDTSIPNs), called dtsi-
boxes. Step stochastic bisimulation equivalence of the expressions was defined
to compare and reduce their transition systems and Markov chains, as well as
to identify the stationary behaviour.

In [85, 86], we defined dtsdPBC, an extension of dtsiPBC with deterministic
multiactions. In dtsdPBC, besides the probabilities from the real-valued interval
(0; 1), applied to calculate discrete time delays of stochastic multiactions, also
non-negative integers are used to specify fixed delays of deterministic multiac-
tions (including zero delay, which is the case of immediate multiactions). To re-

4 Igor V. Tarasyuk

solve conflicts among deterministic multiactions, they are additionally equipped
with positive real-valued weights. As argued in [98, 96, 97], a combination of de-
terministic and stochastic delays fits well to model technical systems with con-
stant (fixed) durations of the regular non-random activities and probabilistically
distributed (stochastic) durations of the randomly occurring activities. dtsdPBC
has a step operational semantics, defined via labeled probabilistic transition sys-
tems. The denotational semantics of dtsdPBC was defined in terms of a subclass
of labeled discrete time stochastic and deterministic Petri nets (LDTSDPNs),
called dtsd-boxes.

1.4 Equivalence relations

A notion of equivalence is very important in theory of computing systems. Equiv-
alences are applied both to compare behaviour of systems and reduce their struc-
ture. There is a wide diversity of behavioural equivalences, and their interrela-
tions are well explored in the literature. The best-known and widely used one is
bisimulation. Typically, the mentioned equivalences take into account only func-
tional (qualitative) but not performance (quantitative) aspects. Additionally,
the equivalences are usually interleaving ones, i.e. they interpret concurrency as
sequential nondeterminism. Interleaving equivalences permit to imitate paral-
lel execution of actions via all possible occurrence sequences (interleavings) of
them. Step equivalences require instead simulating such a parallel execution by
simultaneous occurrence (step) of all the involved actions.

To respect quantitative features of behaviour, probabilistic equivalences have
additional requirement on execution probabilities. Two equivalent processes must
be able to execute the same sequences of actions, and for every such sequence, its
execution probabilities within both processes should coincide. In case of proba-
bilistic bisimulation equivalence, the states from which similar future behaviours
start are grouped into equivalence classes that form elements of the aggregated
state space. From every two bisimilar states, the same actions can be executed,
and the subsequent states resulting from execution of an action belong to the
same equivalence class. In addition, for both states, the cumulative probabilities
to move to the same equivalence class by executing the same action coincide. A
different kind of quantitative relations is called Markovian equivalences, which
take rate (the parameter of exponential distribution that governs time delays)
instead of probability. The probabilistic equivalences can be seen as discrete time
analogues of the Markovian ones, since the latter are defined as the continuous
time relations.

Interleaving probabilistic weak trace equivalence was introduced in [35] on
labeled probabilistic transition systems. Interleaving probabilistic strong bisim-
ulation equivalence was proposed in [54] on the same model. Interleaving prob-
abilistic equivalences were defined for probabilistic processes in [50, 41]. Inter-
leaving Markovian strong bisimulation equivalence was constructed in [45] for
MTIPP, in [46] for PEPA and in [18, 17, 9] for EMPA. Several variants of in-
terleaving Markovian weak bisimulation equivalence were considered in [29] on
Markovian process algebras, in [31] on labeled CTSPNs and in [32] on labeled

Performance preserving equivalence for stochastic process algebra dtsdPBC 5

GSPNs. In [33, 34, 83], interleaving and step probabilistic trace and bisimulation
equivalences that abstract from silent actions were defined on labeled DTSPNs
(LDTSPNs) with invisible transitions, including the back and back-forth vari-
ants of the considered bisimulation relations. In [14, 15], interleaving probabilis-
tic and Markovian trace, testing and bisimulation equivalences on the respective
sequential probabilistic (PPC) and Markovian (MPC) process calculi were log-
ically characterized. In [10–12], a comparison of interleaving Markovian trace,
test, strong and weak bisimulation equivalences was carried out on sequential
(SMPC or MPC) and concurrent (CMPC) Markovian process calculi. In [36],
interleaving strong and branching probabilistic bisimulation equivalences were
defined on Interactive Probabilistic Chains (IPC).

Next, in [19, 20, 13], a lot of probabilistic and Markovian trace, testing and
bisimulation equivalences were investigated on Uniform Labeled Transition Sys-
tems (ULTraS) that capture different models of concurrent processes: fully non-
deterministic (labeled transition systems, LTSs), fully probabilistic (labeled
DTMCs), fully stochastic (labeled continuous time Markov chains, CTMCs),
nondeterministic and probabilistic (Markov decision processes, MDPs), nonde-
terministic and stochastic (continuous time MDPs, CTMDPs). In [55], the bisi-
mulation equivalences induced by some specific labeled state-to Function Tran-
sition Systems (FuTSs) were shown to coincide with the equivalences underly-
ing the fragments of PEPA, Interactive Markov Language (IML) for Interactive
Markov Chains (IMC) [44], Timed Process Calculus (TPC) [2] and Markov Au-
tomata Language (MAL) for Markov Automata Process Algebra (MAPA) [92].
In [61, 62], ordinary bisimulation (strong), quasi-lumping bisimulation (approx-
imate strong) and proportional bisimulation equivalences on the PEPA compo-
nents were investigated that induce, respectively, ordinary, quasi- and propor-
tional lumpabilities on the corresponding CTMCs.

Nevertheless, no appropriate equivalence was defined for parallel SPAs. The
non-interleaving bisimulation equivalence in Generalized Semi-Markovian Pro-
cess Algebra (GSMPA) [28, 27] uses Start-Termination- (ST-) semantics for ac-
tion particles while in Stochastic π-calculus (Sπ) [74] it is based on a sophisti-
cated labeling.

1.5 Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box
calculus (dtsdPBC), presented in [85, 86], featuring a step operational semantics.
Here we do not consider the Petri net denotational semantics of the calculus,
since it was extensively described in [85]. In that paper, a consistency of the
operational and denotational semantics with respect to step stochastic bisimu-
lation equivalence was proved. Hence, all the results established for the former
can be readily transferred to the latter up to that equivalence.

In [86], with the embeddingmethod, based on the embedded DTMC (EDTMC)
specifying the state change probabilities, we constructed and solved the under-
lying stochastic process, which is a semi-Markov chain (SMC). The obtained
stationary probability masses and average sojourn times in the states of the

6 Igor V. Tarasyuk

SMC were used to calculate the performance measures (indices) of interest. The
alternative solution techniques were also developed, called abstraction and elim-
ination, that are based respectively on the corresponding discrete time Markov
chain (DTMC) and its reduction (RDTMC) by eliminating vanishing states
(those with zero sojourn times).

In [85], we proposed step stochastic bisimulation equivalence to identify al-
gebraic processes with similar behaviour that are however differentiated by the
semantics of the calculus. It enhances the corresponding relation from dtsiPBC,
in that we now make difference between the states with positive sojourn times
(tangible states) and those with zero sojourn times (vanishing states). There-
fore, in the definition of the equivalence, we added a condition that vanishing
states may only be related with vanishing states. We established consistency of
the operational and denotational semantics of dtsdPBC up to step stochastic
bisimulation equivalence. We examined the interrelations of the proposed notion
with other equivalences of the algebra.

The main result of this paper is that step stochastic bisimulation equivalence
can be used to reduce (by quotienting) the transition systems, SMCs, DTMCs
and RDTMCs of the process expressions while preserving the qualitative and
quantitative characteristics. We demonstrate isomorphism between the quotient
transition systems of the process expressions and quotient reachability graphs of
their dtsd-boxes. We also show that the quotient SMCs of the process expressions
are isomorphic to those of their dtsd-boxes. We explore how the quotienting is
related to extraction (of Markov chains from transition systems), embedding and
reduction, by analyzing the transition probability matrices (TPMs) of the quo-
tient DTMCs, EDTMCs and RDTMCs. In this way, we show that the reduced
(by eliminating vanishing states) quotient TPMs coincide with the quotient redu-
ced TPMs for DTMCs of the process expressions. We prove that the mentioned
equivalence guarantees identity of the stationary behaviour and residence time
properties in the equivalence classes. This implies coincidence of the performance
indices based on the steady-state probabilities and sojourn time averages for the
complete and quotient behavioural structures. Hence, that performance preserv-
ing equivalence can help to reduce the number of states in the behaviour of a
model and simplify its performance analysis that suffers from the state space
explosion when large realistic systems are modeled.

Thus, the main contributions of the paper are the following.

– Quotienting transition systems and Markov chains of the process expressions
by step stochastic bisimulation equivalence to reduce the analysis complexity.

– Isomorphism of the quotient transition systems and reachability graphs, as
well as the quotient SMCs, for the expressions and their dtsd-boxes.

– Permutability of the quotienting and reduction operations on DTMCs.

– Preservation of the stationary behaviour and residence time properties in
the classes of step stochastic bisimulation equivalence of the expressions.

– Simplification of the performance evaluation in dtsdPBC by using the equi-
valence quotients of the transition systems, SMCs, DTMCs and RDTMCs.

Performance preserving equivalence for stochastic process algebra dtsdPBC 7

1.6 Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the op-
erational semantics of the calculus in terms of labeled probabilistic transition
systems is presented. Step stochastic bisimulation equivalence is defined and
investigated in Section 4. In Section 5, the equivalence quotients of the tran-
sition systems and corresponding Markov chains of the process expressions are
constructed. In Section 6, the introduced equivalence is proved to preserve the
stationary behaviour and residence time properties in the equivalence classes.
Section 7 summarizes the results obtained and outlines research perspectives in
this area. The long and complex proofs are moved to Appendix A.

2 Syntax

In this section, we propose the syntax: activities, operations and expressions.

2.1 Activities and operations

Multiset is a set with allowed identical elements.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

We denote the set of all finite multisets over a set X by N
X
fin. Let M,M ′ ∈

N
X
fin. The cardinality of M is |M | =

∑
x∈XM(x). We write x∈M if M(x)> 0

andM⊆M ′ if ∀x ∈ X M(x)≤M ′(x). We define (M+M ′)(x)=M(x)+M ′(x) and
(M−M ′)(x)=max{0,M(x)−M ′(x)}. When ∀x∈X, M(x)≤1, M can be seen
as a proper set M⊆X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .}

is the set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let A =

Act ∪ Âct be the set of all actions, and L = N
A
fin be the set of all multiactions.

Then ∅ ∈ L specifies an internal move, i.e. the execution of a multiaction without
visible action names. The alphabet of α∈L is defined asA(α)={x∈A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with
other waiting multiactions. We do not have probability 0 of stochastic multiac-
tions, since they would not be performed in this case. Let SL be the set of all
stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl), where α ∈ L, θ ∈ N is the
non-negative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive

8 Igor V. Tarasyuk

real-valued weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution
of the deterministic multiaction at the moment when the corresponding delay
has expired. Such weights are used to calculate the probabilities to execute sets
of deterministic multiactions after their delays. An immediate multiaction is a
deterministic multiaction with the delay 0 while a waiting multiaction is a deter-
ministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs) are equal to one time
unit, they are executed with probability 1 at the next moment. Deterministic
multiactions have a priority over stochastic ones while immediate multiactions
have a priority over waiting ones. Different types of multiactions cannot par-
ticipate together in some step (parallel execution). Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL
be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a determinis-
tic multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities.
The alphabet of an activity (α, κ) ∈ SDL is defined as A(α, κ) = A(α). The al-
phabet of a multiset of activities Υ ∈ N

SDL
fin is defined as A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice [], parallelism ‖, relabeling [f] of actions, restriction
rs over a single action, synchronization sy on an action and its conjugate, and
iteration [∗ ∗] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composi-
tion) does not include synchronization, unlike that operation in CCS [68].

Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way:
for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to activities:

for (α, κ) ∈ SDL, we define f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities: for Υ ∈ N

SDL
fin we define f(Υ) =

∑
(α,κ)∈Υ (f(α), κ). The

sums are considered with the multiplicity when applied to multisets: f(α) =∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Restriction over an elementary action a ∈ Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈
Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α

and β by a is defined as (α⊕a β)(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization
by a of two activities, whose multiaction parts α and β possess the properties
mentioned above, results in the activity with the multiaction part α⊕aβ. We may
synchronize activities of the same type only: either both stochastic multiactions
or both deterministic ones with the same delay, since stochastic, waiting and
immediate multiactions have different priorities, and diverse delays of waiting

Performance preserving equivalence for stochastic process algebra dtsdPBC 9

multiactions would contradict their joint timing. Note that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones.
Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists
also the behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, finally, the termination subprocess is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations to construct the composite process-algebraic formulas. As
for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[85]. A marking is the allocation of tokens in the places of a PN. Markings are
used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associ-
ated, whose value is the time left till the moment when the waiting multiaction
can be executed. Therefore, besides standard (unstamped) waiting multiacti-
ons (α, ♮θl) ∈ WL, a special case of the stamped waiting multiactions should
be considered in the definition of static expressions. Each (time) stamped wait-
ing multiaction (α, ♮θl)

δ has an extra superscript δ ∈ {1, . . . , θ} that specifies a
time stamp indicating the latest value of the timer associated with that multi-
action. The standard waiting multiactions have no time stamps, to demonstrate
irrelevance of the timer values for them (for example, their timers have not yet
started or have already finished). The notion of the alphabet part for (the mul-
tisets of) stamped waiting multiactions is defined like that for (the multisets of)
unstamped ones.

For simplicity, we do not assign the timer value superscripts δ to immediate
multiactions, a special case of deterministic multiactions (α, ♮θl) with the delay
θ = 0 in the form of (α, ♮0l), since their timer values can only be equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not

allow concurrency at the highest level of the second argument of iteration. This
is not a severe restriction, since we can always prefix parallel expressions by
an activity with the empty multiaction part. Relaxing the restriction can result
in LDTSDPNs [85] which are not safe, like shown for PNs in [22]. A PN is n-
bounded (n ∈ N) if for all its reachable (from the initial marking by the sequences
of transition firings) markings there are at most n tokens in every place, and a
PN is safe if it is 1-bounded.

10 Igor V. Tarasyuk

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, κ) | (α, ♮θl)
δ | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing from it all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) =

{(α, ρ) | (α, ρ) is a subexpression of E}. The set of all immediate multiactions
(from the syntax) of E is IL(E) = {(α, ♮0l) | (α, ♮0l) is a subexpression of E}.
The set of all waiting multiactions (from the syntax) of E is WL(E) = {(α, ♮θl) |
(α, ♮θl) or (α, ♮

θ
l)
δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all

deterministic multiactions (from the syntax) of E is DL(E)=IL(E) ∪WL(E)
and the set of all activities (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=
SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [85]. Dynamic expressions are obtained from
static ones, by annotating them with upper or lower bars which specify the
active components of the system at the current moment of time. The dynamic
expression with upper bar (the overlined one) E denotes the initial, and that
with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl)
δ, the superscript

δ ∈ {1, . . . , θ} specifies the current value of the running countdown timer as-
sociated with the waiting multiaction. That decreasing discrete timer is started
with the initial value θ (the waiting multiaction delay) at the moment when
the waiting multiaction becomes overlined. Then such a newly overlined stam-

ped waiting multiaction (α, ♮θl)
θ is similar to the freshly overlined unstamped

waiting multiaction (α, ♮θl). Such similarity will be captured by the structural
equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global time
tick until the timer value becomes 1. This means that one unit of time remains
till execution of that multiaction (the remaining time to execute, RTE, equals
one). Its execution should follow in the next moment with probability 1, in case
there are no conflicting with it immediate multiactions or conflicting waiting
multiactions whose RTEs equal to one, and it is not affected by restriction. An
activity is affected by restriction, if it is within the scope of a restriction opera-
tion with the argument action, such that it or its conjugate is contained in the
multiaction part of that activity.

Definition 4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dts-
dPBC is

Performance preserving equivalence for stochastic process algebra dtsdPBC 11

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression

⌊G⌋ of G is obtained by removing from it all upper and lower bars. If the un-
derlying static expression of a dynamic one is not regular, the corresponding
LDTSDPN can be non-safe [85] (2-bounded in the worst case, like for PNs [22]).

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dy-

namic expression ⇃G is obtained by removing from G all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions

(from the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or
WL(G) = WL(⌊G⌋), respectively). Thus, the set of all deterministic multiac-
tions (from the syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all
activities (from the syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪
IL(G) ∪WL(G).

3 Operational semantics

In this section, we define operational semantics via labeled transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transfor-
mations in the form of G ⇒ G̃ which do not change the states of the specified
processes. The goal of those syntactic transformations is to obtain the well-
structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic ex-
pression does not lead to any discrete time tick or any transition firing in the
corresponding LDTSDPN [85], hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e.
the dynamic expression transformation described by the rule is done instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones. In this table, (α, ♮θl)∈WL, δ∈{1, . . . , θ},
E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to the delay of it.

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr
and a ∈ Act. For brevity, two distinct inaction rules with the same premises are
collated in some cases, resulting in the inaction rules with double conclusion.

12 Igor V. Tarasyuk

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl) ⇒ (α, ♮θl)
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f] ⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 6. A regular dynamic expression G is operative if no inaction rule
can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expres-
sions of dtsdPBC. Note that any dynamic expression can be always transformed
into a (not necessarily unique) operative one by using the inaction rules. In the
following, we consider regular expressions only and omit the word “regular”.

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dy-
namic expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are
structurally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆
X2 be an equivalence relation on X . Then the equivalence class (with respect to
E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence
E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Performance preserving equivalence for stochastic process algebra dtsdPBC 13

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ)
isa subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s) = {(α, ♮0l) ∈ IL | ∃H ∈ s ∩OpRegDynExpr (α, ♮0l) is a
subexpression of H}. The set of all enabled waiting multiactions of s is

EnaWait(s) = {(α, ♮θl) ∈ WL | ∃H ∈ s ∩ OpRegDynExpr (α, ♮θl)
δ, δ ∈

{1, . . . , θ}, is a subexpression of H}. The set of all newly enabled waiting mul-
tiactions of s is EnaWaitNew(s) = {(α, ♮θl) ∈ WL | ∃H ∈ s ∩OpRegDynExpr

(α, ♮θl)
θ is a subexpression of H}.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s)∪EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). Then
Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN [85] corresponding to G. The activities,
resulted from synchronization, are not present in the syntax of the dynamic ex-
pressions. Their enabledness status can be recovered by observing that of the
pair of synchronized activities from the syntax (they both should be enabled
for enabling their synchronous product), even if they are affected by restriction
after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with
the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be transformed into the
saturated one by applying the inaction rules in a forward or a backward direction.

Proof. See [85]. ⊓⊔

Thus, any dynamic expression can be transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Thus, each such stamped waiting multiaction changes
its timer value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decre-
ment operator affects the (possibly overlined or underlined) stamped waiting

multiactions being the subexpressions of G as follows: (α, ♮θl)
δ is replaced with

(α, ♮θl)
max{1,δ−1} and (α, ♮θl)

δ is replaced with (α, ♮θl)
max{1,δ−1} while (α, ♮θl)

δ is

replaced with (α, ♮θl)
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the
timer value δ = 1 may remain unchanged for a stamped waiting multiaction that

14 Igor V. Tarasyuk

is not executed by some reason at the next time moment, but stays stamped.
For example, that stamped waiting multiaction may be affected by restriction. If
the timer values cannot be decremented with a time tick for all stamped waiting
multiactions (if any) from G then 	G = G and we obtain so-called empty loop
transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, so that the stamped waiting mul-
tiactions stay stamped (with their timer values, possibly decremented by one).

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these
rules we capture the prioritization among different types of multiactions. We
also have the empty move rule, used to capture a delay of one discrete time
unit when no immediate or waiting multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty move rules will be
used later to determine all multisets of activities which can be executed from the
structural equivalence class of every dynamic expression (i.e. from the state of the
corresponding process). This information together with that about probabilities
or delays and weights of the activities to be executed from the current process
state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) mul-

tiactions describe dynamic expression transformations in the form of G
Γ
→ G̃

(G
I
→ G̃ or G

W
→ G̃, respectively) due to execution of non-empty multisets Γ

of stochastic (I of immediate or W of waiting, respectively) multiactions. The
rules represent possible state changes of the specified processes when some non-
empty multisets of stochastic (immediate or waiting, respectively) multiactions
are executed. The application of an action rule with stochastic (immediate or
waiting, respectively) multiactions to a dynamic expression leads in the corre-
sponding LDTSDPN [85] to a discrete time tick at which some stochastic or
waiting transitions fire (or to the instantaneous firing of some immediate tran-
sitions) and possible change of the current marking. The current marking stays
unchanged only if there is a self-loop produced by the iterative execution of a
non-empty multiset, which must be one-element, since we allow no concurrency
at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execu-

tion of the empty multiset of activities at a discrete time tick. When no timer
values are decremented within G with the empty multiset execution at the next
moment (for example, if G contains no stamped waiting multiactions), we have

	G = G. In such a case, the empty move from G is in the form of G
∅
→ G, called

the empty loop. The application of the empty move rule to a dynamic expression
leads to a discrete time tick in the corresponding LDTSDPN [85] at which no
transitions fire and the current marking is not changed, but the timer values of

Performance preserving equivalence for stochastic process algebra dtsdPBC 15

the waiting transitions enabled at the marking (if any) are decremented by one.
This is a new rule that has no prototype among inaction rules of PBC, since it
represents a time delay.

Thus, an application of every action rule with stochastic or waiting multi-
actions or the empty move rule requires one discrete time unit delay, i.e. the
execution of a (possibly empty) multiset of stochastic or (non-empty) multiset
of waiting multiactions leading to the dynamic expression transformation de-
scribed by the rule is accomplished instantly after one time unit. An application
of every action rule with immediate multiactions does not take any time, i.e. the
execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid tech-
nical difficulties, such as calculation of the probabilities for multiple transitions,
we can enumerate coinciding activities from left to right in the syntax of ex-
pressions. The new activities, resulted from synchronization, will be annotated
with concatenation of numberings of the activities they come from, hence, the
numbering should have a tree structure to reflect the effect of multiple synchro-
nizations. We now define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should

be considered up to permutation of their numbering. In this way, we shall rec-
ognize different instances of the same activity. If we compare the contents of
different numberings, i.e. the sets of natural numbers in them, we shall identify
the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become
the proper sets. We suppose that the identical activities are enumerated when
needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define the set of all non-empty
multisets of activities which can be potentially executed from G, denoted by
Can(G). Let (α, κ)∈SDL, E, F∈RegStatExpr, H∈OpRegDynExpr and a∈Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2, . . . , θ}, then Can(G)=∅.

3. If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.

4. If G = (α, κ)1 and κ = ♮θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).

16 Igor V. Tarasyuk

7. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different, a ∈ α, â ∈ β, then

(a) Υ − {(α, κ), (β, λ)} + {(α⊕a β, κ · λ)} ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) Υ − {(α, κ), (β, λ)} + {(α⊕a β, ♮θl+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities.

If Υ ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we haveΞ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only

stochastic (immediate or waiting, respectively) multiactions in the multisets
from Can(G) then these stochastic (immediate or waiting, respectively) mul-
tiactions can be executed from G. Otherwise, besides stochastic ones, there are
also deterministic (immediate and/or waiting) multiactions in the multisets from
Can(G). By the note above, there are non-empty multisets of deterministic mul-
tiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no

stochastic multiactions can be executed from G, even if Can(G) contains non-
empty multisets of stochastic multiactions, since deterministic multiactions have
a priority over stochastic ones, and should be executed first. Further, if there
are no stochastic, but both waiting and immediate multiactions in the multisets
from Can(G), then, analogously, no waiting multiactions can be executed from
G, since immediate multiactions have a priority over waiting ones (besides that
over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the
multisets from Can(G) then only waiting ones can be executed from G. Then
just maximal non-empty multisets of waiting multiactions can be executed from
G, since all non-conflicting waiting multiactions cannot wait and they should
occur at the next time moment with probability 1. The next definition formalizes
these requirements.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Now(G)=





Can(G) ∩ N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈Can(G) ∩ N
WL
fin | (Can(G) ∩N

IL
fin=∅)∧

∀V ∈Can(G) ∩N
WL
fin W ⊆V ⇒ V =W}, (Can(G) ∩N

WL
fin 6=∅);

Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have

stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \{∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin∪N

WL
fin)\{∅}.

We particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G is

Performance preserving equivalence for stochastic process algebra dtsdPBC 17

vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N
IL
fin\{∅}. The

operative dynamic expressions from [G]≈ may have different types in general.
Let G∈RegDynExpr. We write stang([G]≈), if ∀H∈[G]≈∩OpRegDynExpr

stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H)
and ∀H ′∈ [G]≈∩OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈)
or wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈∩
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ),
(β, χ) ∈ SL, (α, ♮0l), (β, ♮

0
m) ∈ IL and (α, ♮θl), (β, ♮

θ
m) ∈ WL. Further, E,F ∈

RegStatExpr, G,H ∈ SatOpRegDynExpr, G̃, H̃∈RegDynExpr and a ∈ Act.
Next, Γ,∆ ∈ N

SL
fin \ {∅}, Γ ′ ∈ N

SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈

N
WL
fin \ {∅}, V ′ ∈ N

WL
fin and Υ ∈ N

SDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈

α) ∨ (â ∈ α)}.
We use the following abbreviations in the names of the rules: “E” for “Empty

move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for
“Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule
for some operation then we get the coupled action rules. In such cases, the names
of the action rules with stochastic multiactions have a suffix ‘s’, those with
immediate multiactions have a suffix ‘i’, and those with waiting multiactions
have a suffix ‘w’. For explanation of the rules in Table 3, see [85].

Notice that the timers of all waiting multiactions that lose their enabled-
ness when a state change occurs become inactive (turned off) and their values
become irrelevant while the timers of all those preserving their enabledness con-
tinue running with their stored values. Hence, we adapt the enabling memory
policy [66, 1, 4, 5] when the process states are changed and the enabledness of
deterministic multiactions is possibly modified (immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as
the enabling memory variables.

Similar to [51], we are mainly interested in the dynamic expressions, inferred
by applying the inaction rules (also in the reverse direction) and action rules from
the overlined static expressions, such that no stamped (i.e. superscribed with the
timer values) waiting multiaction is a subexpression of them. The reason is to
ensure that time proceeds uniformly and only enabled waiting multiactions are
stamped. We call such dynamic expressions reachable, by analogy with the reach-
able states of LDTSDPNs [85]. Formally, a dynamic expression G is reachable,
if there exists a static expression E without timer value superscripts, such that

E ≈ G or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→ . . .
Υn→ Hn ≈ G for some Υ1, . . . , Υn ∈ N

SDL
fin .

Therefore, we consider a dynamic expression G = ({a}, ♮21)
1[]({b}, ♮32)

1 as

“illegal” and that H = ({a}, ♮21)
1[]({b}, ♮32)

2 as “legal”, since the latter is ob-
tained from the overlined static expression without timer value superscripts

18 Igor V. Tarasyuk

Table 3. Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l)

{(α,♮0l)}−→ (α, ♮0l) Bw (α, ♮θl)
1

{(α,♮θl)}−→ (α, ♮θl)

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F]≈))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F]≈))

[E ∗G ∗ F]
V
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l)}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl)}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

Performance preserving equivalence for stochastic process algebra dtsdPBC 19

E = ({a}, ♮21)[]({b}, ♮
3
2) after one time tick. On the other hand, G is “illegal”

only when it is intended to specify a complete process, but it may become “le-
gal” as a part of some complete specification, like G rs a, since after two time
ticks from E rs a, the timer values cannot be decreased further when the value 1
is approached. Thus, we should allow the dynamic expressions like G, by assum-
ing that they are incomplete specifications, to be further composed. Further, a

dynamic expression G = ({a}, 12); ({b}, ♮
2
1)

1 is “illegal”, since the waiting mul-
tiaction ({b}, ♮21) is not enabled in [G]≈ and its timer cannot start before the
stochastic multiaction ({a}, 12) is executed. Enabledness of the stamped waiting
multiactions is considered in the next proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.

Proof. See [85]. ⊓⊔

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dy-
namic expressions. The transition systems are used to define the operational
semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

Here H
Υ
→ H̃ is an inference by the rules from Table 3. It can be proved by

induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈
s Υ ∈ Now(H). The reverse statement does not hold, since the preconditions in
the action rules disable executions of the activities with the lower-priority types
from every H ∈ s, see [85].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may haveExec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted

by tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin ∪ N

WL
fin . Again, for a

tangible state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the
state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ N

IL
fin\{∅}.

If Υ ∈Exec(s) and Υ ∈N
SL
fin∪N

IL
fin then by rules P2s, P2i, Sy2s, Sy2i and

definition of Exec(s) ∀Ξ⊆Υ, Ξ 6=∅, we have Ξ∈Exec(s), i.e. 2Υ \{∅}⊆Exec(s).

Definition 12. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

– [G]≈ ∈ DR(G);

– if [H]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set
of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all tan-
gible states from DR(G) is denoted by DRT (G) = DRST (G) ∪DRWT (G). The

20 Igor V. Tarasyuk

set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G)=
DRT (G)⊎DRV (G)=DRST (G)⊎DRWT (G)⊎DRV (G) (⊎ denotes disjoint union).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is

PF (Υ, s)=





∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =





∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

The definition of PF (Υ, s) (and those of other probability functions we shall
present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ , some other multisets of activities may be ready
for execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The sum of outgoing probabilities for the expressions from the derivations of
G is equal to 1, i.e. ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This follows from the

definition of PT (Υ, s) and guarantees that it defines a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Note that ∀s ∈ DR(G)
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈̃s ∃Υ H
Υ
→H̃}

∑
{Υ |∃H∈s ∃H̃∈̃s H

Υ
→H̃}

PT (Υ, s)=
∑

Υ∈Exec(s)PT (Υ, s)=1.

Definition 13. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG = N

SDL
fin × (0; 1];

– the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H∈s

∃H̃ ∈ s̃ H
Υ
→ H̃};

– the initial state is sG = [G]≈.

Performance preserving equivalence for stochastic process algebra dtsdPBC 21

The definition of TS(G) is correct, i.e. for every state, the sum of the probabi-
lities of all the transitions from it is 1, by the note after the definition of PT (Υ, s).

The transition system TS(G) associated with a dynamic expression G de-
scribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
step consisting of stochastic (waiting, respectively) multiactions or the empty
step (i.e. that consisting of the empty multiset of activities) occurs instantly
after one discrete time unit delay. Each step consisting of immediate multiac-
tions occurs instantly without any delay. The step can change the current state
to a different one. The states are the structural equivalence classes of dynamic
expressions obtained by application of action rules starting from the expressions

belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as s
Υ
→P s̃. It

is interpreted as follows: the probability to change from state s to s̃ as a result
of executing Υ is P .

From every s-tangible state the empty multiset of activities can always be
executed by rule E. Hence, for s-tangible states, Υ may be the empty multi-
set, and its execution only decrements by one the timer values (if any) of the

current state. Then we have a transition s
∅
→P	 s from an s-tangible state s

to the tangible state 	 s = [H]≈ for H ∈ s ∩ SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after
decreasing by one their timers, 	 s is unique for each s and the definition is
correct. Thus, 	s corresponds to applying the empty move rule to an arbitrary
saturated operative dynamic expression from s, followed by taking the structural
equivalence class of the result. We have to keep track of such executions, called
the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities
of stochastic multiactions belong to the interval (0; 1). When it holds 	H = H
for H ∈ s∩SatOpRegDynExpr, we obtain 	s = s. Then the empty move from

s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing

states Υ cannot be the empty multiset, since we must execute some immediate
(waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when we cannot
leave an s-tangible state s and the only transition leaving it is the empty move

one s
∅
→1	 s, or if there is a single transition from a w-tangible or a vanishing

state to any other one. We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 14. Let G,G′ be dynamic expressions and TS(G)=(SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′) be their transition systems. A mapping β : SG →
SG′ is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ≃
TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

22 Igor V. Tarasyuk

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃
TS(G′), if ∃β :TS(G)≃TS(G′).

Definition 15. Two dynamic expressions G and G′ are equivalent with respect
to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 1. The expression Stop = ({g}, 12) rs g specifies the non-terminating
process that performs only empty loops with probability 1.

Let E=[({a}, ρ)∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))))∗Stop],

where ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the elements

s1 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 1, the transition system TS(E) is presented. The s-tangible and

w-tangible states are depicted in ordinary and double ovals, respectively, and
the vanishing ones are depicted in boxes.

TS(E)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1

({a},ρ),ρ

({b},♮1
k
),1

({c},♮0
l
),1

l
l+m

({e},♮0m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Fig. 1. The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ)))) ∗ Stop]

Example 2. Let us interpret E from Example 1 as a specification of the travel
system. A tourist visits regularly new cities. After seeing the sights of the current

Performance preserving equivalence for stochastic process algebra dtsdPBC 23

city, he goes to the next city by the nearest train or bus available at the city
station. Buses depart less frequently than trains, but the next city is quicker
reached by bus than by train. We suppose that the stay duration in every city
(being a constant), the departure numbers of trains and buses, as well as their
speeds do not depend on a particular city, bus or train. The travel route has been
planned so that the distances between successive cities coincide.

The meaning of actions and activities from the syntax of E is as follows. The
action a corresponds to the system activation after planning the travel route
that takes a time, geometrically distributed with a parameter ρ, the probability
of the corresponding stochastic multiaction ({a}, ρ). The action b represents
coming to the city station after completion of looking round the current city
that takes (for every city) a fixed time equal to 1 (hour), the time delay of the
corresponding waiting multiaction ({b}, ♮1k) with (resolving no choice) weight k.
The actions c and e correspond to the urgent (in zero time) getting on bus
and train, respectively, and thus model the choice between these two transport
facilities. The weights of the two corresponding immediate multiactions ({c}, ♮0l)
and ({e}, ♮0m) suggest that every l departures of buses take the same time as
m departures of trains (l < m), hence, a bus departs with the probability l

l+m
while a train departs with the probability m

l+m . The actions d and f correspond
to coming in a city by bus and train, respectively, that takes a time, geometrically
distributed with the parameters θ and φ, respectively (θ > φ), the probabilities
of the corresponding stochastic multiactions ({d}, θ) and ({f}, φ).

The meaning of states from DR(E) is the following. The s-tangible state s1
corresponds to staying at home and planning the future travel. The w-tangible
state s2 means residence in a city for exactly one time unit (hour). The vanishing
state s3 with zero residence time represents instantaneous stay at the city station,
signifying that the tourist does not wait there for departure of the transport. The
s-tangible states s4 and s5 correspond to going by bus and train, respectively.

In Example 3 from [86], we calculated the following performance indices,
based on the steady-state probability mass function (PMF) for the underlying
SMC of E SMC(E) ϕ = 1

θφ(l+m)+φl+θm(0, θφ(l+m), 0, φl, θm) and the average

sojourn time vector of E SJ =
(

1
ρ , 1, 0,

1
θ ,

1
φ

)
.

– The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(s2) =

1
ϕ(s2)

= 1 + φl+θm
θφ(l+m) .

– The fraction of time spent in a city (sightseeing time fraction) is

T imeFract(s2) = ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm .

– The fraction of time spent in a transport (travel time fraction) is
T imeFract({s4, s5}) = ϕ(s4) + ϕ(s5) =

φl+θm
θφ(l+m)+φl+θm .

– The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s2}, {s4, s5}) =
ϕ(s2)

ϕ(s4)+ϕ(s5)
= θφ(l+m)

φl+θm .

– The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= θφ(l+m)
θφ(l+m)+φl+θm .

24 Igor V. Tarasyuk

Let N = (PN , TN ,WN , DN , ΩN ,LN , QN) be a LDTSDPN [85] and Q, Q̃ be
its states. Then the average sojourn time SJ(Q), sojourn time variance V AR(Q),

probabilities PM∗(Q, Q̃), transition relation Q ։P Q̃, EDTMC EDTMC(N),
underlying SMC SMC(N) and steady-state PMF for it are defined like the cor-
responding notions for dynamic expressions in [86]. Every marked and clocked
plain dtsd-box [85] can be interpreted as an LDTSDPN. Therefore, we can eval-
uate performance with the LDTSDPNs corresponding to dtsd-boxes and then
transfer the results to the latter.

Example 3. Let E be from Example 1 andN be the marked and clocked dtsd-box
of E, denoted by N=Boxdtsd(E) [85]. In Figure 2, the underlying SMC SMC(N)
is presented. Note that SMC(E) [86] and SMC(N) are isomorphic. Thus, both
the transient and steady-state PMFs for SMC(N) and SMC(E) coincide.

SMC(N)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000,
1

000100,
∞

000010,
∞

☛
✡

✟
✠

❄

100000,
∞

1

1

l
l+m

m
l+m

1 1

001000,
∞

1

ρ

1

0

1

θ

1

φ

Fig. 2. The underlying SMC of N=Boxdtsd(E) for E=[({a}, ρ)∗(({b}, ♮1k); ((({c}, ♮
0
l);

({d}, θ))[](({e}, ♮0m); ({f}, φ)))) ∗ Stop]

4 Stochastic equivalences

The semantic equivalence =ts is too discriminating in many cases, hence, we
need weaker equivalence notions. These equivalences should possess the follow-
ing necessary properties. First, any two equivalent processes must have the same
sequences of multisets of multiactions, which are the multiaction parts of the ac-
tivities executed in steps starting from the initial states of the processes. Second,
for every such sequence, its execution probabilities within both processes must
coincide. Third, the desired equivalence should preserve the branching structure
of computations, i.e. the points of choice of an external observer between several
extensions of a particular computation should be taken into account. In this
section, we define one such notion: step stochastic bisimulation equivalence.

Performance preserving equivalence for stochastic process algebra dtsdPBC 25

Bisimulation equivalences respect the particular points of choice in the be-
havior of a system. To define stochastic bisimulation equivalences, we have to
consider a bisimulation as an equivalence relation that partitions the states of
the union of the transition systems TS(G) and TS(G′) of two dynamic expres-
sions G and G′ to be compared. For G and G′ to be bisimulation equivalent, the
initial states [G]≈ and [G′]≈ of their transition systems should be related by a
bisimulation having the following transfer property: if two states are related then
in each of them the same multisets of multiactions can occur, leading with the
identical overall probability from each of the two states to the same equivalence
class for every such multiset.

We follow the approaches of [50, 54, 45, 46, 18, 10, 11], but we implement step
semantics instead of interleaving one considered in these papers. Recall also that
we use the generative probabilistic transition systems, like in [50], in contrast to
the reactive model, treated in [54], and we take transition probabilities instead
of transition rates from [45, 46, 18, 10, 11]. Thus, step stochastic bisimulation
equivalence that we define further is (in the probabilistic sense) comparable
only with interleaving probabilistic bisimulation equivalence from [50], and our
relation is obviously stronger.

In the definition below, we consider L(Υ) ∈ N
L
fin for Υ ∈ N

SIL
fin , i.e. (possibly

empty) multisets of multiactions. The multiactions can be empty as well. In this
case, L(Υ) contains the elements ∅, but it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). For any s∈DR(G) and A∈

N
L
fin, we write s

A
→P H, where P=PMA(s,H) is the overall probability to move

from s into the set of states H via steps with the multiaction part A defined as

PMA(s,H) =
∑

{Υ |∃s̃∈H s
Υ
→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A
→ H if ∃P s

A
→P H. Further, we write s →P H if ∃A s

A
→ H,

where P = PM(s,H) is the overall probability to move from s into the set of
states H via any steps defined as

PM(s,H) =
∑

{Υ |∃s̃∈H s
Υ
→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A
→P s̃ if s

A
→P {s̃} and s

A
→ s̃ if ∃P s

A
→P s̃.

Definition 16. Let G and G′ be dynamic expressions. An equivalence relation
R ⊆ (DR(G) ∪ DR(G′))2 is a step stochastic bisimulation between G and G′,
denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and

∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ N
L
fin s1

A
→P H ⇔ s2

A
→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent,
denoted by G↔ssG

′, if ∃R : G↔ssG
′.

26 Igor V. Tarasyuk

The condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the definition above is
needed to make difference between w-tangible states (all having at least one time
unit sojourn times) and vanishing states (all having zero sojourn times). Both
from w-tangible and vanishing states, no empty moves can be made, unlike s-
tangible states, from which empty moves are always possible. When comparing
dynamic expressions for step stochastic bisimulation equivalence, we can use
empty moves only to make difference between s-tangible and other (w-tangible
or vanishing) states.

We define the multiaction transition systems, whose transitions are labeled
with the multisets of multiactions, extracted from the corresponding activities.

Definition 17. Let G be a dynamic expression. The (labeled probabilistic) mul-
tiaction transition system of G is a quadruple TSL(G) = (SL, LL, TL, sL), where

– SL = DR(G);
– LL = N

L
fin × (0; 1];

– TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A
→ s̃};

– sL = [G]≈.

The transition (s, (A,P), s̃) ∈ TL will be written as s
A
→P s̃.

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation

R can be interpreted as a step stochastic bisimulation between the transition
systems TSL(G) and TSL(G

′), denoted by R : TSL(G)↔ssTSL(G
′), which is

defined by analogy (excepting step semantics) with interleaving probabilistic
bisimulation on generative probabilistic transition systems from [50].

Example 4. Let us consider an abstraction F of the static expression E from Ex-
ample 1, such that c = e, d = f, θ = φ, i.e. F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l);

({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]. Then DR(F) = {s′1, s
′
2, s

′
3, s

′
4, s

′
5} is

obtained from DR(E) via substitution of the symbols e, f, φ by c, d, θ, re-
spectively, in the specifications of the corresponding states from the latter set.
We have DRST (F) = {s′1, s

′
4, s

′
5}, DRWT (F) = {s′2} and DRV (F) = {s′3}.

In Figure 3, the multiaction transition system TSL(F) is presented. To sim-
plify the presentation, the singleton multisets of multiactions are written with-
out outer braces.

Example 5. Let us interpret F from Example 4 as an abstraction of the travel
system from Example 2. In such an abstract travel system, we do not differentiate
between the transport facilities (trains or buses) that always have the same
speed, but every l departures of the transport from the first platform take the
same time as m departures of the transport from the second platform, and the
traveler can choose between the two platforms.

By taking θ = φ in Example 2, we now calculate the following performance

indices, based on the steady-state PMF for SMC(F) ϕ = 1
1+θ

(
0, θ, 0, l

l+m ,
m
l+m

)

and the average sojourn time vector of F SJ =
(

1
ρ , 1, 0,

1
θ ,

1
θ

)
.

Performance preserving equivalence for stochastic process algebra dtsdPBC 27

TSL(F)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s
′
2

s
′
4 s

′
5

☛
✡

✟
✠

❄

s
′
1
{a},ρ

{b},1

{c}, l
l+m

{c}, m
l+m

{d},θ {d},θ

s
′
3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−θ

Fig. 3. The multiaction transition system of F for F = [({a}, ρ)∗ (({b}, ♮1k); ((({c}, ♮
0
l);

({d}, θ)1)[](({c}, ♮
0
m); ({d}, θ)2))) ∗ Stop]

– The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(s′2) =

1
ϕ(s′2)

= 1 + θl+θm
θ2(l+m) = 1 + 1

θ .

– The fraction of time spent in a city (sightseeing time fraction) is

T imeFract(s′2) = ϕ(s′2) =
θ2(l+m)

θ2(l+m)+θl+θm = θ
1+θ .

– The fraction of time spent in a transport (travel time fraction) is
T imeFract({s′4, s

′
5}) = ϕ(s′4) + ϕ(s′5) =

θl+θm
θ2(l+m)+θl+θm = 1

1+θ .

– The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s′2}, {s
′
4, s

′
5}) =

ϕ(s′2)
ϕ(s′4)+ϕ(s

′
5)

= θ2(l+m)
θl+θm = θ.

– The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s′2) =
ϕ(s′2)
SJ(s′2)

= θ2(l+m)
θ2(l+m)+θl+θm = θ

1+θ .

The following proposition states that every step stochastic bisimulation binds
s-tangible states only with s-tangible ones, and the same is valid for w-tangible
states, as well as for vanishing states.

Proposition 3. Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R⊆(DRST (G)∪DRST (G′))2⊎(DRWT (G)∪DRWT (G
′))2⊎(DRV (G)∪DRV (G′))2.

Proof. See [85]. ⊓⊔

Proposition 3 implies R ⊆ (DRT (G)∪DRT (G′))2 ⊎ (DRV (G)∪DRV (G′))2,
since DRT (G)=DRST (G)⊎DRWT (G) and DRT (G

′)=DRST (G
′)⊎DRWT (G

′).

Let Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} be the union of all step stochastic bi-
simulations between G and G′. The following proposition proves that Rss(G,G

′)
is also an equivalence and Rss(G,G

′) : G↔ssG
′.

28 Igor V. Tarasyuk

Proposition 4. Let G and G′ be dynamic expressions and G↔ssG
′. Then

Rss(G,G
′) is the largest step stochastic bisimulation between G and G′.

Proof. See [85]. ⊓⊔

The next theorem shows that both the semantics are bisimulation equivalent.

Theorem 1. For any static expression E, TS(E)↔ssRG(Boxdtsd(E)).

Proof. See [85]. ⊓⊔

We now compare the discrimination power of the stochastic equivalences.

Theorem 2. For dynamic expressions G and G′, the strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. See [85]. ⊓⊔

5 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems
and SMCs of expressions (reachability graphs and SMCs of dtsd-boxes). Re-
ductions of graph-based models, like transition systems, reachability graphs and
SMCs, result in those with less states (the graph nodes). The goal of the re-
duction is to decrease the number of states in the semantic representation of
the modeled system while preserving its important qualitative and quantitative
behavioural properties. Thus, the reduction allows one to simplify the functional
and performance analysis.

5.1 Quotients of the transition systems and Markov chains

We now consider the quotient transition systems and Markov chains (SMCs,
DTMCs, RDTMCs).

An autobisimulation is a bisimulation between an expression and itself. For a
dynamic expression G and a step stochastic autobisimulation on it R : G↔ssG,

let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈ DR(G)/R ∀A ∈ N
L
fin s1

A
→P

K̃ ⇔ s2
A
→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K
A
→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→ K̃ if ∃P K

A
→P K̃ and K → K̃ if ∃A K

A
→ K̃. The similar

arguments allow us to write K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) =

PM(s2, K̃).
By the note after Proposition 3, R ⊆ (DRT (G))

2 ⊎ (DRV (G))
2. Hence,

∀K ∈ DR(G)/R, all states from K are tangible, when K ∈ DRT (G)/R, or all of
them are vanishing, when K ∈ DRV (G)/R.

Performance preserving equivalence for stochastic process algebra dtsdPBC 29

The average sojourn time in the equivalence class (with respect toR) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R)
of states of G, denoted by SJR, has the elements SJR(K), K ∈ DR(G)/R.
The sojourn time variance in the equivalence class (with respect toR) of states K is

V ARR(K) =

{
PM(K,K)

(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R)
of states of G, denoted by V ARR, has the elements V ARR(K), K∈DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic

autobisimulations on G. By Proposition 4, Rss(G) is the largest step stochastic
autobisimulation on G. Based on the equivalence classes with respect to Rss(G),
the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying
SMCs of expressions can be defined. The mentioned equivalence classes become
the quotient states. The average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in case
of the transition system quotient) from the first state to the second one.

Definition 18. Let G be a dynamic expression. The quotient (by ↔ss) (labeled
probabilistic) transition system of G is a quadruple TS↔ss

(G) =
(S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

– S↔ss
= DR(G)/Rss(G);

– L↔ss
= N

L
fin × (0; 1];

– T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

– s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→P K̃.

Let G be a dynamic expression. We define the relation RLss(G) = {(s,K),
(K, s) | s ∈ K ∈ DR(G)/Rss(G)}

+, where + is the transitive closure operation.
One can see that RLss(G) ⊆ (DR(G) ∪DR(G)/Rss(G))

2 is an equivalence rela-
tion that partitions the set DR(G) ∪ DR(G)/Rss(G) to the equivalence classes
L1, . . . ,Ln, defined as Li = Ki ∪ {Ki} (1 ≤ i ≤ n), where DR(G)/Rss(G) =
{K1, . . . ,Kn}. The relation RLss(G) can be interpreted as a step stochastic
bisimulation between the transition systems TSL(G) and TS↔ss

(G), denoted by
RLss(G) : TSL(G)↔ssTS↔ss

(G), which is defined by analogy (excepting step
semantics) with interleaving probabilistic bisimulation on generative probabilis-
tic transition systems from [50]. It is clear that from this viewpoint, RLss(G)
is also the union of all step stochastic bisimulations and largest step stochastic
bisimulation between TSL(G) and TS↔ss

(G).

30 Igor V. Tarasyuk

Example 6. Let F be from Example 4. Then DR(F)/Rss(F) = {K1,K2,K3,K4},

where K1 = {s′1}, K2 = {s′2}, K3 = {s′3}, K4 = {s′4, s
′
5}. We have

DRST (F)/Rss(F) = {K1,K4}, DRWT (F)/Rss(F) = {K2} andDRV (F)/Rss(F)=

{K3}. Thus, Rss merges the states with the same “futures” from the different
branches. In Figure 4, the quotient transition system TS↔ss

(F) is presented.

TS↔ss
(F)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

❄

K2

K4

☛
✡

✟
✠

❄

K1

{a},ρ

{b},1

{d},θ

K3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
Fig. 4. The quotient transition system of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l);

({d}, θ)1)[](({c}, ♮
0
m); ({d}, θ)2))) ∗ Stop]

The quotient (by ↔ss) reachability graphs are defined similarly to the quo-
tient transition systems. Let ≃ denote isomorphism between quotient transition
systems and quotient reachability graphs that binds their initial states. The fol-
lowing proposition connects quotient (by↔ss) transition systems of the overlined
static expressions and quotient reachability graphs of their dtsd-boxes.

Proposition 5. For any static expression E,

TS↔ss
(E) ≃ RG↔ss

(Boxdtsd(E)).

Proof. By definitions of the quotient (by ↔ss) transition systems and quotient
reachability graphs, their uniqueness up to isomorphism and Theorem 1. ⊓⊔

Example 7. Let F be from Example 4 and N ′ = Boxdtsd(F). Then
RS(N ′)/Rss(N ′) = {L1,L2,L3,L4}, where L1 = {Q′

1}, L2 = {Q′
2}, L3 =

{Q′
3}, L4 = {Q′

4, Q
′
5} for Q′

1 = ((1, 0, 0, 0, 0, 0),∞), Q′
2 = ((0, 1, 0, 0, 0, 0), 1),

Q′
3 = ((0, 0, 1, 0, 0, 0),∞), Q′

4 = ((0, 0, 0, 1, 0, 0),∞), Q′
5 = ((0, 0, 0, 0, 1, 0),∞).

We have RSST (N
′)/Rss(N ′) = {L1,L4}, RSWT (N

′)/Rss(N ′) = {L2} and
RSV (N

′)/Rss(N ′)= {L3}. In Figure 5, the quotient reachability graph

RG↔ss
(N ′) is presented. Note that TS↔ss

(F) and RG↔ss
(N ′) are isomorphic.

The quotient (by ↔ss) average sojourn time vector ofG is SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector ofG is V AR↔ss
=V ARRss(G).

Performance preserving equivalence for stochastic process algebra dtsdPBC 31

RG↔ss
(N ′)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

❄

L2

L4

☛
✡

✟
✠

❄

L1

{a},ρ

{b},1

{d},θ

L3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
Fig. 5. The quotient reachability graph of N ′ = Boxdtsd(F) for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮

0
l); ({d}, θ)1)[](({c}, ♮

0
m); ({d}, θ)2))) ∗ Stop]

Let G be a dynamic expression and K, K̃ ∈ DR(G)/Rss(G). The transition
system TS↔ss

(G) can have self-loops going from an equivalence class to itself
which have a non-zero probability. The current equivalence class remains un-
changed in this case.

Let K → K. The probability to stay in K due to k (k ≥ 1) self-loops is

PM(K,K)k.

The quotient (by ↔ss) self-loops abstraction factor in the equivalence class K is

SL↔ss
(K) =

{ 1
1−PM(K,K) , K → K;

1, otherwise.

The quotient (by ↔ss) self-loops abstraction vector of G, denoted by SL↔ss
,

has the elements SL↔ss
(K), K ∈ DR(G)/Rss(G).

Let K → K̃ and K 6= K̃, i.e. PM(K,K) < 1. The probability to move from K

to K̃ by executing any multiset of activities after possible self-loops is

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise;

}
=

SL↔ss
(K)PM(K, K̃).

The value k = 0 in the summation is for the case when no self-loops occur.
Let K ∈ DRT (G)/Rss(G). If there exist self-loops from K (i.e. if K → K)

then PM(K,K) > 0 and SL↔ss
(K) = 1

1−PM(K,K) = SJ↔ss
(K). Otherwise, if

there exist no self-loops from K then PM(K,K) = 0 and SL↔ss
(K) = 1 =

1
1−PM(K,K) = SJ↔ss

(K). Thus, ∀K ∈ DRT (G)/Rss(G) SL↔ss
(K) = SJ↔ss

(K),

hence, ∀K ∈ DRT (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) =

SJ↔ss
(K)PM(K, K̃). Note that the self-loops from the equivalence classes of

32 Igor V. Tarasyuk

tangible states are of the empty or non-empty type, the latter produced by
iteration, since empty loops are not possible from the equivalence classes of w-
tangible states, but they are possible from the equivalence classes of s-tangible
states, while non-empty loops are possible from the equivalence classes of both
s-tangible and w-tangible states.

Let K∈DRV (G)/Rss(G). We have ∀K∈DRV (G)/Rss(G) SL↔ss
(K) 6=

SJ↔ss
(K)=0 and ∀K ∈ DRV (G)/Rss(G) with PM(K,K) < 1 it holds

PM∗(K, K̃) = SL↔ss
(K)PM(K, K̃). If there exist self-loops from K then

PM∗(K, K̃) = PM(K,K̃)
1−PM(K,K) when PM(K,K) < 1. Otherwise, if there exist no

self-loops from K then PM∗(K, K̃) = PM(K, K̃). Note that the self-loops from
the equivalence classes of vanishing states are always of the non-empty type,
produced by iteration, since empty loops are not possible from the equivalence
classes of vanishing states.

Definition 19. Let G be a dynamic expression. The quotient (by↔ss) EDTMC
of G, denoted by EDTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K ։P K̃, if K → K̃ and K 6= K̃, where

P = PM∗(K, K̃); or K ։1 K, if PM(K,K) = 1.
The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss

(G), has
the EDTMC EDTMC↔ss

(G) and the sojourn time in every K∈DRT (G)/Rss(G)

is geometrically distributed with the parameter 1− PM(K,K) while the sojourn
time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The steady-state probability mass functions (PMFs) ψ∗
↔ss

for EDTMC↔ss
(G)

and ϕ↔ss
for SMC↔ss

(G) are defined like the respective notions ψ∗ for
EDTMC(G) and ϕ for SMC(G) [86].

Example 8. Let F be from Example 6. In Figure 6, the quotient underlying
SMC SMC↔ss

(F) is presented. The average sojourn times in the states of the
underlying quotient SMC are written next to them in bold font.

The quotient average sojourn time vector of E is

SJ↔ss
=

(
1

ρ
, 1, 0,

1

θ

)
.

The quotient sojourn time variance vector of E is

V AR↔ss
=

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2

)
.

The transition probability matrix (TPM) for EDTMC↔ss
(F) is

P∗
↔ss

=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

Performance preserving equivalence for stochastic process algebra dtsdPBC 33

The steady-state PMF for EDTMC↔ss
(F) is

ψ∗
↔ss

=

(
0,

1

3
,
1

3
,
1

3

)
.

The steady-state PMF ψ∗
↔ss

weighted by SJ↔ss
is

(
0,

1

3
, 0,

l

3θ

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the
sum of its components

ψ∗
↔ss

SJT↔ss
=

1 + θ

3θ
.

Thus, the steady-state PMF for SMC↔ss
(F) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

SMC↔ss
(F)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

❄

K2

K4

☛
✡

✟
✠

❄

K1

1

1

1

K3

❄

☞

✌

✛

1

✚

1

ρ

1

0

1

θ

Fig. 6. The quotient underlying SMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l);

({d}, θ)1)[](({c}, ♮
0
m); ({d}, θ)2))) ∗ Stop]

Example 9. Let F be from Example 4. We now calculate the following per-
formance indices, based on the steady-state PMF for SMC↔ss

(F) ϕ↔ss
=

1
1+θ (0, θ, 0, 1) and the quotient average sojourn time vector of F SJ↔ss

=(
1
ρ , 1, 0,

1
θ

)
.

– The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(K2) =

1
ϕ(K2)

= 1 + 1
θ .

– The fraction of time spent in a city (sightseeing time fraction) is
T imeFract(K2) = ϕ(K2) =

θ
1+θ .

34 Igor V. Tarasyuk

– The fraction of time spent in a transport (travel time fraction) is
T imeFract(K4) = ϕ(K4) =

1
1+θ .

– The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({K2}, {K4}) =
ϕ(K2)
ϕ(K4)

= θ.

– The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(K2) =
ϕ(K2)
SJ(K2)

= θ
1+θ .

The performance indices are the same for the “complete” and the “quotient”
abstract travel systems. The coincidence of the indices will illustrate the results of
the forthcoming Proposition 10 and Proposition 11 (both modified for RLss(F)).

Let ≃ denote isomorphism between SMCs that binds their initial states,
where two SMCs are isomorphic if their EDTMCs are so and the sojourn times in
the isomorphic states of the EDTMCs are identically distributed. The following
proposition establishes a connection between quotient (by ↔ss) SMCs of the
overlined static expressions and quotient SMCs of their dtsd-boxes.

Proposition 6. For any static expression E

SMC↔ss
(E) ≃ SMC↔ss

(Boxdtsd(E)).

Proof. By definitions of the quotient (by ↔ss) underlying SMCs for dynamic
expressions and LDTSDPNs and Proposition 5, taking into account the follow-
ing. First, for the associated SMCs, the average sojourn time in the states is
the same, since it is defined via the analogous probability functions. Second, the
transition probabilities of the associated SMCs are the sums of those belonging
to the quotient transition systems or the quotient reachability graphs.

For instance, note that the probability functions PM(K, K̃) and PM∗(K, K̃)

can be respectively defined in the same way as PM(L, L̃) and PM∗(L, L̃), for
the corresponding equivalence classes of the process states and net states K and
L, as well as K̃ and L̃. ⊓⊔

Example 10. Let F be from Example 4 and N ′ = Boxdtsd(F). In Figure 7, the
quotient underlying SMC SMC↔ss

(N ′) is presented. Note that SMC↔ss
(F)

and SMC↔ss
(N ′) are isomorphic. Thus, both the transient and steady-state

PMFs for SMC↔ss
(N ′) and SMC↔ss

(F) coincide.

The quotients of both transition systems and underlying SMCs are the min-
imal reductions of the mentioned objects modulo step stochastic bisimulations.
The quotients can be used to simplify analysis of system properties which are
preserved by ↔ss, since potentially less states should be examined for it. Such
reduction method resembles that from [3] based on place bisimulation equiva-
lence for PNs, excepting that the former method merges states, while the latter
one merges places.

Performance preserving equivalence for stochastic process algebra dtsdPBC 35

SMC↔ss
(N ′)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

❄

L2

L4

☛
✡

✟
✠

❄

L1

1

1

1

L3

❄

☞

✌

✛

1

✚

1

ρ

1

0

1

θ

Fig. 7. The quotient underlying SMC of N ′ = Boxdtsd(F) for F = [({a}, ρ)∗(({b}, ♮1k);
((({c}, ♮0l); ({d}, θ)1)[](({c}, ♮

0
m); ({d}, θ)2))) ∗ Stop]

Moreover, the algorithms exist to construct the quotients of transition sys-
tems by an equivalence (like bisimulation one) [73] and those of (discrete or
continuous time) Markov chains by ordinary lumping [38]. The algorithms have
time complexity O(m log n) and space complexity O(m + n), where n is the
number of states and m is the number of transitions. As mentioned in [95],
the algorithm from [38] can be easily adjusted to produce quotients of labeled
probabilistic transition systems by the probabilistic bisimulation equivalence. In
[95], the symbolic partition refinement algorithm on state space of CTMCs was
proposed. The algorithm can be straightforwardly accommodated to DTMCs,
interactive Markov chains (IMCs), Markov reward models, Markov decision pro-
cesses (MDPs), Kripke structures and labeled probabilistic transition systems.
Such a symbolic lumping uses memory efficiently due to compact representation
of the state space partition. The symbolic lumping is time efficient, since fast
algorithm of the partition representation and refinement is applied. In [39], a
polynomial-time algorithm for minimizing behaviour of probabilistic automata
by probabilistic bisimulation equivalence was outlined that results in the canon-
ical quotient structures. One can adapt the above algorithms for our framework
of transition systems, (reduced) DTMCs and SMCs.

Let us consider quotient (by ↔ss) DTMCs of expressions based on the state

change probabilities PM(K, K̃).

Definition 20. Let G be a dynamic expression. The quotient (by ↔ss) DTMC
of G, denoted by DTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is defined like the corre-
sponding notion ψ for DTMC(G) [86].

Example 11. Let F be from Example 6. In Figure 8, the quotient DTMC
DTMC↔ss

(F) is presented.

36 Igor V. Tarasyuk

The TPM for DTMC↔ss
(F) is

P↔ss
=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The steady-state PMF for DTMC↔ss
(F) is

ψ↔ss
=

1

1 + 2θ
(0, θ, θ, 1).

Remember that DRT (F)/Rss(F) = DRST (F)/Rss(F) ∪DRWT (F)/Rss(F) =

{K1,K2,K4} and DRV (F)/Rss(F) = {K3}. Hence,

∑

K∈DRT (F)/Rss(F)

ψ(K) = ψ(K1) + ψ(K2) + ψ(K4) =
1 + θ

1 + 2θ
.

By the “quotient” analogue of Proposition 4 from [86], we have

ϕ↔ss
(K1) = 0 · 1+2θ

1+θ = 0,

ϕ↔ss
(K2) =

θ
1+2θ ·

1+2θ
1+θ = θ

1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+2θ ·

1+2θ
1+θ = 1

1+θ .

Thus, the steady-state PMF for SMC↔ss
(F) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 8 with the use of ψ∗
↔ss

and SJ↔ss
.

Eliminating equivalence classes (with respect to Rss(G)) of vanishing states
from the quotient (by ↔ss) DTMCs of expressions results in the reductions of
the DTMCs.

Definition 21. The reduced quotient (by ↔ss) DTMC of G, denoted by
RDTMC↔ss

(G), is defined like RDTMC(G) in [86], but it is constructed from
DTMC↔ss

(G) instead of DTMC(G).

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is defined like the corres-

ponding notion ψ⋄ for RDTMC(G) [86].

Example 12. Let F be from Example 6. Remember that DRT (F)/Rss(F) =

DRST (F)/Rss(F) ∪ DRWT (F)/Rss(F) = {K1,K2,K4} and DRV (F)/Rss(F) =

{K3}. We reorder the states from DR(F)/Rss(F), by moving vanishing states to
the first positions: K3,K1,K2,K4.

The reordered TPM for DTMC↔ss
(F) is

Performance preserving equivalence for stochastic process algebra dtsdPBC 37

DTMC↔ss
(F)

☛
✡

✟
✠

✞✝ ☎✆

☛
✡

✟
✠

❄

K2

K4

☛
✡

✟
✠

❄

K1

ρ

1

θ

K3

✞✝ ✲

1− ρ

❄✞✝ ✲

1− θ

☞

✌

✛

1

✚
Fig. 8. The quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l); ({d}, θ)1)[]

(({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

Pr↔ss
=




0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ


 .

The result of the decomposing Pr↔ss
are the matrices

C↔ss
= 0, D↔ss

= (0, 0, 1), E↔ss
=




0
1
0


 , F↔ss

=




1− ρ ρ 0
0 0 0
0 θ 1− θ


 .

Since C1
↔ss

= 0, we have ∀k > 0 Ck
↔ss

= 0, hence, l = 0 and there are no
loops among vanishing states. Then

G↔ss
=

l∑

k=0

Ck
↔ss

= C0
↔ss

= I.

Further, the TPM for RDTMC↔ss
(F) is P⋄

↔ss
= F↔ss

+E↔ss
G↔ss

D↔ss
=

F↔ss
+E↔ss

ID↔ss
= F↔ss

+E↔ss
D↔ss

=




1− ρ ρ 0
0 0 1
0 θ 1− θ


 .

In Figure 9, the reduced quotient DTMC RDTMC↔ss
(F) is presented. The

steady-state PMF for RDTMC↔ss
(F) is

ψ⋄
↔ss

=
1

1 + θ
(0, θ, 1).

Note that ψ⋄
↔ss

= (ψ⋄
↔ss

(K1), ψ
⋄
↔ss

(K2), ψ
⋄
↔ss

(K4)). By the “quotient” ana-

logue of Proposition 5 from [86], we have

38 Igor V. Tarasyuk

ϕ↔ss
(K1) = 0,

ϕ↔ss
(K2) =

θ
1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+θ .

Thus, the steady-state PMF for SMC↔ss
(F) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 8 with the use of ψ∗
↔ss

and SJ↔ss
.

RDTMC↔ss
(F)

☛
✡

✟
✠

✞✝ ☎✆
☛
✡

✟
✠

❄

K2

K4

☛
✡

✟
✠

❄

K1

ρ

1

θ

✞✝ ✲

1− ρ

✞✝ ✲

1− θ

✛

✚

✏

✑
Fig. 9. The reduced quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l);

({d}, θ)1)[](({c}, ♮
0
m); ({d}, θ)2))) ∗ Stop]

Example 13. Let F be from Example 6. In Figure 10, the reduced quotient SMC
RSMC↔ss

(F) is depicted. The average sojourn times in the states of the reduced
quotient SMC are written next to them in bold font. In spite of the equality
RSMC↔ss

(F)=RDTMC↔ss
(F), the graphical representation ofRSMC↔ss

(F)

differs from that of RDTMC↔ss
(F), since the former is based on the

REDTMC↔ss
(F), where each state is decorated with the positive average so-

journ time of RSMC↔ss
(F) in it. REDTMC↔ss

(F) can be constructed from

EDTMC↔ss
(F) in the similar way as RDTMC↔ss

(F) can be obtained from

DTMC↔ss
(F). By construction, the sojourn time in each state of RSMC↔ss

(F)
is geometrically distributed. Hence, the associated parameter of geometrical
distribution is uniquely recovered from the average sojourn time in the state.

The relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, ϕ↔ss

and
ψ↔ss

, ϕ↔ss
and ψ⋄

↔ss
, are the same as those between their “non-quotient” ver-

sions in Proposition 3, Proposition 4 and Proposition 5 from [86], respectively.

Performance preserving equivalence for stochastic process algebra dtsdPBC 39

RSMC↔ss
(F)

☛
✡

✟
✠

✞✝ ☎✆
☛
✡

✟
✠

❄

K2

K4

☛
✡

✟
✠

❄

K1

1

1

1

✛

✚

✏

✑

1

ρ

1

1

θ

Fig. 10. The reduced quotient SMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l);

({d}, θ)1)[](({c}, ♮
0
m); ({d}, θ)2))) ∗ Stop]

5.2 Interrelations of the standard and quotient behavioural
structures

In Figure 11, the cube of interconnections by the relation “constructed from”
is depicted for both the standard and quotient transition systems and Markov
chains (SMCs, DTMCs and RDTMCs) of the process expressions. The rela-
tions between SMC and SMC↔ss

, between DTMC and DTMC↔ss
, as well as

between RDTMC and RDTMC↔ss
, can be obtained using the following corre-

sponding transition functions, defined by analogy with those already introduced:
PM∗(K, K̃), based on PM∗(s, s̃), then PM(K, K̃), based on PM(s, s̃), as well

as PM⋄(K, K̃), based on PM⋄(s, s̃) (all that to be proved below).
The relations between SMC and RDTMC, as well as between SMC↔ss

and RDTMC↔ss
, can be obtained using the following corresponding transi-

tion functions: PM⋄(s, s̃), based on PM∗(s, s̃), through (PM⋄)∗(s, s̃), as well

as PM⋄(K, K̃), based on PM∗(K, K̃), through (PM⋄)∗(K, K̃).

TS SMC

DTMC RDTMC

TS↔ss
SMC↔ss

DTMC↔ss
RDTMC↔ss

✻ ✻

✻ ✻✲

✲

✲

✲

�
�✒

�
�✒

�
�✒

�
�✒

Fig. 11. The cube of interrelations for the standard and quotient transition systems
and Markov chains of the process expressions

In Figure 11, the relation (arrow) between DTMC and DTMC↔ss
is ob-

tained using the transition function PM(K, K̃), based on PM(s, s̃). Let G be a

40 Igor V. Tarasyuk

dynamic expression. We shall prove that the (quotient) TPM P↔ss
for

DTMC↔ss
(G), (forwardly) constructed by quotienting (by ↔ss) TS(G), fol-

lowed by extracting DTMC↔ss
(G) from TS↔ss

(G), coincides with the TPM
(P)↔ss

, (reversely) constructed by extracting DTMC(G) from TS(G), followed
by quotientingDTMC(G). The next proposition relates those quotient extracted
TPM (P)↔ss

and extracted quotient TPM P↔ss
.

Proposition 7. Let G be a dynamic expression, P↔ss
be the TPM for

DTMC↔ss
(G) and (P)↔ss

results from quotienting (by ↔ss) the TPM P for
DTMC(G). Then

(P)↔ss
= P↔ss

.

Proof. Let K, K̃ ∈ DR(G)/Rss(G) and s ∈ K.

In DTMC↔ss
(G), we have

∑
A∈NL

fin
PMA(K, K̃) =

∑
A∈NL

fin
PMA(s, K̃) =∑

A∈NL
fin

∑
{Υ |∃s̃∈K̃ s

Υ
→s̃, L(Υ)=A}

PT (Υ, s) =
∑

{Υ |∃s̃∈K̃ s
Υ
→s̃}

PT (Υ, s) =

PM(s, K̃) = PM(K, K̃).
In the quotient of DTMC(G), we have

∑
s̃∈K̃ PM(s, s̃) =∑

s̃∈K̃

∑
{Υ |s

Υ
→s̃}

PT (Υ, s)=
∑

{Υ |∃s̃∈K̃ s
Υ
→s̃}

PT (Υ, s)=PM(s, K̃)=PM(K, K̃).

Thus, (P)↔ss
= P↔ss

. ⊓⊔

Hence, the quotienting and extraction are permutable for transition systems
of the process expressions. Applying extraction before the quotienting is useful
to start from the level of Markov chains in the proofs.

Example 14. Let F be from Example 4. The TPMs for DTMC(F) and
DTMC↔ss

(F) are

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 θ 0 0 1− θ



, P↔ss

=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The TPM for the quotient of DTMC(F) is

(P)↔ss
=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

Then it is clear that

(P)↔ss
= P↔ss

.

Performance preserving equivalence for stochastic process algebra dtsdPBC 41

In Figure 11, the relation (depicted by arrow) between SMC and SMC↔ss

is obtained using the transition function PM∗(K, K̃), based on PM∗(s, s̃). Let
G be a dynamic expression. We shall prove that the (quotient) TPM P∗

↔ss
for

EDTMC↔ss
(G), (forwardly) constructed by quotienting (by ↔ss) DTMC(G),

followed by embedding EDTMC↔ss
(G) into SMC↔ss

(G), coincides with the
(finally) embedded TPM (P∗)∗↔ss

, (reversely) constructed by embedding

EDTMC(G) into SMC(G), followed by quotienting EDTMC(G), and final
embedding a new EDTMC EDTMC′(G) into the quotient of EDTMC(G).
The final embedding in the reverse construction is needed, since new self-loops
may arise after quotienting EDTMC(G), i.e. it may become not an EDTMC,
but a DTMC featuring self-loops with probability less than 1. Note that for
K ∈ DR(G)/Rss(G) and s ∈ K, we have PM∗(K, K̃) = SL↔ss

(K)PM(K, K̃) =

SL↔ss
(K)PM(s, K̃) in EDTMC↔ss

(G). This corresponds to a different ex-
pression

∑
s̃∈K̃ PM

∗(s, s̃) =
∑
s̃∈K̃ SL(s)PM(s, s̃) = SL(s)

∑
s̃∈K̃ PM(s, s̃) =

SL(s)PM(s, K̃) in the quotient of EDTMC(G). In particular, SL↔ss
(K) >

SL(s) when PM(s,K\{s}) > 0, which is the reason for a new self-loop associated
with s in the quotient of EDTMC(G). The next proposition relates those finally
embedded quotient embedded TPM (P∗)∗↔ss

(the TPM for EDTMC′(G)) and
embedded quotient TPM P∗

↔ss
.

Proposition 8. Let G be a dynamic expression, P∗
↔ss

be the TPM for

EDTMC↔ss
(G) and (P∗)∗↔ss

results from quotienting (by ↔ss) and final

embedding the TPM P∗ for EDTMC(G). Then

(P∗)∗↔ss
= P∗

↔ss
.

Proof. See Appendix A.1. ⊓⊔

Thus, the quotienting before embedding is more optimal computationally for
DTMCs of the process expressions.

By Proposition 8, EDTMC′(G) = EDTMC↔ss
(G). The sojourn time in

every K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter
1

SL(s)SL′(s,K) =
1

SL↔ss
(K) , where SL

′(s,K) = 1
1−SL(s)PM(s,K\{s}) , while the so-

journ time in every K∈DRV (G)/Rss(G) is equal to 0. Here SL′(s,K) is the
self-loops abstraction factor in the equivalence class K with respect to the state
s ∈ K for the quotient of EDTMC(G). Hence, SMC′(G)=SMC↔ss

(G), where

SMC′(G) is the SMC with the EDTMC EDTMC′(G), such that 1
SL(s)SL′(s,K)

is the geometrical distribution parameter of the sojourn time in every K ∈
DRT (G)/Rss(G) while the sojourn time is zero in every K ∈ DRV (G)/Rss(G).

Example 15. Let F be from Example 4. The TPMs for EDTMC(F) and
EDTMC↔ss

(F) are

42 Igor V. Tarasyuk

P∗ =




0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0



, P∗

↔ss
=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

The TPMs for the quotient of EDTMC(F) and EDTMC of the quotient of
EDTMC(F) (EDTMC′(F)), are

(P∗)↔ss
=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , (P∗)∗↔ss

=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

Then it is clear that

(P∗)∗↔ss
= P∗

↔ss
.

Let G be a dynamic expression. We now construct the quotient (by ↔ss) of
the TPM for DTMC(G) using special collector and distributor matrices. Let
DR(G) = {s1, . . . , sn} and DR(G)/Rss(G) = {K1, . . . ,Kl}.

The elements (P↔ss
)rs (1 ≤ r, s ≤ l) of the TPM P↔ss

for DTMC↔ss
(G)

are defined as

(P↔ss
)rs =

{
PM(Kr,Ks), Kr → Ks;
0, otherwise.

Like it has been done for strong performance bisimulation on labeled CTSPNs
in [31], the l× l TPM P↔ss

for DTMC↔ss
(G) can be constructed from the n×n

TPM P for DTMC(G) using the n × l collector matrix V for the largest step
stochastic autobisimulation Rss(G) on G and the l×n distributor matrix W for
V. Then W should be a non-negative matrix (i.e. all its elements must be non-
negative) with the elements of each its row summed to one, such that WV = I,
where I is the identity matrix of order l, i.e. W is a left-inverse matrix for V. It
is known that for each collector matrix there is at least one distributor matrix,
in particular, the matrix obtained by transposing V and subsequent normalizing
its rows, to guarantee that the elements of each row of the transposed matrix
are summed to one. We now present the formal definitions.

The elements Vir (1 ≤ i ≤ n, 1 ≤ r ≤ l) of the collector matrix V for the
largest step stochastic autobisimulation Rss(G) on G are defined as

Vir =

{
1, si ∈ Kr;
0, otherwise.

Thus, all the elements of V are non-negative, as required. The row elements
of V are summed to one, since for each si (1 ≤ i ≤ n) there exists exactly one
Kr (1 ≤ r ≤ l) such that si ∈ Kr. Hence,

Performance preserving equivalence for stochastic process algebra dtsdPBC 43

V1T = 1T ,

where 1 on the left side is the row vector of l values 1 while 1 on the right side
is the row vector of n values 1.

The distributor matrix W for the collector matrix V is defined as

W = (Diag(VT1T))−1VT ,

where 1 is the row vector of n values 1. One can check that WV = I, where I
is the identity matrix of order l.

The elements (PV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix PV are

(PV)is =
n∑

j=1

PijVjs =
∑

{j|1≤j≤n, sj∈Ks}

PM(si, sj) = PM(si,Ks).

For each si (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that
si ∈ Kr. For all si ∈ Kr we have PM(Kr,Ks) = PM(si,Ks) (1 ≤ i ≤ n, 1 ≤
r, s ≤ l). Then the elements (VP↔ss

)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix
VP↔ss

are

(VP↔ss
)is =

l∑

r=1

Vir(P↔ss
)rs =

∑

{r|1≤r≤l, si∈Kr}

PM(Kr,Ks) = PM(si,Ks).

Therefore, we have

PV = VP↔ss
, WPV = P↔ss

.

Example 16. Let F be from Example 4. The TPMs for DTMC(F) and
DTMC↔ss

(F) are

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 θ 0 0 1− θ



, P↔ss

=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The collector matrix V for Rss(F) and the distributor matrix W for V are

V =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1



, W =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2


 .

Then it is easy to check that

44 Igor V. Tarasyuk

WPV = P↔ss
.

In Figure 11, the relation (arrow) between RDTMC and RDTMC↔ss
is

obtained using the transition function PM⋄(K, K̃), based on PM⋄(s, s̃). Let G
be a dynamic expression. We shall prove that the TPM P⋄

↔ss
, (forwardly) con-

structed by quotienting (by↔ss) DTMC(G), followed by reduction (eliminating
vanishing states) ofDTMC↔ss

(G), coincides with the TPM (P⋄)↔ss
, (reversely)

constructed by reduction of DTMC(G), followed by quotienting RDTMC(G).
The next proposition relates those quotient reduced TPM (P⋄)↔ss

and reduced
quotient TPM P⋄

↔ss
.

Proposition 9. Let G be a dynamic expression, P⋄
↔ss

be the TPM for

RDTMC↔ss
(G) and (P⋄)↔ss

results from quotienting (by ↔ss) the TPM P⋄

for RDTMC(G). Then

(P⋄)↔ss
= P⋄

↔ss
.

Proof. See Appendix A.2. ⊓⊔

Thus, the quotienting and reduction are permutable for DTMCs of the pro-
cess expressions. This may simplify the performance evaluation when eliminating
vanishing states makes the subsequent quotienting more efficient. The reverse
construction (reduction first) is particularly preferable in case of small equiv-
alence classes of vanishing states when quotienting does not merge many of
them before eliminating.

Example 17. Let F be from Example 4. The reordered TPMs for DTMC(F)
and DTMC↔ss

(F) are

Pr =




0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 θ 0 1− θ



, Pr↔ss

=




0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ


 .

The reordered collector matrix Vr for Rss(F) and the reordered distributor
matrix Wr for Vr are

Vr =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1



, Wr =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2


 .

Then it is easy to check that

WrPrVr = Pr↔ss
.

Performance preserving equivalence for stochastic process algebra dtsdPBC 45

Example 18. Let F be from Example 4. The TPMs for RDTMC(F) and
RDTMC↔ss

(F) are

P⋄ =




1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 θ 0 1− θ


 , P⋄

↔ss
=




1− ρ ρ 0
0 0 1
0 θ 1− θ


 .

The result of the decomposing the reordered collector matrix Vr for Rss(F)
and the reordered distributor matrix Wr for Vr are the matrices

VC = 1, VF =




1 0 0
0 1 0
0 0 1
0 0 1


 , WC = 1, WF =




1 0 0 0
0 1 0 0
0 0 1

2
1
2


 .

Then it is easy to check that

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

In [30], the ordinary, exact and strict lumpability relations on finite DTMCs
are explored. It is investigated which properties of transient and stationary be-
haviour of DTMCs are preserved by aggregation with respect to the three men-
tioned kinds of lumping and their approximate “nearly” versions. It is proved
that irreducibility is preserved by aggregation with respect to any partition
(or equivalence relation) on the states of DTMCs. Since only finite irreducible
DTMCs are considered (with a finite number of states), these all are positive
recurrent. Aggregation can only decrease the number of states, hence, the ag-
gregated DTMCs are also finite and positive recurrence is preserved by every
aggregation. It is known [76, 79, 52, 26, 93, 53, 77, 78] that irreducible and pos-
itive recurrent DTMCs have a single stationary PMF. Note that the original
and aggregated DTMCs may be periodic, thus having a unique stationary dis-
tribution, but no steady-state (limiting) one. For example, it may happen that
the original DTMC is aperiodic while the aggregated DTMC is periodic due to
merging some states of the former. Thus, both finite irreducible DTMCs and
their arbitrary aggregates have a single stationary PMF. Then the relationship
between stationary probabilities of DTMCs and their aggregates with respect to
ordinary, exact and strict lumpability is established in [30]. In particular, it is
shown that for every DTMC aggregated by ordinary lumpability, the stationary
probability of each aggregate state is a sum of the stationary probabilities of all
its constituent states from the original DTMC. The information about individual
stationary probabilities of the original DTMC is lost after such a summation, but
in many cases, the stationary probabilities of the aggregated DTMC are enough
to calculate performance measures of the high-level model, from which the origi-
nal DTMC is extracted. As mentioned in [30], in some practical applications, the
aggregated DTMC can be extracted directly from the high-level model. Thus,
the aggregation techniques based on lumping are of practical importance, since

46 Igor V. Tarasyuk

they allow one to reduce the state space of the modeled systems, hence, the
computational costs for evaluating their performance.

Let G be a dynamic expression. By definition of ↔ss, the relation Rss(G)
on TS(G) induces ordinary lumping on SMC(G), i.e. if the states of TS(G)
are related by Rss(G) then the same states in SMC(G) are related by ordinary
lumping. The quotient (maximal aggregate) of SMC(G) by such an induced ordi-
nary lumping is SMC↔ss

(G). Since we consider only finite SMCs, irreducibility
of SMC(G) will imply irreducibility of SMC↔ss

(G) and they both are pos-
itive recurrent. Then a unique quotient stationary PMF of SMC↔ss

(G) can
be calculated from a unique original stationary PMF of SMC(G) by summing
some elements of the latter, as described in [30]. Similar arguments demonstrate
that the same results hold for DTMC(G) and DTMC↔ss

(G), as well as for
RDTMC(G) and RDTMC↔ss

(G).

6 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the
behaviour of stochastic processes in their steady states. We shall consider only
formulas specifying stochastic processes with infinite behavior, i.e. expressions
with the iteration operator. Note that the iteration operator does not guarantee
infiniteness of behaviour, since there can exist a deadlock (blocking) within the
body (the second argument) of iteration when the corresponding subprocess
does not reach its final state by some reasons. In particular, if the body of
iteration contains the Stop expression then the iteration will be “broken”. On
the other hand, the iteration body can be left after a finite number of its repeated
executions and then the iteration termination is started. To avoid executing any
activities after the iteration body, we take Stop as the termination argument of
iteration.

Like in the framework of SMCs, in LDTSDPNs the most common systems
for performance analysis are ergodic (irreducible, positive recurrent and aperi-
odic) ones. For ergodic LDTSDPNs, the steady-state marking probabilities exist
and can be determined. In [69, 70], the following sufficient (but not necessary)
conditions for ergodicity of DTSPNs are stated: liveness (for each transition and
any reachable marking there exists a sequence of markings from it leading to
the marking enabling that transition), boundedness (for any reachable marking
the number of tokens in every place is not greater than some fixed number) and
nondeterminism (the transition probabilities are strictly less than 1). However,
it has been shown in [7] that even live, safe and nondeterministic DTSPNs (as
well as live and safe CTSPNs and GSPNs) may be non-ergodic.

We consider only the process expressions such that their underlying SMCs
contain exactly one closed communication class of states, and this class should
be ergodic to ensure uniqueness of the stationary distribution, which is also the
limiting one. The states not belonging to that class do not disturb the uniqueness,
since the closed communication class is single, hence, they all are transient. Then,
for each transient state, the steady-state probability to be in it is zero while the

Performance preserving equivalence for stochastic process algebra dtsdPBC 47

steady-state probability to enter into the ergodic class starting from that state
is equal to one.

6.1 Steady state, residence time and equivalences

The following proposition demonstrates that, for two dynamic expressions re-
lated by ↔ss, the steady-state probabilities to enter into an equivalence class
coincide. Therefore, the mean recurrence time for an equivalence class is the
same for both expressions.

Proposition 10. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be

the steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′).
Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Proof. The standard proof is analogous to that of Proposition 6 from [91]. For
the alternative proof, see Appendix A.3. ⊓⊔

Let G be a dynamic expression and ϕ be the steady-state PMF for SMC(G),
ϕ↔ss

be the steady-state PMF for SMC↔ss
(G). By Proposition 10 (modified

for RLss(G)), we have ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K) =

∑

s∈K

ϕ(s).

Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of ϕ↔ss
for K is

the sum of all values of ϕ corresponding to the states from K.
Let V be the collector matrix for Rss(G). One can see that

ϕV = ϕ↔ss
.

Hence, using SMC↔ss
(G) instead of SMC(G) may simplify the analytical solu-

tion, since we may have less states, but building the TPM for EDTMC↔ss
(G),

denoted by P∗
↔ss

, also requires some efforts, including determining Rss(G) and
calculating the probabilities to move from one equivalence class to other. The
behaviour of EDTMC↔ss

(G) may stabilize quicker than that of EDTMC(G)
(if each of them has a single steady state), since P∗

↔ss
is generally denser matrix

than P∗ (the TPM for EDTMC(G)), since the former matrix is usually smaller
and the transitions between the equivalence classes “include” all the transitions
between the states belonging to these equivalence classes.

By Proposition 10,↔ss preserves the quantitative properties of the stationary
behaviour (the level of SMCs). We now intend to demonstrate that the qualita-
tive properties of the stationary behaviour based on the multiaction labels are
preserved as well (the level of transition systems).

48 Igor V. Tarasyuk

Definition 22. A derived step trace of a dynamic expression G is a chain Σ =

A1 · · ·An ∈ (NL
fin)

∗, where ∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · ·
Υn→ sn, L(Υi) = Ai (1 ≤

i ≤ n). Then the probability to execute the derived step trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···
Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏

i=1

PT (Υi, si−1).

The following theorem demonstrates that, for two dynamic expressions re-
lated by ↔ss, the steady-state probabilities to enter into an equivalence class
and start a derived step trace from it coincide.

Theorem 3. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the

steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′) and
Σ be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).

Proof. The proof is analogous to that of Theorem 4 from [91]. ⊓⊔

Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G),
ϕ↔ss

be the steady-state PMF for SMC↔ss
(G) and Σ be a derived step trace

of G. By Theorem 3 (modified for RLss(G)), we get ∀K∈DR(G)/Rss(G)

ϕ↔ss
(K)PT (Σ,K)=

∑

s∈K

ϕ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).
LetDR(G) = {s1, . . . , sn} andDR(G)/Rss(G) = {K1, . . . ,Kl} whileV be the

collector matrix for Rss(G) and W be the distributor matrix for V. We denote
PT (Σ) = (PT (Σ, s1), . . . , PT (Σ, sn)) and PT↔ss

(Σ) = (PT (Σ,K1), . . . ,
PT (Σ,Kl)). One can see that Diag(PT (Σ))V = VDiag(PT↔ss

(Σ)) and
WDiag(PT (Σ))V = Diag(PT↔ss

(Σ)). Then we have

ϕDiag(PT (Σ))V = ϕVDiag(PT↔ss
(Σ)) = ϕ↔ss

Diag(PT↔ss
(Σ)).

We now present a result that does not concern the steady-state probabilities,
but it reveals two very important properties of residence time in the equivalence
classes. The following proposition demonstrates that, for two dynamic expres-
sions related by ↔ss, the sojourn time averages in an equivalence class coincide,
as well as the sojourn time variances in it.

Proposition 11. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).

Performance preserving equivalence for stochastic process algebra dtsdPBC 49

Proof. The proof is analogous to that of Proposition 7 from [91]. ⊓⊔

Example 19. Let F be from Example 6. Consider the equivalence class (with
respect to Rss(F)) K4 = {s4, s5}. Then the value of ϕ↔ss

corresponding to K4

is the sum of all values of ϕ corresponding to the states from K4 : ϕ↔ss
(K4) =

1
1+θ = l

(l+m)(1+θ) +
m

(l+m)(1+θ) = ϕ(s4) + ϕ(s5) =
∑

s∈K4
ϕ(s).

Let Σ = {{d}}. We have ϕ↔ss
(K4)PT (Σ,K4) =

1
1+θ · θ =

θ
1+θ = l

(l+m)(1+θ) ·

θ + m
(l+m)(1+θ) · θ = ϕ(s4)PT ({({d}, θ)1}, s4) + ϕ(s5)PT ({({d}, θ)2}, s5) =

ϕ(s4)PT (Σ, s4)+ϕ(s5)PT (Σ, s5) =
∑

s∈K4
ϕ(s)PT (Σ, s), where PT (Σ,K4) =

PT (Σ, s4) = PT (Σ, s5) = θ.
The sojourn time average in K4 is SJ↔ss

(K4)=
1

1−PM(K4,K4)
= 1

1−(1−θ) =
1
θ =

1
1−(1−θ) =

1
1−PM(s4,s4)

= 1
1−PM(s5,s5)

= 1
1−PM({s4,s5},{s4,s5})

=SJ↔ss
({s4, s5}).

The sojourn time variance in K4 is V AR↔ss
(K4) =

PM(K4,K4)
(1−PM(K4,K4))2

=
1−θ

(1−(1−θ))2 = 1−θ
θ2 = 1−θ

(1−(1−θ))2 = PM(s4,s4)
(1−PM(s4,s4))2

= PM(s5,s5)
(1−PM(s5,s5))2

=
PM({s4,s5}

(1−PM({s4,s5},{s4,s5}))2
= V AR↔ss

({s4, s5}).

6.2 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter
into a set of similar states or, after coming in it, to start a derived step trace from
this set. Some of the indices are calculated using the average or the variance of
sojourn time in a set of similar states. The similarity of states is captured by an
equivalence relation, hence, the sets are the equivalence classes. Proposition 10,
Theorem 3 and Proposition 11 guarantee coincidence of the mentioned indices for
the expressions related by ↔ss. Thus, ↔ss (hence, all the stronger equivalences
we have considered) preserves performance of stochastic systems modeled by
expressions of dtsdPBC.

It is easier to evaluate performance using an SMC with less states, since in
this case the size of the transition probability matrix will be smaller, and we shall
solve systems of less equations to calculate steady-state probabilities. The rea-
soning above validates the next method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsdPBC.
2. The transition system of the expression is constructed.
3. After treating the transition system for self-similarity, a step stochastic auto-

bisimulation equivalence for the expression is determined.
4. The quotient underlying SMC is derived from the quotient transition system.
5. Stationary probabilities and performance indices are obtained from the SMC.

The limitation of the method above is its applicability only to the expressions
such that their underlying SMCs contain exactly one closed communication class
of states, and this class should also be ergodic to ensure uniqueness of the sta-
tionary distribution. If an SMC contains several closed communication classes
of states that are all ergodic then several stationary distributions may exist,
which depend on the initial PMF. There is an analytical method to determine

50 Igor V. Tarasyuk

stationary probabilities for SMCs of this kind as well [52]. The underlying SMC
of every process expression has only one initial PMF (that at the time moment
0), hence, the stationary distribution will be unique in this case too. The gen-
eral steady-state probabilities are then calculated as the sum of the stationary
probabilities of all the ergodic classes of states, weighted by the probabilities to
enter into these classes, starting from the initial state and passing through some
transient states. In addition, it is worth applying the method only to the systems
with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quo-
tient underlying SMC, using an analogue of the deterministic barrier partitioning
method described in [42] for semi-Markov processes (SMPs), which allows one to
perform quicker the first passage-time analysis. Another option is the method of
stochastic state classes proposed in [48, 49] for generalized SMPs (GSMPs) reduc-
tion, which allows one to simplify transient performance analysis (the analysis
based on the transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 5 allow us to simplify the steps
4 and 5 of the method above by constructing the reduced quotient DTMC (in-
stead of the quotient underlying SMC) from the quotient transition system, fol-
lowed by calculating the stationary probabilities of the quotient underlying SMC
using that DTMC, and then obtaining the performance indices. In more detail,
the quotient transition system TS↔ss

(E) provides the information both about

the probabilities to move between the equivalence classes of states PM(K, K̃)
and about the equivalence classes of vanishing states DRV (E)/Rss(E). That in-
formation is used to construct the reordered quotient TPM Pr↔ss

, from which

the TPM P⋄
↔ss

for RDTMC↔ss
(E) is further obtained.

We first merge the equivalent states in transition systems and only then
eliminate the vanishing states in Markov chains. The reason is that transition
systems, being a higher-level formalism than Markov chains, describe both func-
tional (qualitative) and performance (quantitative) aspects of behaviour while
Markov chains represent only performance ones. Thus, eliminating vanishing
states first would destroy the functional behaviour (which is respected by the
equivalence used for quotienting), since the steps with different multiaction parts
may lead to or start from different vanishing states.

Figure 12 presents the main stages of the standard and alternative equiva-
lence-based simplification of performance evaluation described above.

E TS(E) TS↔ss
(E) SMC↔ss

(E)

RDTMC↔ss
(E)

ϕ↔ss

ψ⋄
↔ss

✲ ✲ ✲

✲
✻❆

❆
❆❯

✲ Performance✲

Fig. 12. Equivalence-based simplification of performance evaluation

Performance preserving equivalence for stochastic process algebra dtsdPBC 51

7 Conclusion

In this paper, we have considered dtsdPBC, an extension with discrete stochastic
and deterministic time of Petri box calculus (PBC) [21, 23, 22]. Stochastic pro-
cess algebra dtsdPBC has a parallel step operational semantics, based on labeled
probabilistic transition systems, and a Petri net denotational semantics in terms
of dtsd-boxes, a special subclass of LDTSDPNs [85]. Step stochastic bisimulation
equivalence of the process expressions has been used to reduce their transition
systems and Markov chains (SMCs, DTMCs and RDTMCs) with the quotient-
ing. We have established isomorphism between the quotient transition systems
of the process expressions and quotient reachability graphs of the corresponding
dtsd-boxes, as well as between the quotient SMCs of the process expressions and
quotient SMCs of the corresponding dtsd-boxes. We have studied an effect of the
quotienting to extraction, embedding and reduction, in terms of the transition
probability matrices (TPMs) of the quotient DTMCs, EDTMCs and RDTMCs.
We have demonstrated that for DTMCs of the process expressions, the quoti-
enting is permutable (commute) with both extraction and reduction, whereas
an additional embedding of the quotient embedded DTMC is needed to coincide
with the embedded quotient DTMC. Thus, making extraction before the quotien-
ting permits to start reasoning from the Markov chain level. Applying reduction
before the quotienting simplifies quantitative analysis with many non-equivalent
vanishing states. The quotienting before embedding diminishes computations.

We have proved that the mentioned equivalence guarantees identity of the
steady-state probabilities, sojourn time averages and variances in the equivalence
classes. Hence, the equivalence preserves the stationary performance measures
and can be used for minimization of the state space. Therefore, quotienting
by that performance preserving equivalence makes easier both the qualitative
(functional) and quantitative (performance) analysis within dtsdPBC. Thus, we
have outlined in dtsdPBC a novel method of modeling (system specification by
a process expression and construction of its transition system), equivalence re-
duction (quotienting the transition system and possible elimination of vanishing
states in the derived quotient SMC or DTMC) and simplified performance evalu-
ation (calculation of the performance indices using the quotient SMC, DTMC or
RDTMC). The advantage of the dtsdPBC framework is that the semantic par-
allelism level exhibited by the transition systems is maintained in the extracted
performance models (SMCs, DTMCs and RDTMCs) through the state changes
corresponding to the simultaneous executions.

Our method can be suitably applied to the stochastically and determinis-
tically timed concurrent systems that adapt a discrete time concept. The exam-
ples of such systems are many industrial, manufacturing, queueing, computing
and network systems with fixed durations of the typical activities and stochastic
durations of the randomly occurring activities. Further examples include busi-
ness processes, neural and transportation networks, computer and communica-
tion systems and timed web services [94] with discrete time, as well as highly
distributed or massively parallel systems, such as genetic regulatory and cellular
signalling networks in biology [37, 25, 6]. In [40], biological networks were jointly

52 Igor V. Tarasyuk

modeled by (standard, qualitative) PNs, CTSPNs and continuous PNs (CPNs),
to demonstrate their complementarity that makes necessary adding determin-
istic time to stochastic models, as well as combining stochastic and continuous
(deterministic) aspects into one model (such as stochastic rates of reactions and
continuous amounts of species).

In future, we plan to construct the case studies demonstrating expressiveness
of the calculus and application of the functional analysis and performance eval-
uation, both simplified using quotienting by step stochastic bisimulation. Future
work could also consist in constructing a congruence relation for dtsdPBC, i.e.
the equivalence that withstands application of all operations of the algebra. The
first possible candidate is a stronger version of the equivalence with respect to
transition systems, with two extra transitions skip and redo, like in sPBC [57].
Moreover, recursion operation could be added to dtsdPBC to increase specifica-
tion power of the algebra.

A Proofs

A.1 Proof of Proposition 8

Let K, K̃ ∈ DR(G)/Rss(G) and s ∈ K. The EDTMC for the quotient of

EDTMC(G) is denoted by EDTMC′(G) and has the probabilities PM ′(K, K̃)

to change from K to K̃.

– Let PM(s, s) + PM(s,K \ {s}) = PM(s,K) < 1 and PM(s, s), PM(s,K \
{s}) > 0, i.e. s,K are non-absorbing and there exist self-loops associated
with s in DTMC(G) and with K in the quotient of EDTMC(G).

In EDTMC↔ss
(G), we have PM∗(K, K̃) = SL↔ss

(K)PM(K, K̃) =

PM(K,K̃)
1−PM(K,K) =

PM(s,K̃)
1−PM(s,K) =

PM(s,K̃)
1−PM(s,s)−PM(s,K\{s}) =

PM(s,K̃)
1−PM(s,s)

1−PM(s,K\{s})
1−PM(s,s)

=

SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) . Then SL↔ss

(K)= SL(s)
1−SL(s)PM(s,K\{s}) =SL(s)SL

′(s,K),

where SL′(s,K) = 1
1−SL(s)PM(s,K\{s}) is the self-loops abstraction factor in

the equivalence class K with respect to the state s ∈ K for the quotient of
EDTMC(G).

In EDTMC′(G), we have PM ′(K, K̃) =
∑

s̃∈K̃ PM
∗(s,s̃)

1−
∑

s′∈K\{s} PM
∗(s,s′) =∑

s̃∈K̃ SL(s)PM(s,s̃)

1−
∑

s′∈K\{s} SL(s)PM(s,s′) =
SL(s)

∑
s̃∈K̃ PM(s,s̃)

1−SL(s)
∑

s′∈K\{s} PM(s,s′) =

SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) = PM∗(K, K̃).

The other three cases (no self-loops associated with s in DTMC(G), with K
in the quotient of EDTMC(G), or with both) are treated analogously, by
replacing PM(s, s) or/and PM(s,K \ {s}) with zeros.

– Let PM(s, s) + PM(s,K \ {s}) = PM(s,K) = 1 and PM(s, s), PM(s,K \
{s}) > 0, i.e. K is absorbing in DTMC↔ss

(G) and there exist self-loops
associated with s in DTMC(G) and with K in the quotient of EDTMC(G).
In EDTMC↔ss

(G), we have PM∗(K,K) = 1 by definition of the EDTMC,
since PM(K,K) = PM(s,K) = 1.

Performance preserving equivalence for stochastic process algebra dtsdPBC 53

In the quotient of EDTMC(G), the probability of a self-loop associated with
K is

∑
s′∈K\{s} PM

∗(s, s′) =
∑

s′∈K\{s} SL(s)PM(s, s′) =

SL(s)
∑
s′∈K\{s} PM(s, s′)=SL(s)PM(s,K \ {s})=SL(s)(1− PM(s, s))=

1−PM(s,s)
1−PM(s,s) = 1. In EDTMC′(G), we have PM ′(K, K̃) = 1 = PM∗(K,K)

by definition of the EDTMC, since in the quotient of EDTMC(G), the
probability of a self-loop associated with K is 1.
The other two cases (no self-loops associated with s in DTMC(G) or with
K in the quotient of EDTMC(G)) are treated analogously, by replacing
PM(s, s) with zero or taking K = {s} when PM(s,K \ {s}) = 0.

Thus, (P∗)∗↔ss
= P∗

↔ss
and EDTMC′(G) = EDTMC↔ss

(G). ⊓⊔

A.2 Proof of Proposition 9

Let Pr be the reordered (by moving vanishing states to the first positions) TPM
for DTMC(G). Like in [86], we reorder the states from DR(G) so that the first
rows and columns of Pr will correspond to the states from DRV (G) and the
last ones will correspond to the states from DRT (G). Let |DR(G)| = n and
|DRT (G)| = m. Then the reordered TPM for DTMC(G) can be decomposed as

Pr =

(
C D
E F

)
.

The elements of the (n−m)×(n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D
are the probabilities to move from vanishing to tangible states. The elements of
the m × (n − m) submatrix E are the probabilities to move from tangible to
vanishing states, and those of the m ×m submatrix F are the probabilities to
move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞
k=0 C

k are the probabilities to move
from vanishing to vanishing states in any number of state changes, without
traversal of tangible states.

By the note after Proposition 3, Rss(G) ⊆ (DRT (G))
2 ⊎ (DRV (G))

2. Hence,
∀K ∈ DR(G)/Rss(G), all states from K are tangible, when K ∈ DRT (G)/Rss(G),
or all of them are vanishing, when K ∈ DRV (G)/R.

Let Vr be the reordered (by moving vanishing states and their equivalence
classes to the first positions) collector matrix for Rss(F) and Wr be the (accord-
ingly) reordered distributor matrix for Vr. We reorder the states from DR(G)
and the equivalence classes from DR(G)/Rss(G) as follows. The first rows of Vr

will correspond to the states from DRV (G) and the first columns of Vr will cor-
respond to the equivalence classes from DRV (G)/Rss(G), whereas the last rows
of Vr will correspond to the states from DRT (G) and the last columns of Vr

54 Igor V. Tarasyuk

will correspond to the equivalence classes from DRT (G)/Rss(G). The first rows
of Wr will correspond to the equivalence classes from DRV (G)/Rss(G) and the
first columns of Wr will correspond to the states from DRV (G), whereas the
last rows of Wr will correspond to the equivalence classes from DRT (G)/Rss(G)

and the last columns of Wr will correspond to the states from DRT (G).
Let |DR(G)/Rss(G)| = l and |DRT (G)/Rss(G)| = k. Note that tangible (va-

nishing) states can only belong to the equivalence classes of tangible (vanishing)
states. The reordered collector and distributor matrices can be decomposed as

Vr =

(
VC 0
0 VF

)
, Wr =

(
WC 0
0 WF

)
,

where 0 are the matrices consisting only of zeros, all those matrices of the ap-
propriate sizes. The elements of the (n − m) × (l − k) submatrix VC are the
probabilities to move from vanishing states to the equivalence classes of vanishing
states, and those of the m× k submatrix VF are the probabilities to move from
tangible states to the equivalence classes of tangible states. The elements of the
(l−k)×(n−m) submatrixWC are the probabilities to move from the equivalence
classes of vanishing states to vanishing states, and those of the k×m submatrix
WF are the probabilities to move from the equivalence classes of tangible states
to tangible states.

We have

WrVr =

(
WCVC 0

0 WFVF

)
= I,

hence, WCVC = I and WFVF = I.
Since tangible and vanishing states always belong to the equivalence classes

of the same kind, the quotienting (by ↔ss) and reordering (by moving vanishing
states and their equivalence classes to the first positions) are permutable. The
quotiented reordered TPM may only differ from the reordered quotiented TPM
up to the order of the equivalence classes of tangible states and the order of the
equivalence classes of vanishing states. To avoid such a difference, we rearrange
the equivalence classes of the same kind in increasing order of the smallest indices
of the states from them while keeping the equivalence classes of vanishing states
at the first positions.

Then PrVr = VrPr↔ss
and Pr↔ss

= WrPrVr. We have

PrVr =

(
C D
E F

)(
VC 0
0 VF

)
=

(
CVC DVF

EVC FVF

)
,

VrPr↔ss
=

(
VC 0
0 VF

)(
C↔ss

D↔ss

E↔ss
F↔ss

)
=

(
VCC↔ss

VCD↔ss

VFE↔ss
VFF↔ss

)
.

Hence, CVC = VCC↔ss
, DVF = VCD↔ss

, EVC = VFE↔ss
, FVF =

VFF↔ss
.

Let us show that GVC=VCG↔ss
. Since G=

∑∞
k=0 C

k, it is sufficient to

prove
(∑l

k=0 C
k
)
VC =VC

∑l
k=0 C

k
↔ss

by induction on l∈N and then take a

limit l→∞.

Performance preserving equivalence for stochastic process algebra dtsdPBC 55

– l = 0

We have
(∑0

k=0 C
k
)
VC = IVC = VC = VCI = VC

∑0
k=0 C

k
↔ss

.

– l → l + 1

Suppose that
(∑l

k=0 C
k
)
VC = VC

∑l
k=0 C

k
↔ss

. Then we have
(∑l+1

k=0 C
k
)
VC =

(
I+C

∑l
k=0 C

k
)
VC = VC +CVC

∑l
k=0 C

k
↔ss

=

VC +VCC↔ss

∑l
k=0 C

k
↔ss

=VC

(
I+C↔ss

∑l
k=0 C

k
↔ss

)
=VC

∑l+1
k=0 C

k
↔ss

.

Next,P⋄VF = (F+EGD)VF =FVF+EGDVF =VFF↔ss
+EGVCD↔ss

=
VFF↔ss

+ EVCG↔ss
D↔ss

= VFF↔ss
+ VFE↔ss

G↔ss
D↔ss

= VF (F↔ss
+

E↔ss
G↔ss

D↔ss
)=VFP

⋄
↔ss

. After left-multiplying by WF the resulting equal-
ity P⋄VF = VFP

⋄
↔ss

, we finally get

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

⊓⊔

A.3 Proof of Proposition 10

By Proposition 3, (DR(G) ∪DR(G′))/R = ((DRT (G) ∪DRT (G′))/R) ⊎
((DRV (G)∪DRV (G′))/R). Hence, ∀H ∈ (DR(G)∪DR(G′))/R, all states from
H are tangible, when H ∈ (DRT (G)∪DRT (G′))/R, or all of them are vanishing,
when H ∈ (DRV (G) ∪DRV (G′))/R.

By definition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G), ϕ(s) = 0
and ∀s′ ∈ DRV (G

′), ϕ′(s′) = 0. Thus, ∀H ∈ (DRV (G) ∪DRV (G
′))/R,∑

s∈H∩DR(G) ϕ(s) =
∑
s∈H∩DRV (G) ϕ(s) = 0 =

∑
s′∈H∩DRV (G′) ϕ

′(s′) =∑
s′∈H∩DR(G′) ϕ

′(s′).

By Proposition 4 from [86], ∀s ∈ DRT (G), ϕ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃)

and

∀s′ ∈ DRT (G
′), ϕ′(s′) = ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′) , where ψ and ψ′ are the steady-state

PMFs for DTMC(G) and DTMC(G′), respectively. Thus, ∀H, H̃ ∈ (DRT (G)∪
DRT (G

′))/R,
∑

s∈H∩DR(G) ϕ(s) =
∑
s∈H∩DRT (G) ϕ(s) =∑

s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=

∑
s∈H∩DRT (G) ψ(s)∑

s̃∈DRT (G) ψ(s̃)
=

∑
s∈H∩DRT (G) ψ(s)∑

H̃

∑
s̃∈H̃∩DRT (G)

ψ(s̃)

and
∑

s′∈H∩DR(G′) ϕ
′(s′) =

∑
s′∈H∩DRT (G′) ϕ

′(s′) =
∑

s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′)

)
=

∑
s′∈H∩DRT (G′) ψ

′(s′)
∑

s̃′∈DRT (G′) ψ
′(s̃′) =

∑
s′∈H∩DRT (G′) ψ

′(s′)
∑

H̃

∑
s̃′∈H̃∩DRT (G′) ψ

′(s̃′) .

It remains to prove that ∀H ∈ (DRT (G)∪DRT (G′))/R,
∑
s∈H∩DRT (G) ψ(s)=∑

s′∈H∩DRT (G′) ψ
′(s′). Since (DR(G)∪DR(G′))/R=((DRT (G)∪DRT (G′))/R)⊎

((DRV (G)∪DRV (G
′))/R), the previous equality is a consequence of the follow-

ing: ∀H ∈ (DR(G) ∪DR(G′))/R,
∑

s∈H∩DR(G) ψ(s) =
∑

s′∈H∩DR(G′) ψ
′(s′).

Thus, we should prove that ∀H ∈ (DR(G)∪DR(G′))/R
∑

{i|si∈H∩DR(G)} ψi=∑
{j|s′j∈H∩DR(G′)} ψ

′
j .

56 Igor V. Tarasyuk

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the
linear equation system {

ψP = ψ
ψ1T = 1

.

Then, for all i (1 ≤ i ≤ n), we have

{∑n
j=1 Pjiψj = ψi∑n
j=1 ψj = 1

.

By definition of Pij (1 ≤ i, j ≤ n) we have

{∑n
j=1 PM(sj , si)ψj = ψi∑n
j=1 ψj = 1

.

Let H ∈ (DR(G) ∪ DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪

DR(G′))/R ∀A ∈ N
L
fin s1

A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =∑

{Υ |∃s̃1∈H̃ s1
Υ
→s̃1}

PT (Υ, s1) =
∑

A∈NL
fin

∑
{Υ |∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =

∑
A∈NL

fin
PMA(s1, H̃) =

∑
A∈NL

fin
PMA(s2, H̃) =∑

A∈NL
fin

∑
{Υ |∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ |∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) =

PM(s2, H̃). Since we have the previous equality for all s1, s2 ∈ H, we can denote

PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that transitions from the states of

DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G) PM(s, H̃) =

PM(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let H ∈ (DR(G) ∪DR(G′))/R. We sum the left and right parts of the first

equation from the system above for all i such that si ∈ H∩DR(G). The result is

∑

{i|si∈H∩DR(G)}

n∑

j=1

PM(sj , si)ψj =
∑

{i|si∈H∩DR(G)}

ψi.

Let us denote the aggregate steady-state PMF for DTMC(G) by ψH∩DR(G) =∑
{i|si∈H∩DR(G)} ψi. Then, for the left part of the equation above, we get∑
{i|si∈H∩DR(G)}

∑n
j=1 PM(sj , si)ψj =

∑n
j=1 ψj

∑
{i|si∈H∩DR(G)} PM(sj, si) =

∑n
j=1 PM(sj,H)ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(sj ,H)ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(H̃,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)

∑
{j|sj∈H̃∩DR(G)} ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)ψH̃∩DR(G).

For the left part of the second equation from the system above, we get∑n
j=1ψj=

∑
H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} ψj =∑

H̃∈(DR(G)∪DR(G′))/R
ψH̃∩DR(G).

Performance preserving equivalence for stochastic process algebra dtsdPBC 57

Thus, the aggregate linear equation system for DTMC(G) is

{∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G) = ψH∩DR(G)∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G) = 1
.

Let us denote the aggregate steady-state PMFs for DTMC(G′) by ψ′
H∩DR(G′) =∑

{j|s′j∈H∩DR(G′)} ψ
′
j . The aggregate linear equation system for DTMC(G′) is

{∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψ′
H̃∩DR(G′)

= ψ′
H∩DR(G′)∑

H̃∈(DR(G)∪DR(G′))/R
ψ′
H̃∩DR(G′)

= 1
.

Let (DR(G) ∪DR(G′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state
PMFs ψHk∩DR(G) and ψ

′
Hk∩DR(G′) (1 ≤ k ≤ l) satisfy the same aggregate system

of l + 1 linear equations with l independent equations and l unknowns. The
aggregate linear equation system has a unique solution, when a single aggregate
steady-state PMF exists. This is the case here, since in [86] we have demonstrated
that DTMC(G) has a single steady state iff SMC(G) has, and aggregation
preserves this property [30]. Hence, ψHk∩DR(G) = ψ′

Hk∩DR(G′) (1 ≤ k ≤ l). ⊓⊔

References

1. W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time
stochastic Petri nets, Statistica Neerlandica, 54:2 (2000), 237–255.
http://tmitwww.tm.tue.nl/staff/hreijers/H.A. Reijers Bestanden/Statistica.pdf.
MR1794979

2. A. Aldini, M. Bernardo, F. Corradini, A process algebraic approach to software
architecture design, Springer, 2010. Zbl 1255.68004

3. C. Autant, Ph. Schnoebelen, Place bisimulations in Petri nets, Lecture Notes in
Computer Science, 616 (1992), 45–61.

4. G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Science,
2090 (2001), 84–155. Zbl 0990.68092

5. G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Com-
puter Science, 4486 (2007), 83–131. Zbl 1323.68400

6. E. Bartocci, P. Lió, Computational modeling, formal analysis, and tools for systems
biology, PLoS Computational Biology 12:1 (2016), e1004591.

7. F. Bause, P.S. Kritzinger, Stochastic Petri nets: an introduction to the theory,
Vieweg Verlag, 2002. http://ls4-www.cs.tu-dortmund.de/cms/de/home/bause/
bause kritzinger spn book print.pdf Zbl 1013.60065

8. J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction,
Theoretical Computer Science, 37 (1985), 77–121. MR0796314

9. M. Bernardo, Theory and application of extended Markovian process algebra, Ph.D.
thesis, 276 p., University of Bologna, Italy, 1999. http://www.sti.uniurb.it/
bernardo/documents/phdthesis.pdf

10. M. Bernardo, A survey of Markovian behavioral equivalences, Lecture Notes in
Computer Science, 4486 (2007), 180–219. Zbl 1323.68402

11. M. Bernardo, Non-bisimulation-based Markovian behavioral equivalences, Journal
of Logic and Algebraic Programming, 72 (2007), 3–49. Zbl 1121.68077

58 Igor V. Tarasyuk

12. M. Bernardo, On the tradeoff between compositionality and exactness in weak bisim-
ilarity for integrated-time Markovian process calculi, Theoretical Computer Sci-
ence, 563 (2015), 99–143. MR3286633

13. M. Bernardo, ULTraS at work: compositionality metaresults for bisimulation and
trace semantics, Journal of Logical and Algebraic Methods in Programming, 94
(2018), 150–182. Zbl 1381.68195

14. M. Bernardo, S. Botta, Modal logic characterization of Markovian testing and trace
equivalences, Electronic Notes in Theoretical Computer Science, 169 (2006), 7–18.
Zbl 1276.68119

15. M. Bernardo, S. Botta, A survey of modal logics characterizing behavioural equiv-
alences for non-deterministic and stochastic systems, Mathematical Structures in
Computer Science, 18 (2008), 29–55. MR2459612

16. M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more?
Lecture Notes in Computer Science, 2165 (2001), 136–151. MR1904353

17. M. Bernardo, L. Donatiello, R. Gorrieri, A formal approach to the integration of
performance aspects in the modeling and analysis of concurrent systems, Informa-
tion and Computation, 144:2 (1998), 83–154. MR1632840

18. M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer Sci-
ence, 202 (1998), 1–54. MR1626813

19. M. Bernardo, R. De Nicola, M. Loreti, A uniform framework for modeling nonde-
terministic, probabilistic, stochastic, or mixed processes and their behavioral equiv-
alences, Information and Computation, 225 (2013), 29–82. Zbl 1358.68210

20. M. Bernardo, L. Tesei, Encoding timed models as uniform labeled transition sys-
tems, Lecture Notes in Computer Science, 8168 (2013), 104–118.

21. E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with multi-
label communication, Lecture Notes in Computer Science, 609 (1992), 21–69.
MR1253529

22. E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on The-
oretical Computer Science, Springer, 2001. MR1932732

23. E. Best, M. Koutny, A refined view of the box algebra, Lecture Notes in Computer
Science, 935 (1995), 1–20. MR1461021

24. T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc.
IFIP WG 6.1 10th Int. Symposium on Protocol Specification, Testing and Verifica-
tion 1990, Ottawa, Canada, 1–14, North-Holland, Amsterdam, The Netherlands,
1990.

25. N. Bonzanni, K.A. Feenstra, W. Fokkink, E. Krepska, What can formal methods
bring to systems biology? Lecture Notes in Computer Science, 5850 (2009), 16–22.

26. A.A. Borovkov, Probability theory, Universitext (UTX) series, Springer, 2013. Zbl
1297.60002

27. M. Bravetti, Specification and analysis of stochastic real-time systems, Ph.D. thesis,
432 p., University of Bologna, Italy, 2002. http://www.cs.unibo.it/˜bravetti/
papers/phdthesis.ps.gz

28. M. Bravetti, M. Bernardo, R. Gorrieri, Towards performance evaluation with gen-
eral distributions in process algebras, Lecture Notes in Computer Science, 1466
(1998), 405–422. MR1683349

29. P. Buchholz, Markovian process algebra: composition and equivalence, Proc. 2nd

Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U.
Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany, July 1994, Ar-
beitsberichte des IMMD, 27:4 (1994), 11–30.

Performance preserving equivalence for stochastic process algebra dtsdPBC 59

30. P. Buchholz, Exact and ordinary lumpability in finite Markov chains, Journal of
Applied Probability, 31:1 (1994), 59–75.

31. P. Buchholz, A notion of equivalence for stochastic Petri nets, Lecture Notes in
Computer Science, 935 (1995), 161–180. MR1461026

32. P. Buchholz, Iterative decomposition and aggregation of labeled GSPNs, Lecture
Notes in Computer Science, 1420 (1998), 226–245.

33. P. Buchholz, I.V. Tarasyuk, Net and algebraic approaches to probabilistic modeling,
Joint Novosibirsk Computing Center and Institute of Informatics Systems Bulletin,
Series Computer Science, 15 (2001), 31–64. Zbl 1004.68112

34. P. Buchholz, I.V. Tarasyuk, Equivalences for stochastic Petri nets and stochas-
tic process algebras, Vestnik, Quartal Journal of Novosibirsk State University, Se-
ries: Mathematics, Mechanics and Informatics, 6:1 (2006), 14–42 (in Russian). Zbl
1249.68126

35. I. Christoff, Testing equivalence and fully abstract models of probabilistic processes,
Lecture Notes in Computer Science, 458 (1990), 126–140. MR1082160

36. N. Coste, H. Hermanns, E. Lantreibecq, W. Serwe, Towards performance prediction
of compositional models in industrial GALS designs, Lecture Notes in Computer
Science, 5643 (2009), 204–218. Zbl 1242.68005

37. V. Danos, J. Feret, W. Fontana, R. Harmer, J. Krivine, Rule-based modelling of
cellular signalling, Lecture Notes in Computer Science, 4703 (2007), 17–41. Zbl
1151.68723

38. S. Derisavi, H. Hermanns, W.H. Sanders, Optimal state-space lumping of Markov
chains, Information Processing Letters, 87:6 (2003), 309–315.

39. Ch. Eisentraut, H. Hermanns, J. Schuster, A. Turrini, L. Zhang, The quest for
minimal quotients for probabilistic automata, Lecture Notes in Computer Science,
7795 (2013), 16–31. Zbl 1381.68115

40. D. Gilbert, M. Heiner, S. Lehrack, A unifying framework for modelling and
analysing biochemical pathways using Petri nets, Lecture Notes in Computer Sci-
ence, 4695 (2007), 200–216.

41. R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified
models of probabilistic processes, Information and Computation, 121:1 (1995), 59–
80. MR1347332

42. M.C. Guenther, N.J. Dingle, J.T. Bradley, W.J. Knottenbelt, Passage-time com-
putation and aggregation strategies for large semi-Markov processes, Performance
Evaluation, 68 (2011), 221–236.

43. H.M. Hanish, Analysis of place/transition nets with timed-arcs and its application
to batch process control, Lecture Notes in Computer Science, 691 (1993), 282–299.

44. H. Hermanns, Interactive Markov chains: the quest for quantified quality, Lecture
Notes in Computer Science, 2428 (2002). Zbl 1012.68142

45. H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for
MTIPP, Proc. 2nd Int. Workshop on Process Algebras and Performance Modelling
(PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany,
July 1994, Arbeitsberichte des IMMD, 27:4 (1994), 71–88. http://ftp.informatik.
uni-erlangen.de/local/inf7/papers/Hermanns/syntax semantics equivalences
axioms for MTIPP.ps.gz

46. J. Hillston, A compositional approach to performance modelling, Cambridge Uni-
versity Press, Cambridge, UK, 1996. http://www.dcs.ed.ac.uk/pepa/book.pdf
MR1427945

47. C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK,
1985. http://www.usingcsp.com/cspbook.pdf MR0805324

60 Igor V. Tarasyuk

48. A. Horváth, M., Paolieri, L. Ridi, E. Vicario, Probabilistic model checking of non-
Markovian models with concurrent generally distributed timers, Proc. 8th Int. Conf.
on Quantitative Evaluation of Systems (QEST) 2011, Aachen, Germany, Septem-
ber 2011, 131–140, IEEE Computer Society Press, 2011.

49. A. Horváth, M., Paolieri, L. Ridi, E. Vicario, Transient analysis of non-Markovian
models using stochastic state classes, Performance Evaluation, 69:7–8 (2012), 315–
335.

50. C.-C. Jou, S.A. Smolka, Equivalences, congruences and complete axiomatizations
for probabilistic processes, Lecture Notes in Computer Science, 458 (1990), 367–
383. MR1082173

51. M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer
Science, 1825 (2000), 303–322.

52. V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical
Science, 84, Chapman and Hall / CRC Press, 2010. Zbl 1191.60003

53. L. Lakatos, L. Szeidl, M. Telek, Introduction to queueing systems with telecommu-
nication applications, Springer Nature, Cham, Switzerland, 2019. Zbl 1415.60001

54. K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and
Computation, 94:1 (1991), 1–28. MR1123153

55. D. Latella, M. Massink, E.P. de Vink, Bisimulation of labelled state-to-function
transition systems coalgebraically, Logical Methods in Computer Science, 11:4:16
(2015), 1–40. Zbl 1448.68345

56. H. Macià, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in sPBC,
Lecture Notes in Computer Science, 3235 (2004), 292–308. Zbl 1110.68420

57. H. Macià, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC,
Formal Methods in System Design, 32:2 (2008), 85–128. Zbl 1138.68040

58. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of
Petri box calculus with immediate multiactions, Fundamenta Informaticae, 87:3–4
(2008), 367–406. Zbl 1154.68092

59. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, I.V. Tarasyuk, Modelling a video
conference system with sPBC, Applied Mathematics and Information Sciences 10:2
(2016), 475–493.

60. H. Macià, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri
box calculus, Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models
(PNPM) 2001, Aachen, Germany, 207–216, IEEE Computer Society Press, 2001.
http://www.info-ab.uclm.es/retics/publications/2001/pnpm01.ps

61. A. Marin, C. Piazza, S. Rossi, Proportional lumpability, Lecture Notes in Computer
Science, 11750 (2019), 265–281. Zbl 1434.68055

62. A. Marin, C. Piazza, S. Rossi, Proportional lumpability and proportional bisimilar-
ity, Acta Informatica, 59:2–3 (2022), 211–244. Zbl 07528110

63. O. Marroqúın, D. de Frutos, TPBC: timed Petri box calculus, Technical Re-
port, Departamento de Sistemas Infofmáticos y Programación, Universidad Com-
plutense de Madrid, Spain, 2000 (in Spanish).

64. O. Marroqúın, D. de Frutos, Extending the Petri box calculus with time, Lecture
Notes in Computer Science, 2075 (2001), 303–322. Zbl 0986.68082

65. M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in
Computer Science, 424 (1990), 1–29.

66. M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with
generalised stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley
and Sons, 1995. http://www.di.unito.it/˜greatspn/GSPN-Wiley/ Zbl 0843.68080

Performance preserving equivalence for stochastic process algebra dtsdPBC 61

67. Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications
of a theoretical study, IEEE Transactions on Communications, 24:9 (1976), 1036–
1043. Zbl 0362.68096

68. R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle
River, NJ, USA, 1989. Zbl 0683.68008

69. M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921, 108 p., University of Cal-
ifornia, Los Angeles, CA, USA, 1981.

70. M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software
Engineering, 11:4 (1985), 417–423. MR0788999

71. A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture Notes
in Computer Science, 3407 (2005), 447–462. Zbl 1109.68076

72. A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report, CS-
TR-895, 60 p., School of Computer Science, University of Newcastle upon Tyne,
UK, 2005. http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf

73. R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM Journal of
Computing, 16:6 (1987), 973–989.

74. C. Priami, Language-based performance prediction for distributed and mobile sys-
tems, Information and Computation, 175:2 (2002), 119–145. MR1911524

75. C. Ramchandani, Performance evaluation of asynchronous concurrent systems by
timed Petri nets, Ph.D. thesis, Department of Electrical Engineering, Massachu-
setts Institute of Technology, Cambridge, Massachusetts, USA, 1973.

76. S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996.
MR1373653

77. S.M. Ross, Introduction to probability models, Academic Press, Elsevier, UK, 2019.
Zbl 1408.60002

78. A.N. Shiryaev, Probability-2, Graduate Texts in Mathematics (GTM) series,
Springer, New York, 2019.

79. W.J. Stewart, Probability, Markov chains, queues, and simulation. The mathemati-
cal basis of performance modeling, Princeton University Press, Princeton, NJ, USA,
2009. Zbl 1176.60003

80. I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem De-
partment für Informatik, 3/05, 25 p., Carl von Ossietzky Universität Oldenburg,
Germany, 2005. http://itar.iis.nsk.su/files/itar/pages/dtspbcib cov.pdf

81. I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of
the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue, 24
(2006), 129–148. Zbl 1249.68132

82. I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Infor-
maticae, 76:1–2 (2007), 189–218. MR2293057

83. I.V. Tarasyuk, Equivalences for behavioural analysis of concurrent and distributed
computing systems, Geo Academic Publisher, Novosibirsk, Russia, 2007 (in Rus-
sian).

84. I.V. Tarasyuk, Equivalence relations for modular performance evaluation in dt-
sPBC, Mathematical Structures in Computer Science, 24:1 (2014), e240103.
MR3183269

85. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus dts-
dPBC, Siberian Electronic Mathematical Reports, 17 (2020), 1598–1679. Zbl
1448.68352

86. I.V. Tarasyuk, Performance evaluation in stochastic process algebra dtsdPBC,
Siberian Electronic Mathematical Reports, 18:2 (2021), 1105–1145. Zbl 1482.68156

62 Igor V. Tarasyuk

87. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with
immediate multiactions, Technical Report, DIAB-10-03-1, 25 p., Department of
Computer Systems, High School of Computer Science Engineering, University of
Castilla - La Mancha, Albacete, Spain, 2010. http://www.dsi.uclm.es/descargas/
technicalreports/DIAB-10-03-1/dtsipbc.pdf

88. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with
immediate multiactions dtsiPBC, Proc. 6th Int. Workshop on Practical Applica-
tions of Stochastic Modelling (PASM) 2012 and 11th Int. Workshop on Parallel and
Distributed Methods in Verification (PDMC) 2012 (J. Bradley, K. Heljanko, W.
Knottenbelt, N. Thomas, eds.), London, UK, 2012, Electronic Notes in Theoretical
Computer Science, 296 (2013), 229–252.

89. I.V. Tarasyuk, H. Macià, V. Valero, Performance analysis of concurrent systems
in algebra dtsiPBC, Programming and Computer Software, 40:5 (2014), 229–249.
Zbl 1339.68033

90. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic process reduction for performance
evaluation in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015), 513–
551. MR3493774

91. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic equivalence for performance analysis
of concurrent systems in dtsiPBC, Siberian Electronic Mathematical Reports, 15
(2018), 1743–1812. Zbl 1414.60062

92. M. Timmer, J.-P. Katoen, J. van de Pol, M.I.A. Stoelinga, Efficient modelling and
generation of Markov automata, Lecture Notes in Computer Science, 7454 (2012),
364–379. Zbl 1364.68295

93. K.S. Trivedi, Probability and statistics with reliability, queuing, and computer sci-
ence applications, John Wiley and Sons, 2016. Zbl 1344.60003

94. V. Valero, M.E. Cambronero, Using unified modelling language to model the pub-
lish/subscribe paradigm in the context of timed Web services with distributed
resources, Mathematical and Computer Modelling of Dynamical Systems, 23:6
(2017), 570–594.

95. R. Wimmer, S. Derisavi, H. Hermanns, Symbolic partition refinement with auto-
matic balancing of time and space, Performance Evaluation, 67 (2010), 816–836.

96. R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Workshop
on Quality of Communication-Based Systems 1994, Technical University of Berlin,
Germany, 123–136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

97. R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D.
thesis, Technical University of Berlin, Germany, 1997.

98. R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc.
11th Int. Conf. on Analysis and Optimization of Systems, Discrete Event Systems
(DES) 1994 (G. Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, 1994, Lec-
ture Notes in Control and Information Sciences, 199 (1994), 198–204.

