
Performance analysis of the shared memory

system in stochastic process algebra dtsdPBC

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,

Acad. Lavrentiev pr. 6, 630090, Novosibirsk, Russian Federation
itar@iis.nsk.su

Abstract. Petri box calculus (PBC) is a well-known algebra of parallel
processes with a Petri net semantics. Discrete time stochastic and de-
terministic PBC (dtsdPBC) extends PBC with discrete time stochastic
and deterministic delays. dtsdPBC has a step operational semantics via
labeled probabilistic transition systems and a Petri net denotational se-
mantics via dtsd-boxes, a subclass of labeled discrete time stochastic and
deterministic Petri nets. To evaluate performance in dtsdPBC, the un-
derlying semi-Markov chains (SMCs) and (reduced) discrete time Markov
chains (DTMCs and RDTMCs) of the process expressions are analyzed.
Step stochastic bisimulation equivalence that compares the qualitative
and quantitative behaviour is used for quotienting the transition sys-
tems, SMCs, DTMCs and RDTMCs of the process expressions while
preserving their stationary behaviour and residence time properties.
We construct in dtsdPBC a case study that demonstrates how the me-
thod of modeling, performance analysis and behaviour reduction by quo-
tienting for concurrent systems with discrete fixed and stochastic delays
is applied to the generalized shared memory system with maintenance.
Such a generalized system takes as variables the probabilities and weights
from the standard one’s specification. Then the variable generalized pro-
babilities of the reduced quotient DTMC are treated as parameters to
be adjusted for the performance optimization of the modeled system.

Keywords: Petri box calculus, discrete time, stochastic and determinis-
tic delays, transition system, operational semantics, dtsd-box, denota-
tional semantics, Markov chain, performance, stochastic bisimulation,
quotient, shared memory system, maintenance, generalized probabilities
and weights.

1 Introduction

Process calculi, like CSP [15], ACP [4] and CCS [30] are well-known formal
models for specification of computing systems and analysis of their behaviour. In
such process algebras (PAs), formulas describe processes, and verification of the
functionality properties of their behaviour is accomplished at a syntactic level
via equivalences, axioms and inference rules. In order to represent stochastic

2 I.V. Tarasyuk

timing and analyze the performance properties, stochastic extensions of PAs
were proposed, like MTIPP [13], PEPA [14] and EMPA [7]. Such stochastic
process algebras (SPAs) specify actions which can occur (qualitative features)
and associate with the actions the distribution parameters of their random delays
(quantitative characteristics).

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [8, 10, 9] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary
PNs. Formulas of PBC are combined from multisets of elementary actions and
their conjugates, called multiactions (basic formulas). The empty multiset of ac-
tions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transi-
tions with (multi)sets of activities, corresponding to simultaneous executions of
activities (steps). A denotational semantics of PBC was proposed via a subclass
of PNs with an interface and considered up to isomorphism, called Petri boxes.
The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [17]. In tPBC, timing information is added
by associating time intervals with instantaneous actions. tPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational
semantics was defined in terms of a subclass of labeled time Petri nets (LtPNs),
based on tPNs [29] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [25, 26], it accommodates a deterministic model of time. In con-
trast to tPBC, multiactions of TPBC are not instantaneous, but have time du-
rations. TPBC has a step timed operational semantics in terms of labeled tran-
sition systems. The denotational semantics of TPBC was defined in terms of a
subclass of labeled Timed Petri nets (LTPNs), based on TPNs [35] and called
Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [33, 34], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step
time operational semantics in terms of labeled transition systems. Its denota-
tional semantics was defined on a subclass of labeled arc time Petri nets (atPNs),
based of those from [11, 12], where time restrictions are associated with the arcs,
called arc time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt dis-
crete time, but TPBC has no immediate (multi)actions (those with zero delays).

Performance analysis of the shared memory system in dtsdPBC 3

1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [24, 20, 21]. In sPBC, multiactions have stochastic delays that
follow (negative) exponential distribution. Each multiaction is equipped with
a rate that is a parameter of the corresponding exponential distribution. The
(instantaneous) execution of a stochastic multiaction is possible only after the
corresponding stochastic time delay. The calculus has an interleaving operational
semantics defined via transition systems labeled with multiactions and their
rates. Its denotational semantics was defined in terms of a subclass of labeled
continuous time stochastic PNs, based on CTSPNs [27, 2] and called stochastic
Petri boxes (s-boxes).

sPBC was enriched with immediate multiactions having zero delay in [22,
23]. We call such an extension generalized sPBC (gsPBC). An interleaving oper-
ational semantics of gsPBC was constructed via transition systems labeled with
stochastic or immediate multiactions together with their rates or probabilities.
A denotational semantics of gsPBC was defined via a subclass of labeled general-
ized stochastic PNs, based on GSPNs [27, 2, 3] and called generalized stochastic
Petri boxes (gs-boxes).

In [36–39], we presented a discrete time stochastic extension dtsPBC of the
algebra PBC. In dtsPBC, the residence time in the process states is geometri-
cally distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was defined
in terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based
on DTSPNs [31, 32] and called discrete time stochastic Petri boxes (dts-boxes).

In [43–47], a calculus dtsiPBC was proposed as an extension with immediate
multiactions of dtsPBC. Immediate multiactions increase the specification capa-
bility: they can model logical conditions, probabilistic branching, instantaneous
probabilistic choices and activities whose durations are negligible in comparison
with those of others. They are also used to specify urgent activities and the ones
that are not relevant for performance evaluation. The step operational seman-
tics of dtsiPBC was constructed with the use of labeled probabilistic transition
systems. Its denotational semantics was defined in terms of a subclass of labeled
discrete time stochastic and immediate PNs (LDTSIPNs), called dtsi-boxes.

In [40–42], we defined dtsdPBC, an extension of dtsiPBC with deterministic
multiactions. In dtsdPBC, besides the probabilities from the real-valued interval
(0; 1), applied to calculate discrete time delays of stochastic multiactions, also
non-negative integers are used to specify fixed delays of deterministic multiac-
tions (including zero delay, which is the case of immediate multiactions). To re-
solve conflicts among deterministic multiactions, they are additionally equipped
with positive real-valued weights. As argued in [50, 48, 49], a combination of de-
terministic and stochastic delays fits well to model technical systems with con-
stant (fixed) durations of the regular non-random activities and probabilistically
distributed (stochastic) durations of the randomly occurring activities. dtsdPBC
has a step operational semantics, defined via labeled probabilistic transition sys-
tems. The denotational semantics of dtsdPBC was defined in terms of a subclass

4 I.V. Tarasyuk

of labeled discrete time stochastic and deterministic Petri nets (LDTSDPNs),
called dtsd-boxes.

1.4 Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box
calculus (dtsdPBC), presented in [40–42], featuring a step operational semantics.
Here we do not consider the Petri net denotational semantics of the calculus,
since it was extensively described in [40]. In that paper, a consistency of the
operational and denotational semantics with respect to step stochastic bisimu-
lation equivalence was proved. Hence, all the results established for the former
can be readily transferred to the latter up to that equivalence.

In [41, 42], with the embedding method, based on the embedded DTMC
(EDTMC) specifying the state change probabilities, we constructed and solved
the underlying stochastic process, which is a semi-Markov chain (SMC). The
obtained stationary probability masses and average sojourn times in the states
of the SMC were used to calculate the performance measures (indices) of inter-
est. The alternative solution techniques were also developed, called abstraction
and elimination, that are based respectively on the corresponding discrete time
Markov chain (DTMC) and its reduction (RDTMC) by eliminating vanishing
states (those with zero sojourn times).

In [40, 42], we proposed step stochastic bisimulation equivalence to identify
algebraic processes with similar qualitative and quantitative behaviour. We esta-
blished consistency of the operational and denotational semantics of dtsdPBC up
to that equivalence. We examined the interrelations of the proposed notion with
other equivalences of the algebra. The introduced equivalence was applied to re-
duce (by quotienting) the transition systems, SMCs, DTMCs and RDTMCs of
the process expressions while preserving their qualitative and quantitative char-
acteristics. We proved that the equivalence guarantees identity of the stationary
behaviour and residence time properties in the equivalence classes. This implies
coincidence of the performance indices based on the steady-state probabilities
and sojourn time averages for the complete and quotient behaviour.

In the present paper, we describe a case study of a system consisting of two
processors and a common shared memory with maintenance that explains how
to model concurrent systems within the calculus and analyze their performance,
as well as how to reduce the systems behaviour while preserving their perfor-
mance indices and making easier the performance evaluation. We consider a
generalized variant of the shared memory system by treating the probabilities
and weights from the standard system’s specification as variables (parameters)
that possess general values. First, we consider a process expression of the con-
crete system that differentiates among the processors, and then we analyze its
functionality and performance using the corresponding transition system, SMC,
DTMC and RDTMC. Second, we model the abstract system that abstracts from
the names of the processors (by making identical the actions from their speci-
fications), in order to apply reduction by the equivalence. The quotients of the
abstract system’s behaviour (represented by the transition system, SMC, DTMC

Performance analysis of the shared memory system in dtsdPBC 5

and RDTMC) by the step stochastic bisimulation equivalence are constructed.
Third, the generalized probabilities of the reduced quotient DTMC (coinciding
with the quotient RDTMC) are treated as parameters (or variables of the per-
formance index functions) to be adjusted for the abstract system’s performance
optimization. Thus, the main contributions of the paper are as follows.

– Performance analysis of the concrete generalized shared memory system with
maintenance using its transition system, SMC, DTMC and RDTMC.

– Performance analysis of the abstract system via its quotient (by step stochas-
tic bisimulation equivalence) transition system, SMC, DTMC and RDTMC.

– Performance optimization by adjusting the quotient RDTMC probabilities,
treated as parameters of the abstract system’s performance index functions.

1.5 Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the ope-
rational semantics of the calculus in terms of labeled probabilistic transition
systems is presented. Step stochastic bisimulation equivalence is defined and
investigated in Section 4. In Section 5, the equivalence quotients of the tran-
sition systems and corresponding Markov chains of the process expressions are
constructed. In Section 6, the introduced equivalence is proved to preserve the
stationary behaviour and residence time properties in the equivalence classes. In
Section 7, the generalized shared memory system with maintenance is presented
as a case study. Section 8 summarizes the results and outlines future research.

2 Syntax

In this section, we propose the syntax: activities, operations and expressions.

2.1 Activities and operations

Multiset is a set with allowed identical elements.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

We denote the set of all finite multisets over a set X by NX
fin. Let M,M ′ ∈

NX
fin. The cardinality of M is |M | =

∑
x∈X M(x). We write x∈M if M(x)> 0

andM⊆M ′ if ∀x ∈ X M(x)≤M ′(x). We define (M+M ′)(x)=M(x)+M ′(x) and
(M−M ′)(x)=max{0,M(x)−M ′(x)}. When ∀x∈X, M(x)≤1, M can be seen
as a proper set M⊆X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .}

is the set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let A =

Act ∪ Âct be the set of all actions, and L = NA
fin be the set of all multiactions.

Then ∅ ∈ L specifies an internal move, i.e. the execution of a multiaction without
visible action names. The alphabet of α∈L is defined asA(α)={x∈A | α(x)>0}.

6 I.V. Tarasyuk

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with
other waiting multiactions. We do not have probability 0 of stochastic multiac-
tions, since they would not be performed in this case. Let SL be the set of all
stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl), where α ∈ L, θ ∈ N is the
non-negative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive
real-valued weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution
of the deterministic multiaction at the moment when the corresponding delay
has expired. Such weights are used to calculate the probabilities to execute sets
of deterministic multiactions after their delays. An immediate multiaction is a
deterministic multiaction with the delay 0 while a waiting multiaction is a deter-
ministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs) are equal to one time
unit, they are executed with probability 1 at the next moment. Deterministic
multiactions have a priority over stochastic ones while immediate multiactions
have a priority over waiting ones. Different types of multiactions cannot par-
ticipate together in some step (parallel execution). Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL
be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a determinis-
tic multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities.
The alphabet of an activity (α, κ) ∈ SDL is defined as A(α, κ) = A(α). The al-
phabet of a multiset of activities Υ ∈ NSDL

fin is defined as A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice [], parallelism ‖, relabeling [f] of actions, restriction
rs over a single action, synchronization sy on an action and its conjugate, and
iteration [∗ ∗] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composi-
tion) does not include synchronization, unlike that operation in CCS [30].

Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way:
for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to activities:

for (α, κ) ∈ SDL, we define f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities: for Υ ∈ NSDL

fin we define f(Υ) =
∑

(α,κ)∈Υ (f(α), κ). The

sums are considered with the multiplicity when applied to multisets: f(α) =∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Performance analysis of the shared memory system in dtsdPBC 7

Restriction over an elementary action a ∈ Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈
Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α

and β by a is defined as (α⊕a β)(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization
by a of two activities, whose multiaction parts α and β possess the properties
mentioned above, results in the activity with the multiaction part α⊕aβ. We may
synchronize activities of the same type only: either both stochastic multiactions
or both deterministic ones with the same delay, since stochastic, waiting and
immediate multiactions have different priorities, and diverse delays of waiting
multiactions would contradict their joint timing. Note that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones.
Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists
also the behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, finally, the termination subprocess is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations to construct the composite process-algebraic formulas. As
for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[40]. A marking is the allocation of tokens in the places of a PN. Markings are
used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associ-
ated, whose value is the time left till the moment when the waiting multiaction
can be executed. Therefore, besides standard (unstamped) waiting multiacti-
ons (α, ♮θl) ∈ WL, a special case of the stamped waiting multiactions should
be considered in the definition of static expressions. Each (time) stamped wait-
ing multiaction (α, ♮θl)

δ has an extra superscript δ ∈ {1, . . . , θ} that specifies a
time stamp indicating the latest value of the timer associated with that multi-
action. The standard waiting multiactions have no time stamps, to demonstrate
irrelevance of the timer values for them (for example, their timers have not yet
started or have already finished). The notion of the alphabet part for (the mul-
tisets of) stamped waiting multiactions is defined like that for (the multisets of)
unstamped ones.

For simplicity, we do not assign the timer value superscripts δ to immediate
multiactions, a special case of deterministic multiactions (α, ♮θl) with the delay
θ = 0 in the form of (α, ♮0l), since their timer values can only be equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

8 I.V. Tarasyuk

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.

To avoid technical difficulties with the iteration operator, we should not
allow concurrency at the highest level of the second argument of iteration. This
is not a severe restriction, since we can always prefix parallel expressions by
an activity with the empty multiaction part. Relaxing the restriction can result
in LDTSDPNs [40] which are not safe, like shown for PNs in [9]. A PN is n-
bounded (n ∈ N) if for all its reachable (from the initial marking by the sequences
of transition firings) markings there are at most n tokens in every place, and a
PN is safe if it is 1-bounded.

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, κ) | (α, ♮θl)
δ | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.

Let E be a regular static expression. The underlying timer-free regular static
expression ⇃E of E is obtained by removing from it all timer value superscripts.

The set of all stochastic multiactions (from the syntax) of E is SL(E) =
{(α, ρ) | (α, ρ) is a subexpression of E}. The set of all immediate multiactions
(from the syntax) of E is IL(E) = {(α, ♮0l) | (α, ♮0l) is a subexpression of E}.
The set of all waiting multiactions (from the syntax) of E is WL(E) = {(α, ♮θl) |
(α, ♮θl) or (α, ♮

θ
l)

δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all
deterministic multiactions (from the syntax) of E is DL(E)=IL(E) ∪WL(E)
and the set of all activities (from the syntax) of E is SDL(E)=SL(E)∪DL(E) =
SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [40]. Dynamic expressions are obtained from
static ones, by annotating them with upper or lower bars which specify the
active components of the system at the current moment of time. The dynamic
expression with upper bar (the overlined one) E denotes the initial, and that
with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl)
δ, the superscript

δ ∈ {1, . . . , θ} specifies the current value of the running countdown timer as-
sociated with the waiting multiaction. That decreasing discrete timer is started
with the initial value θ (the waiting multiaction delay) at the moment when
the waiting multiaction becomes overlined. Then such a newly overlined stam-

ped waiting multiaction (α, ♮θl)
θ is similar to the freshly overlined unstamped

Performance analysis of the shared memory system in dtsdPBC 9

waiting multiaction (α, ♮θl). Such similarity will be captured by the structural
equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global time
tick until the timer value becomes 1. This means that one unit of time remains
till execution of that multiaction (the remaining time to execute, RTE, equals
one). Its execution should follow in the next moment with probability 1, in case
there are no conflicting with it immediate multiactions or conflicting waiting
multiactions whose RTEs equal to one, and it is not affected by restriction. An
activity is affected by restriction, if it is within the scope of a restriction opera-
tion with the argument action, such that it or its conjugate is contained in the
multiaction part of that activity.

Definition 4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dts-
dPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression

⌊G⌋ of G is obtained by removing from it all upper and lower bars. If the un-
derlying static expression of a dynamic one is not regular, the corresponding
LDTSDPN can be non-safe [40] (2-bounded in the worst case, like for PNs [9]).

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dy-

namic expression ⇃G is obtained by removing from G all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions

(from the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or
WL(G) = WL(⌊G⌋), respectively). Thus, the set of all deterministic multiac-
tions (from the syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all
activities (from the syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪
IL(G) ∪WL(G).

3 Operational semantics

In this section, we define operational semantics via labeled transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transfor-
mations in the form of G ⇒ G̃ which do not change the states of the specified

10 I.V. Tarasyuk

processes. The goal of those syntactic transformations is to obtain the well-
structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic ex-
pression does not lead to any discrete time tick or any transition firing in the
corresponding LDTSDPN [40], hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e.
the dynamic expression transformation described by the rule is done instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones. In this table, (α, ♮θl)∈WL, δ∈{1, . . . , θ},
E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to the delay of it.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl) ⇒ (α, ♮θl)
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr
and a ∈ Act. For brevity, two distinct inaction rules with the same premises are
collated in some cases, resulting in the inaction rules with double conclusion.

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f] ⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 6. A regular dynamic expression G is operative if no inaction rule
can be applied to it.

Performance analysis of the shared memory system in dtsdPBC 11

Let OpRegDynExpr denote the set of all operative regular dynamic expres-
sions of dtsdPBC. Note that any dynamic expression can be always transformed
into a (not necessarily unique) operative one by using the inaction rules. In the
following, we consider regular expressions only and omit the word “regular”.

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dy-
namic expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are
structurally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆
X2 be an equivalence relation on X . Then the equivalence class (with respect to
E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence
E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ)
isa subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s) = {(α, ♮0l) ∈ IL | ∃H ∈ s ∩OpRegDynExpr (α, ♮0l) is a
subexpression of H}. The set of all enabled waiting multiactions of s is

EnaWait(s) = {(α, ♮θl) ∈ WL | ∃H ∈ s ∩ OpRegDynExpr (α, ♮θl)
δ, δ ∈

{1, . . . , θ}, is a subexpression of H}. The set of all newly enabled waiting mul-
tiactions of s is EnaWaitNew(s) = {(α, ♮θl) ∈ WL | ∃H ∈ s ∩OpRegDynExpr

(α, ♮θl)
θ is a subexpression of H}.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s)∪EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). Then
Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN [40] corresponding to G. The activities,
resulted from synchronization, are not present in the syntax of the dynamic ex-
pressions. Their enabledness status can be recovered by observing that of the
pair of synchronized activities from the syntax (they both should be enabled
for enabling their synchronous product), even if they are affected by restriction
after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with
the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

12 I.V. Tarasyuk

Proposition 1. Any operative dynamic expression can be transformed into the
saturated one by applying the inaction rules in a forward or a backward direction.

Proof. See [40].

Thus, any dynamic expression can be transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Thus, each such stamped waiting multiaction changes
its timer value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decre-
ment operator affects the (possibly overlined or underlined) stamped waiting

multiactions being the subexpressions of G as follows: (α, ♮θl)
δ is replaced with

(α, ♮θl)
max{1,δ−1} and (α, ♮θl)

δ is replaced with (α, ♮θl)
max{1,δ−1} while (α, ♮θl)

δ is

replaced with (α, ♮θl)
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the
timer value δ = 1 may remain unchanged for a stamped waiting multiaction that
is not executed by some reason at the next time moment, but stays stamped.
For example, that stamped waiting multiaction may be affected by restriction. If
the timer values cannot be decremented with a time tick for all stamped waiting
multiactions (if any) from G then 	G = G and we obtain so-called empty loop
transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, so that the stamped waiting mul-
tiactions stay stamped (with their timer values, possibly decremented by one).

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these
rules we capture the prioritization among different types of multiactions. We
also have the empty move rule, used to capture a delay of one discrete time
unit when no immediate or waiting multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty move rules will be
used later to determine all multisets of activities which can be executed from the
structural equivalence class of every dynamic expression (i.e. from the state of the
corresponding process). This information together with that about probabilities
or delays and weights of the activities to be executed from the current process
state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) mul-

tiactions describe dynamic expression transformations in the form of G
Γ
→ G̃

(G
I
→ G̃ or G

W
→ G̃, respectively) due to execution of non-empty multisets Γ

of stochastic (I of immediate or W of waiting, respectively) multiactions. The

Performance analysis of the shared memory system in dtsdPBC 13

rules represent possible state changes of the specified processes when some non-
empty multisets of stochastic (immediate or waiting, respectively) multiactions
are executed. The application of an action rule with stochastic (immediate or
waiting, respectively) multiactions to a dynamic expression leads in the corre-
sponding LDTSDPN [40] to a discrete time tick at which some stochastic or
waiting transitions fire (or to the instantaneous firing of some immediate tran-
sitions) and possible change of the current marking. The current marking stays
unchanged only if there is a self-loop produced by the iterative execution of a
non-empty multiset, which must be one-element, since we allow no concurrency
at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execu-

tion of the empty multiset of activities at a discrete time tick. When no timer
values are decremented within G with the empty multiset execution at the next
moment (for example, if G contains no stamped waiting multiactions), we have

	G = G. In such a case, the empty move from G is in the form of G
∅
→ G, called

the empty loop. The application of the empty move rule to a dynamic expression
leads to a discrete time tick in the corresponding LDTSDPN [40] at which no
transitions fire and the current marking is not changed, but the timer values of
the waiting transitions enabled at the marking (if any) are decremented by one.
This is a new rule that has no prototype among inaction rules of PBC, since it
represents a time delay.

Thus, an application of every action rule with stochastic or waiting multi-
actions or the empty move rule requires one discrete time unit delay, i.e. the
execution of a (possibly empty) multiset of stochastic or (non-empty) multiset
of waiting multiactions leading to the dynamic expression transformation de-
scribed by the rule is accomplished instantly after one time unit. An application
of every action rule with immediate multiactions does not take any time, i.e. the
execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid tech-
nical difficulties, such as calculation of the probabilities for multiple transitions,
we can enumerate coinciding activities from left to right in the syntax of ex-
pressions. The new activities, resulted from synchronization, will be annotated
with concatenation of numberings of the activities they come from, hence, the
numbering should have a tree structure to reflect the effect of multiple synchro-
nizations. We now define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should

be considered up to permutation of their numbering. In this way, we shall rec-
ognize different instances of the same activity. If we compare the contents of

14 I.V. Tarasyuk

different numberings, i.e. the sets of natural numbers in them, we shall identify
the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become
the proper sets. We suppose that the identical activities are enumerated when
needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define the set of all non-empty
multisets of activities which can be potentially executed from G, denoted by
Can(G). Let (α, κ)∈SDL, E, F∈RegStatExpr, H∈OpRegDynExpr and a∈Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2, . . . , θ}, then Can(G)=∅.

3. If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.

4. If G = (α, κ)1 and κ = ♮θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
7. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different, a ∈ α, â ∈ β, then

(a) Υ − {(α, κ), (β, λ)} + {(α⊕a β, κ · λ)} ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) Υ − {(α, κ), (β, λ)} + {(α⊕a β, ♮

θ
l+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities.

If Υ ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we haveΞ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only

stochastic (immediate or waiting, respectively) multiactions in the multisets
from Can(G) then these stochastic (immediate or waiting, respectively) mul-
tiactions can be executed from G. Otherwise, besides stochastic ones, there are
also deterministic (immediate and/or waiting) multiactions in the multisets from
Can(G). By the note above, there are non-empty multisets of deterministic mul-
tiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ NDL

fin \ {∅}. In this case, no
stochastic multiactions can be executed from G, even if Can(G) contains non-
empty multisets of stochastic multiactions, since deterministic multiactions have
a priority over stochastic ones, and should be executed first. Further, if there
are no stochastic, but both waiting and immediate multiactions in the multisets
from Can(G), then, analogously, no waiting multiactions can be executed from
G, since immediate multiactions have a priority over waiting ones (besides that
over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the
multisets from Can(G) then only waiting ones can be executed from G. Then

Performance analysis of the shared memory system in dtsdPBC 15

just maximal non-empty multisets of waiting multiactions can be executed from
G, since all non-conflicting waiting multiactions cannot wait and they should
occur at the next time moment with probability 1. The next definition formalizes
these requirements.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Now(G)=

Can(G) ∩ NIL
fin, Can(G) ∩ NIL

fin 6= ∅;
{W ∈Can(G) ∩ NWL

fin | (Can(G) ∩NIL
fin=∅)∧

∀V ∈Can(G) ∩NWL
fin W ⊆V ⇒ V =W}, (Can(G) ∩NWL

fin 6=∅);
Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ NSL

fin \ {∅}. In particular, we have
stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ NWL

fin \{∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin∪N

WL
fin)\{∅}.

Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression
G is vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ NIL

fin\{∅}.
Note that the operative dynamic expressions from [G]≈ may have different types
in general.

Let G∈RegDynExpr. We write stang([G]≈), if ∀H∈[G]≈∩OpRegDynExpr
stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H)
and ∀H ′∈ [G]≈∩OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈)
or wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈∩
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ),
(β, χ) ∈ SL, (α, ♮0l), (β, ♮

0
m) ∈ IL and (α, ♮θl), (β, ♮

θ
m) ∈ WL. Further, E,F ∈

RegStatExpr, G,H ∈ SatOpRegDynExpr, G̃, H̃∈RegDynExpr and a ∈ Act.
Next, Γ,∆ ∈ NSL

fin \ {∅}, Γ ′ ∈ NSL
fin, I, J ∈ NIL

fin \ {∅}, I ′ ∈ NIL
fin, V,W ∈

NWL
fin \ {∅}, V ′ ∈ NWL

fin and Υ ∈ NSDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈

α) ∨ (â ∈ α)}.
We use the following abbreviations in the names of the rules: “E” for “Empty

move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for
“Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule
for some operation then we get the coupled action rules. In such cases, the names
of the action rules with stochastic multiactions have a suffix ‘s’, those with
immediate multiactions have a suffix ‘i’, and those with waiting multiactions
have a suffix ‘w’. For explanation of the rules in Table 3, see [40].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned off) and their values become

16 I.V. Tarasyuk

Table 3. Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l)

{(α,♮0l)}−→ (α, ♮0l) Bw (α, ♮θl)
1

{(α,♮θl)}−→ (α, ♮θl)

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F]≈))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F]≈))

[E ∗G ∗ F]
V
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l)}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl)}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

Performance analysis of the shared memory system in dtsdPBC 17

irrelevant while the timers of all those preserving their enabledness continue run-
ning with their stored values. Hence, we adapt the enabling memory policy [28,
1–3] when the process states are changed and the enabledness of deterministic
multiactions is possibly modified (immediate multiactions may be seen as those
with the timers displaying a single value 0, so we do not need to store their
values). Then the timer values of waiting multiactions are taken as the enabling
memory variables.

Like in [17], we are interested in the dynamic expressions, inferred by apply-
ing the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure
that time proceeds uniformly and only enabled waiting multiactions are stamped.
We call such dynamic expressions reachable, by analogy with the reachable states
of LDTSDPNs [40].

Definition 12. A dynamic expression G is reachable, if there exists a static

expression E without timer value superscripts, such that E ≈ G or E ≈ G0
Υ1→

H1 ≈ G1
Υ2→ . . .

Υn→ Hn ≈ G for some Υ1, . . . , Υn ∈ NSDL
fin .

We consider dynamic expression G = ({a}, ♮21)
1[]({b}, ♮32)

1 as “illegal” and

G′ = ({a}, ♮21)
1[]({b}, ♮32)

2 as “legal”, since G′ is obtained from the overlined

static expression without timer value superscripts E = ({a}, ♮21)[]({b}, ♮
3
2) after

one time tick. On the other hand, G is “illegal” only when it is intended to
specify a complete process, but it may become “legal” as a part of some com-
plete specification, like G rs a, since after two time ticks from E rs a, the timer
values cannot be decreased further when the value 1 is approached. We should
allow the dynamic expressions like G, by assuming that they are incomplete
specifications, to be further composed.

A dynamic expression H = ({a}, 12); ({b}, ♮
2
1)

1 is “illegal”, since the waiting
multiaction ({b}, ♮21) is not enabled in [H]≈ and its timer cannot start before the
stochastic multiaction ({a}, 12) is executed.

Enabledness of the stamped waiting multiactions is considered in the follow-
ing proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.

Proof. See [40].

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dy-
namic expressions. The transition systems are used to define the operational
semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

18 I.V. Tarasyuk

Here H
Υ
→ H̃ is an inference by the rules from Table 3. It can be proved by

induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈
s Υ ∈ Now(H). The reverse statement does not hold, since the preconditions in
the action rules disable executions of the activities with the lower-priority types
from every H ∈ s, see [40].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ NSL

fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,
hence, we may haveExec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ NWL

fin \ {∅}. The state s is tangible, denoted

by tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ NSL
fin ∪ NWL

fin . Again, for a
tangible state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the
state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ NIL

fin\{∅}.

If Υ ∈Exec(s) and Υ ∈NSL
fin∪N

IL
fin then by rules P2s, P2i, Sy2s, Sy2i and

definition of Exec(s) ∀Ξ⊆Υ, Ξ 6=∅, we have Ξ∈Exec(s), i.e. 2Υ \{∅}⊆Exec(s).

Definition 13. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

– [G]≈ ∈ DR(G);

– if [H]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set
of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all tan-
gible states from DR(G) is denoted by DRT (G) = DRST (G) ∪DRWT (G). The
set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G)=
DRT (G)⊎DRV (G)=DRST (G)⊎DRWT (G)⊎DRV (G) (⊎ denotes disjoint union).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is

PF (Υ, s)=

∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =

∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

The definition of PF (Υ, s) (and those of other probability functions we shall
present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ , some other multisets of activities may be ready
for execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities Υ in s is

Performance analysis of the shared memory system in dtsdPBC 19

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The sum of outgoing probabilities for the expressions from the derivations of
G is equal to 1, i.e. ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This follows from the

definition of PT (Υ, s) and guarantees that it defines a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Note that ∀s ∈ DR(G)
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈̃s ∃Υ H
Υ
→H̃}

∑
{Υ |∃H∈s ∃H̃∈̃s H

Υ
→H̃}

PT (Υ, s)=
∑

Υ∈Exec(s)PT (Υ, s)=1.

Definition 14. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG = NSDL

fin × (0; 1];
– the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H∈s

∃H̃ ∈ s̃ H
Υ
→ H̃};

– the initial state is sG = [G]≈.

The definition of TS(G) is correct, i.e. for every state, the sum of the probabi-
lities of all the transitions from it is 1, by the note after the definition of PT (Υ, s).

The transition system TS(G) associated with a dynamic expression G de-
scribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
step consisting of stochastic (waiting, respectively) multiactions or the empty
step (i.e. that consisting of the empty multiset of activities) occurs instantly
after one discrete time unit delay. Each step consisting of immediate multiac-
tions occurs instantly without any delay. The step can change the current state
to a different one. The states are the structural equivalence classes of dynamic
expressions obtained by application of action rules starting from the expressions

belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as s
Υ
→P s̃. It

is interpreted as follows: the probability to change from state s to s̃ as a result
of executing Υ is P .

From every s-tangible state the empty multiset of activities can always be
executed by rule E. Hence, for s-tangible states, Υ may be the empty multi-
set, and its execution only decrements by one the timer values (if any) of the

current state. Then we have a transition s
∅
→P	 s from an s-tangible state s

to the tangible state 	 s = [H]≈ for H ∈ s ∩ SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after
decreasing by one their timers, 	 s is unique for each s and the definition is
correct. Thus, 	s corresponds to applying the empty move rule to an arbitrary

20 I.V. Tarasyuk

saturated operative dynamic expression from s, followed by taking the structural
equivalence class of the result. We have to keep track of such executions, called
the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities
of stochastic multiactions belong to the interval (0; 1). When it holds 	H = H
for H ∈ s∩SatOpRegDynExpr, we obtain 	s = s. Then the empty move from

s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing

states Υ cannot be the empty multiset, since we must execute some immediate
(waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when the only

transition from an s-tangible state s is the empty move one s
∅
→1	s, or if there

is a single transition from a w-tangible or a vanishing state. We write s
Υ
→ s̃ if

∃P s
Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 15. Let G,G′ be dynamic expressions and TS(G)=(SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′) be their transition systems. A mapping β : SG →
SG′ is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ≃
TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃
TS(G′), if ∃β :TS(G)≃TS(G′).

Definition 16. Two dynamic expressions G and G′ are equivalent with respect
to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Let N = (PN , TN ,WN , DN , ΩN ,LN , QN) be a LDTSDPN [40] and Q, Q̃
be its states. Then the average sojourn time SJ(Q), the sojourn time variance

V AR(Q), the probabilities PM∗(Q, Q̃), the transition relation Q ։P Q̃, the
EDTMC EDTMC(N), the underlying SMC SMC(N) and the steady-state
PMF for it are defined like the corresponding notions for dynamic expressions
in [41]. Every marked and clocked plain dtsd-box [40] can be interpreted as
an LDTSDPN. Therefore, we can evaluate performance with the LDTSDPNs
corresponding to dtsd-boxes and then transfer the results to the latter.

4 Stochastic equivalences

The semantic equivalence =ts is too discriminating in many cases, hence, we
need weaker equivalence notions. These equivalences should possess the follow-
ing necessary properties. First, any two equivalent processes must have the same
sequences of multisets of multiactions, which are the multiaction parts of the ac-
tivities executed in steps starting from the initial states of the processes. Second,

Performance analysis of the shared memory system in dtsdPBC 21

for every such sequence, its execution probabilities within both processes must
coincide. Third, the desired equivalence should preserve the branching structure
of computations, i.e. the points of choice of an external observer between several
extensions of a particular computation should be taken into account. In this
section, we define one such notion: step stochastic bisimulation equivalence.

Bisimulation equivalences respect the particular points of choice in the be-
havior of a system. To define stochastic bisimulation equivalences, we have to
consider a bisimulation as an equivalence relation that partitions the states of
the union of the transition systems TS(G) and TS(G′) of two dynamic expres-
sions G and G′ to be compared. For G and G′ to be bisimulation equivalent, the
initial states [G]≈ and [G′]≈ of their transition systems should be related by a
bisimulation having the following transfer property: if two states are related then
in each of them the same multisets of multiactions can occur, leading with the
identical overall probability from each of the two states to the same equivalence
class for every such multiset.

We follow the approaches of [16, 19, 13, 14, 7, 5, 6], but we implement step
semantics instead of interleaving one considered in these papers. Recall also
that we use the generative probabilistic transition systems, like in [16], in con-
trast to the reactive model, treated in [19], and we take transition probabilities
instead of transition rates from [13, 14, 7, 5, 6]. Thus, step stochastic bisimula-
tion equivalence that we define further is (in the probabilistic sense) comparable
only with interleaving probabilistic bisimulation equivalence from [16], and our
relation is obviously stronger.

In the definition below, we consider L(Υ) ∈ NL
fin for Υ ∈ NSIL

fin , i.e. (possibly
empty) multisets of multiactions. The multiactions can be empty as well. In this
case, L(Υ) contains the elements ∅, but it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). For any s∈DR(G) and A∈

NL
fin, we write s

A
→P H, where P=PMA(s,H) is the overall probability to move

from s into the set of states H via steps with the multiaction part A defined as

PMA(s,H) =
∑

{Υ |∃s̃∈H s
Υ
→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A
→ H if ∃P s

A
→P H. Further, we write s →P H if ∃A s

A
→ H,

where P = PM(s,H) is the overall probability to move from s into the set of
states H via any steps defined as

PM(s,H) =
∑

{Υ |∃s̃∈H s
Υ
→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A
→P s̃ if s

A
→P {s̃} and s

A
→ s̃ if ∃P s

A
→P s̃.

The mean value formula for the geometrical distribution allows us to calculate
the average sojourn time in s ∈ DRT (G) as SJ(s) = 1

1−PM(s,s) . The average

sojourn time in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let s ∈ DR(G).
The average sojourn time in the state s is

22 I.V. Tarasyuk

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s),
s ∈ DR(G).

The sojourn time variance in the state s is

V AR(s) =

{
PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by V AR, has the elements
V AR(s), s ∈ DR(G).

Definition 17. Let G and G′ be dynamic expressions. An equivalence relation
R ⊆ (DR(G) ∪ DR(G′))2 is a step stochastic bisimulation between G and G′,
denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and

∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NL
fin s1

A
→P H ⇔ s2

A
→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent,
denoted by G↔ssG

′, if ∃R : G↔ssG
′.

The condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the definition above is
needed to make difference between w-tangible states (all having at least one time
unit sojourn times) and vanishing states (all having zero sojourn times). Both
from w-tangible and vanishing states, no empty moves can be made, unlike s-
tangible states, from which empty moves are always possible. When comparing
dynamic expressions for step stochastic bisimulation equivalence, we can use
empty moves only to make difference between s-tangible and other (w-tangible
or vanishing) states.

We define the multiaction transition systems, whose transitions are labeled
with the multisets of multiactions, extracted from the corresponding activities.

Definition 18. Let G be a dynamic expression. The (labeled probabilistic) mul-
tiaction transition system of G is a quadruple TSL(G) = (SL, LL, TL, sL), where

– SL = DR(G);
– LL = NL

fin × (0; 1];

– TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A
→ s̃};

– sL = [G]≈.

The transition (s, (A,P), s̃) ∈ TL will be written as s
A
→P s̃.

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation

R can be interpreted as a step stochastic bisimulation between the transition
systems TSL(G) and TSL(G

′), denoted by R : TSL(G)↔ssTSL(G
′), which is

Performance analysis of the shared memory system in dtsdPBC 23

defined by analogy (excepting step semantics) with interleaving probabilistic
bisimulation on generative probabilistic transition systems from [16].

The following proposition states that every step stochastic bisimulation binds
s-tangible states only with s-tangible ones, and the same is valid for w-tangible
states, as well as for vanishing states.

Proposition 3. Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R⊆(DRST (G)∪DRST (G
′))2⊎(DRWT (G)∪DRWT (G

′))2⊎(DRV (G)∪DRV (G′))2.

Proof. See [40].

Proposition 3 implies R ⊆ (DRT (G)∪DRT (G
′))2 ⊎ (DRV (G)∪DRV (G

′))2,
sinceDRT (G)=DRST (G)⊎DRWT (G) andDRT (G

′)=DRST (G
′)⊎DRWT (G

′).
Let Rss(G,G

′) =
⋃
{R | R : G↔ssG

′} be the union of all step stochastic bi-
simulations between G and G′. The following proposition proves that Rss(G,G

′)
is also an equivalence and Rss(G,G

′) : G↔ssG
′.

Proposition 4. Let G and G′ be dynamic expressions and G↔ssG
′. Then

Rss(G,G
′) is the largest step stochastic bisimulation between G and G′.

Proof. See [40].

The next theorem shows that both the semantics are bisimulation equivalent.

Theorem 1. For any static expression E, TS(E)↔ssRG(Boxdtsd(E)).

Proof. See [40].

We now compare the discrimination power of the stochastic equivalences.

Theorem 2. For dynamic expressions G and G′ the strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. See [40].

5 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems
and SMCs of expressions (reachability graphs and SMCs of dtsd-boxes). Re-
ductions of graph-based models, like transition systems, reachability graphs and
SMCs, result in those with less states (the graph nodes). The goal of the re-
duction is to decrease the number of states in the semantic representation of
the modeled system while preserving its important qualitative and quantitative
behavioural properties. Thus, the reduction allows one to simplify the functional
and performance analysis.

24 I.V. Tarasyuk

We now consider the quotient transition systems and Markov chains (SMCs,
DTMCs, RDTMCs).

An autobisimulation is a bisimulation between an expression and itself. For a
dynamic expression G and a step stochastic autobisimulation on it R : G↔ssG,

let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈ DR(G)/R ∀A ∈ NL
fin s1

A
→P

K̃ ⇔ s2
A
→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K
A
→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→ K̃ if ∃P K

A
→P K̃ and K → K̃ if ∃A K

A
→ K̃. The similar

arguments allow us to write K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) =

PM(s2, K̃).
By the note after Proposition 3, R ⊆ (DRT (G))

2 ⊎ (DRV (G))
2. Hence,

∀K ∈ DR(G)/R, all states from K are tangible, when K ∈ DRT (G)/R, or all of
them are vanishing, when K ∈ DRV (G)/R.
The average sojourn time in the equivalence class (with respect toR) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R)
of states of G, denoted by SJR, has the elements SJR(K), K ∈ DR(G)/R.
The sojourn time variance in the equivalence class (with respect toR) of states K is

V ARR(K) =

{
PM(K,K)

(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R)
of states of G, denoted by V ARR, has the elements V ARR(K), K∈DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic

autobisimulations on G. By Proposition 4, Rss(G) is the largest step stochastic
autobisimulation on G. Based on the equivalence classes with respect to Rss(G),
the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying
SMCs of expressions can be defined. The mentioned equivalence classes become
the quotient states. The average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in case
of the transition system quotient) from the first state to the second one.

Definition 19. Let G be a dynamic expression. The quotient (by ↔ss) (labeled
probabilistic) transition system of G is a quadruple TS↔ss

(G) =
(S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

– S↔ss
= DR(G)/Rss(G);

– L↔ss
= NL

fin × (0; 1];

– T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

– s↔ss
= [[G]≈]Rss(G).

Performance analysis of the shared memory system in dtsdPBC 25

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→P K̃.

Let G be a dynamic expression. We define the relation RLss(G) = {(s,K),
(K, s) | s ∈ K ∈ DR(G)/Rss(G)}

+, where + is the transitive closure operation.
One can see that RLss(G) ⊆ (DR(G) ∪DR(G)/Rss(G))

2 is an equivalence rela-
tion that partitions the set DR(G) ∪ DR(G)/Rss(G) to the equivalence classes
L1, . . . ,Ln, defined as Li = Ki ∪ {Ki} (1 ≤ i ≤ n), where DR(G)/Rss(G) =
{K1, . . . ,Kn}. The relation RLss(G) can be interpreted as a step stochastic
bisimulation between the transition systems TSL(G) and TS↔ss

(G), denoted by
RLss(G) : TSL(G)↔ssTS↔ss

(G), which is defined by analogy (excepting step
semantics) with interleaving probabilistic bisimulation on generative probabilis-
tic transition systems from [16]. It is clear that from this viewpoint, RLss(G)
is also the union of all step stochastic bisimulations and largest step stochastic
bisimulation between TSL(G) and TS↔ss

(G).

The quotient (by ↔ss) reachability graphs are defined similarly to the quo-
tient transition systems. Let ≃ denote isomorphism between quotient transition
systems and quotient reachability graphs that binds their initial states. The fol-
lowing proposition connects quotient (by↔ss) transition systems of the overlined
static expressions and quotient reachability graphs of their dtsd-boxes.

Proposition 5. For any static expression E,

TS↔ss
(E) ≃ RG↔ss

(Boxdtsd(E)).

Proof. See [42].

The quotient (by ↔ss) average sojourn time vector ofG is SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector ofG is V AR↔ss
=V ARRss(G).

Let G be a dynamic expression and K, K̃ ∈ DR(G)/Rss(G). The transition
system TS↔ss

(G) can have self-loops going from an equivalence class to itself
which have a non-zero probability. The current equivalence class remains un-
changed in this case.

Let K → K. The probability to stay in K due to k (k ≥ 1) self-loops is

PM(K,K)k.

The quotient (by ↔ss) self-loops abstraction factor in the equivalence class K is

SL↔ss
(K) =

{ 1
1−PM(K,K) , K → K;

1, otherwise.

The quotient (by ↔ss) self-loops abstraction vector of G, denoted by SL↔ss
,

has the elements SL↔ss
(K), K ∈ DR(G)/Rss(G).

Let K → K̃ and K 6= K̃, i.e. PM(K,K) < 1. The probability to move from K

to K̃ by executing any multiset of activities after possible self-loops is

26 I.V. Tarasyuk

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise;

}
=

SL↔ss
(K)PM(K, K̃).

The value k = 0 in the summation is for the case when no self-loops occur.

Let K ∈ DRT (G)/Rss(G). If there exist self-loops from K (i.e. if K → K)

then PM(K,K) > 0 and SL↔ss
(K) = 1

1−PM(K,K) = SJ↔ss
(K). Otherwise, if

there exist no self-loops from K then PM(K,K) = 0 and SL↔ss
(K) = 1 =

1
1−PM(K,K) = SJ↔ss

(K). Thus, ∀K ∈ DRT (G)/Rss(G) SL↔ss
(K) = SJ↔ss

(K),

hence, ∀K ∈ DRT (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) =

SJ↔ss
(K)PM(K, K̃). Note that the self-loops from the equivalence classes of

tangible states are of the empty or non-empty type, the latter produced by
iteration, since empty loops are not possible from the equivalence classes of w-
tangible states, but they are possible from the equivalence classes of s-tangible
states, while non-empty loops are possible from the equivalence classes of both
s-tangible and w-tangible states.

Let K∈DRV (G)/Rss(G). We have ∀K∈DRV (G)/Rss(G) SL↔ss
(K) 6=

SJ↔ss
(K)=0 and ∀K ∈ DRV (G)/Rss(G) with PM(K,K) < 1 it holds

PM∗(K, K̃) = SL↔ss
(K)PM(K, K̃). If there exist self-loops from K then

PM∗(K, K̃) = PM(K,K̃)
1−PM(K,K) when PM(K,K) < 1. Otherwise, if there exist no

self-loops from K then PM∗(K, K̃) = PM(K, K̃). Note that the self-loops from
the equivalence classes of vanishing states are always of the non-empty type,
produced by iteration, since empty loops are not possible from the equivalence
classes of vanishing states.

Definition 20. Let G be a dynamic expression. The quotient (by↔ss) EDTMC
of G, denoted by EDTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K ։P K̃, if K → K̃ and K 6= K̃, where

P = PM∗(K, K̃); or K ։1 K, if PM(K,K) = 1.

The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss
(G), has

the EDTMC EDTMC↔ss
(G) and the sojourn time in every K∈DRT (G)/Rss(G)

is geometrically distributed with the parameter 1− PM(K,K) while the sojourn
time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The steady-state PMFs ψ∗
↔ss

for EDTMC↔ss
(G) and ϕ↔ss

for SMC↔ss
(G)

are defined like the respective notions ψ∗ for EDTMC(G) and ϕ for SMC(G) [41].

Let ≃ denote isomorphism between SMCs that binds their initial states,
where two SMCs are isomorphic if their EDTMCs are so and the sojourn times in
the isomorphic states of the EDTMCs are identically distributed. The following
proposition establishes a connection between quotient (by ↔ss) SMCs of the
overlined static expressions and quotient SMCs of their dtsd-boxes.

Performance analysis of the shared memory system in dtsdPBC 27

Proposition 6. For any static expression E

SMC↔ss
(E) ≃ SMC↔ss

(Boxdtsd(E)).

Proof. See [42].

The quotients of both transition systems and underlying SMCs are the min-
imal reductions of the mentioned objects modulo step stochastic bisimulations.
The quotients can be used to simplify analysis of system properties which are
preserved by ↔ss, since potentially less states should be examined for it.

Let us consider quotient (by ↔ss) DTMCs of expressions based on the state

change probabilities PM(K, K̃).

Definition 21. Let G be a dynamic expression. The quotient (by ↔ss) DTMC
of G, denoted by DTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is defined like the corre-
sponding notion ψ for DTMC(G) [41].
Eliminating equivalence classes (with respect to Rss(G)) of vanishing states
from the quotient (by ↔ss) DTMCs of expressions results in the reductions of
the DTMCs.

Definition 22. The reduced quotient (by ↔ss) DTMC of G, denoted by
RDTMC↔ss

(G), is defined like RDTMC(G) in [41], but it is constructed from
DTMC↔ss

(G) instead of DTMC(G).

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is defined like the corres-

ponding notion ψ⋄ for RDTMC(G) [41].
The relationships between the steady-state PMFs ψ↔ss

and ψ∗
↔ss

, ϕ↔ss
and

ψ↔ss
, ϕ↔ss

and ψ⋄
↔ss

, are the same as those between their “non-quotient” ver-

sions in Proposition 3, Proposition 4 and Proposition 5 from [41], respectively.

6 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the be-
haviour of stochastic processes in their steady states. We shall consider only
formulas specifying stochastic processes with infinite behavior, i.e. expressions
with the iteration operator. Note that the iteration operator does not guarantee
infiniteness of behaviour, since there can exist a deadlock (blocking) within the
body (the second argument) of iteration when the corresponding subprocess does
not reach its final state by some reasons. In particular, consider the expression
Stop = ({g}, 12) rs g specifying the non-terminating process that performs only
empty loops with probability 1. If the body of iteration contains the Stop expres-
sion then the iteration will be “broken”. On the other hand, the iteration body
can be left after a finite number of its repeated executions and then the iteration

28 I.V. Tarasyuk

termination is started. To avoid executing any activities after the iteration body,
we take Stop as the termination argument of iteration.

We consider only the process expressions such that their underlying SMCs
contain exactly one closed communication class of states, and this class should
be ergodic to ensure uniqueness of the stationary distribution, which is also the
limiting one. The states not belonging to that class do not disturb the uniqueness,
since the closed communication class is single, hence, they all are transient. Then,
for each transient state, the steady-state probability to be in it is zero while the
steady-state probability to enter into the ergodic class starting from that state
is equal to one.

6.1 Steady state, residence time and equivalences

The following proposition demonstrates that, for two dynamic expressions re-
lated by ↔ss, the steady-state probabilities to enter into an equivalence class
coincide. Therefore, the mean recurrence time for an equivalence class is the
same for both expressions.

Proposition 7. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be

the steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′).
Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Proof. The standard proof is analogous to that of Proposition 6 from [47]. The
alternative proof is in [42].

Let G be a dynamic expression and ϕ be the steady-state PMF for SMC(G),
ϕ↔ss

be the steady-state PMF for SMC↔ss
(G). By Proposition 7 (modified for

RLss(G)), we have ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K) =

∑

s∈K

ϕ(s).

Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of ϕ↔ss
for K is

the sum of all values of ϕ corresponding to the states from K.
By Proposition 7, ↔ss preserves the quantitative properties of the stationary

behaviour (the level of SMCs). We now intend to demonstrate that the qualita-
tive properties of the stationary behaviour based on the multiaction labels are
preserved as well (the level of transition systems).

Definition 23. A derived step trace of a dynamic expression G is a chain Σ =

A1 · · ·An ∈ (NL
fin)

∗, where ∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · ·
Υn→ sn, L(Υi) = Ai (1 ≤

i ≤ n). Then the probability to execute the derived step trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···
Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏

i=1

PT (Υi, si−1).

Performance analysis of the shared memory system in dtsdPBC 29

The following theorem demonstrates that, for two dynamic expressions re-
lated by ↔ss, the steady-state probabilities to enter into an equivalence class
and start a derived step trace from it coincide.

Theorem 3. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the

steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′) and
Σ be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).

Proof. The proof is analogous to that of Theorem 4 from [47].

Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G),
ϕ↔ss

be the steady-state PMF for SMC↔ss
(G) and Σ be a derived step trace

of G. By Theorem 3 (modified for RLss(G)), we get ∀K∈DR(G)/Rss(G)

ϕ↔ss
(K)PT (Σ,K)=

∑

s∈K

ϕ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).
The following proposition demonstrates that, for two dynamic expressions

related by ↔ss, the sojourn time averages in an equivalence class coincide, as
well as the sojourn time variances in it.

Proposition 8. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).

Proof. The proof is analogous to that of Proposition 7 from [47].

6.2 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter
into a set of similar states or, after coming in it, to start a derived step trace from
this set. Some of the indices are calculated using the average or the variance of
sojourn time in a set of similar states. The similarity of states is captured by an
equivalence relation, hence, the sets are the equivalence classes. Proposition 7,
Theorem 3 and Proposition 8 guarantee coincidence of the mentioned indices for
the expressions related by ↔ss. Thus, ↔ss (hence, all the stronger equivalences
we have considered) preserves performance of stochastic systems modeled by
expressions of dtsdPBC.

It is easier to evaluate performance using an SMC with less states, since in
this case the size of the transition probability matrix will be smaller, and we shall
solve systems of less equations to calculate steady-state probabilities. The rea-
soning above validates the next method of performance analysis simplification.

30 I.V. Tarasyuk

1. The investigated system is specified by a static expression of dtsdPBC.

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similarity, a step stochastic auto-
bisimulation equivalence for the expression is determined.

4. The quotient underlying SMC is derived from the quotient transition system.

5. Stationary probabilities and performance indices are obtained from the SMC.

The limitation of the method above is its applicability only to the expressions
such that their underlying SMCs contain exactly one closed communication class
of states, and this class should also be ergodic to ensure uniqueness of the sta-
tionary distribution. If an SMC contains several closed communication classes
of states that are all ergodic then several stationary distributions may exist,
which depend on the initial PMF. There is an analytical method to determine
stationary probabilities for SMCs of this kind as well [18]. The underlying SMC
of every process expression has only one initial PMF (that at the time moment
0), hence, the stationary distribution will be unique in this case too. The gen-
eral steady-state probabilities are then calculated as the sum of the stationary
probabilities of all the ergodic classes of states, weighted by the probabilities to
enter into these classes, starting from the initial state and passing through some
transient states. In addition, it is worth applying the method only to the systems
with similar subprocesses.

Alternatively, the results at the end of Section 5 allow us to simplify the steps
4 and 5 of the method above by constructing the reduced quotient DTMC (in-
stead of the quotient underlying SMC) from the quotient transition system, fol-
lowed by calculating the stationary probabilities of the quotient underlying SMC
using that DTMC, and then obtaining the performance indices. In more detail,
the quotient transition system TS↔ss

(E) provides the information both about

the probabilities to move between the equivalence classes of states PM(K, K̃)
and about the equivalence classes of vanishing states DRV (E)/Rss(E). That in-
formation is used to construct the reordered quotient transition probability ma-
trix (TPM) Pr↔ss

, from which the TPM P⋄
↔ss

for RDTMC↔ss
(E) is further

obtained.

Figure 1 presents the main stages of the standard and alternative equivalence-
based simplification of performance evaluation described above.

E TS(E) TS↔ss
(E) SMC↔ss

(E)

RDTMC↔ss
(E)

ϕ↔ss

ψ⋄
↔ss

✲ ✲ ✲

✲
✻❆

❆
❆❯

✲ Performance✲

Fig. 1. Equivalence-based simplification of performance evaluation

Performance analysis of the shared memory system in dtsdPBC 31

7 Generalized shared memory system with maintenance

Let us consider a model of two processors accessing a common shared memory
described in [28, 2, 3] in the continuous time setting on GSPNs. We shall analyze
this shared memory system in the discrete time stochastic setting of dtsdPBC,
where concurrent execution of activities is possible, while no two transitions
of a GSPN may fire simultaneously (in parallel). We also add to the system a
feature of the memory maintenance. Our generalized model parameterizes the
standard shared memory system by treating the probabilities and weights from
its specification as variables (parameters). The model behaves as follows. After
activation of the system (turning the computer on), two processors are active,
and the common memory is available. Each processor can request an access to
the memory after which the instantaneous decision is made, if the memory is
available. When the decision is made in favour of a processor, it starts acquisition
of the memory and the other processor should wait until the former one ends
its memory operations, and the system returns to the state with both active
processors and available common memory. If the memory is available and not
required then its maintenance can be initiated, followed by the short memory
service works (for example, the checksum test) during a fixed period of time,
after which the memory becomes available again. If the memory requirement
and its maintenance initiation happen at the same time then the service works
start and no decision on the memory allocation is made while the memory is
maintained. The diagram of the system is depicted in Figure 2.

✲

✛

✛

✲

Processor 1 Processor 2Memory

✍✌✎☞❥❤❤❤❤
❤❤❤❤ �✁

Fig. 2. The diagram of the shared memory system with maintenance

7.1 The concrete system

The meaning of actions from the dtsdPBC expressions which will specify the
system modules is as follows. The action a corresponds to the system activation.
The action c specifies the memory maintenance initiation. The action emeans the
short memory service (taking a fixed time of 1 unit). The actions ri (1 ≤ i ≤ 2)
represent the common memory request (whose probability is 10 times greater
than that of the maintenance initiation) of processor i. The actions di corre-
spond to the (instantaneous) decision on the memory allocation in favour of the

32 I.V. Tarasyuk

processor i. The actions mi represent the common memory access of processor i.
The other actions are used for communication purposes only via synchronization,
and we abstract from them later using restriction. For a1, . . . , an ∈ Act (n ∈ N),
we abbreviate sy a1 · · · sy an rs a1 · · · rs an to sr (a1, . . . , an).

We take general values for all specified multiaction probabilities and weights.
Let all stochastic multiactions have the same generalized probability ρ ∈ (0; 1)
and all deterministic ones have the same generalized weight l ∈ R>0. The speci-
fication K of the generalized shared memory system with maintenance follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with main-
tenance is

K = (K1‖K2‖K3) sr (x1, x2, y1, y2, z1, z2).

Let us illustrate an effect of synchronization. As a result of the synchroniza-
tion of immediate multiactions ({di, yi}, ♮0l) and ({ŷi}, ♮0l) we get is ({di}, ♮2l) (1 ≤
i ≤ 2). The synchronization of stochastic multiactions ({mi, zi}, ρ) and ({ẑi}, ρ)
produces ({mi}, ρ2) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2}, ρ)
with ({x1}, ρ) is ({a, x̂2}, ρ2), and that of synchronization of ({a, x̂1, x̂2}, ρ)
with ({x2}, ρ) is ({a, x̂1}, ρ2). After applying synchronization to ({a, x̂2}, ρ2) and
({x2}, ρ), as well as to ({a, x̂1}, ρ2) and ({x1}, ρ), we get the activity ({a}, ρ3).

DR(K) consists of the equivalence classes

s̃1 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃2 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

Performance analysis of the shared memory system in dtsdPBC 33

s̃3 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l)

1)[](({ŷ1}, ♮0l); ({ẑ1}, ρ))[]
(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃4 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃5 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃6 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l)

1)[](({ŷ1}, ♮0l); ({ẑ1}, ρ))[]
(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃7 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l)

1)[](({ŷ1}, ♮0l); ({ẑ1}, ρ))[]
(({ŷ2}, ♮

0
l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃8 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l)

1)[](({ŷ1}, ♮0l); ({ẑ1}, ρ))[]
(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃9 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃10 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

34 I.V. Tarasyuk

s̃11 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖
[({a, x̂1, x̂2}, ρ) ∗ ((({c},

ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃12 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

s̃13 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l); ({m2, z2}, ρ)) ∗ Stop]‖
[({a, x̂1, x̂2}, ρ) ∗ ((({c},

ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop]) sr (x1, x2, y1, y2, z1, z2)]≈,

We have DRST (K) = {s̃1, s̃2, s̃10, s̃11, s̃12, s̃13}, DRWT (K) = {s̃3, s̃6, s̃7, s̃8}
and DRV (K) = {s̃4, s̃5, s̃9}.

The states are interpreted as follows: s̃1 is the initial state in which the system
is not activated; s̃2: the system is activated and the memory is not requested
and its maintenance is not initiated; s̃3: the memory maintenance is initiated; s̃4:
the memory is requested by the first processor; s̃5: the memory is requested by
the second processor; s̃6: the memory maintenance is initiated and the memory
is requested by two processors; s̃7: the memory maintenance is initiated and
the memory is requested by the first processor; s̃8: the memory maintenance is
initiated and the memory is requested by the second processor; s̃9: the memory is
requested by two processors; s̃10: the memory is allocated to the first processor;
s̃11: the memory is allocated to the second processor; s̃12: the memory is allocated
to the first processor and requested by the second processor; s̃13: the memory is
allocated to the second processor and requested by the first processor.

In Figure 3, the transition system TS(K) is presented. In Figure 4, the under-
lying SMC SMC(K) is depicted. In step semantics, we can execute the follow-
ing activities in parallel: ({r1}, ρ), ({r2}, ρ), as well as ({r1}, ρ), ({m2}, ρ2), and
({r2}, ρ), ({m1}, ρ2). We can also execute in parallel ({r1}, ρ), ({c},

ρ
10), as well as

({r2}, ρ), ({c},
ρ
10), and even ({r1}, ρ), ({r2}, ρ), ({c},

ρ
10). The states s̃6, s̃7, s̃8, s̃9

only exist in step semantics, since they are reachable exclusively by executing
all three activities ({r1}, ρ), ({r2}, ρ), ({c},

ρ
10) or any pair of them in parallel.

The average sojourn time vector of K is

S̃J=

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 0, 1, 1, 1, 0,

1

ρ(1 + ρ− ρ2)
,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K is

Performance analysis of the shared memory system in dtsdPBC 35

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃10

✛
✚

✘
✙s̃12

✛
✚

✘
✙s̃11

✛
✚

✘
✙s̃13

❄

❄ ❄

TS(K)

s̃4 s̃5

s̃9

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

✛
✚

✘
✙s̃3

❄

❄

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃8

✻ ✻

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙s̃6

✓
✒

✏
✑

✛ ✲

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✌

❇
❇
❇
❇
❇
❇
❇❇

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇▼

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙❙♦
�

�
�

�
�

�
�✠

❅
❅
❅
❅
❅
❅
❅❘

✞ ☎
❄

({a},ρ3),ρ3

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(10−ρ)(1−ρ)2

10

({r1},ρ),

ρ(10−ρ)(1−ρ)
10

({r2},ρ),

ρ(10−ρ)(1−ρ)
10

{({r1},ρ),

({c},
ρ
10

)},

ρ2(1−ρ)
10

{({r2},ρ),

({c},
ρ
10

)},

ρ2(1−ρ)
10

({c},
ρ
10

),

ρ(1−ρ)2

10

{({r1},ρ),

({r2},ρ),

({c}, ρ
10

)}, ρ
3

10

{({r1},ρ),

({r2},ρ)},

ρ2(10−ρ)
10

({d1},♮02l),1 ({d2},♮02l),1

({e},♮1
l
),

1

({e},♮1
l
),1 ({e},♮1

l
),1

({e},♮1
l
),1

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

{({r2},ρ),

({m1},ρ2)},

ρ3

{({r1},ρ),

({m2},ρ2)},

ρ3

({d1},♮02l),
1
2

({d2},♮02l),
1
2

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

✛ ✲

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇◆

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

✓
✒

✏
✑

✻

Fig. 3. The transition system of the generalized shared memory system with mainte-
nance

36 I.V. Tarasyuk

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃10

✛
✚

✘
✙s̃12

✛
✚

✘
✙s̃11

✛
✚

✘
✙s̃13

❄

❄ ❄

SMC(K)

s̃4 s̃5

s̃9

✛
✚

✘
✙s̃3

❄

❄

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃8

✻ ✻

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙s̃6

✓
✒

✏
✑

✛ ✲

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✌

❇
❇
❇
❇
❇
❇
❇❇

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇▼

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙❙♦
�

�
�

�
�

�
�✠

❅
❅
❅
❅
❅
❅
❅❘

1

1−ρ2

1+ρ−ρ2
1−ρ2

1+ρ−ρ2

(10−ρ)(1−ρ)

21−12ρ+ρ2
(10−ρ)(1−ρ)

21−12ρ+ρ2

ρ(1−ρ)

21−12ρ+ρ2
ρ(1−ρ)

21−12ρ+ρ2

(1−ρ)2

21−12ρ+ρ2

ρ2

21−12ρ+ρ2

ρ(10−ρ)

21−12ρ+ρ2

1 1

11 1

1

ρ(1−ρ)

1+ρ−ρ2
ρ(1−ρ)

1+ρ−ρ2

ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

1
2

1
2

1 1

1
ρ3

10
ρ(21−12ρ+ρ2)

0

1 1

0

1

1
ρ(1+ρ−ρ2)

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ2

0

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇◆

✛ ✲

s̃3

✓
✒

✏
✑

✻

1

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈

Fig. 4. The underlying SMC of the generalized shared memory system with mainte-
nance

Performance analysis of the shared memory system in dtsdPBC 37

Ṽ AR=
(

1−ρ3

ρ6 , 10(10−ρ)(1−ρ)2

ρ2(21−12ρ+ρ2)2 , 0, 0, 0, 0, 0, 0, 0,
(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 ,

(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 ,

1−ρ2

ρ4 , 1−ρ2

ρ4

)
.

Let us denote χ = 21− 12ρ+ ρ2, θ = 1 + ρ− ρ2 and µ = 10− ρ. The TPM
for EDTMC(K) is

P̃∗ =

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 (1−ρ)2

χ

µ(1−ρ)
χ

µ(1−ρ)
χ

ρ2

χ

ρ(1−ρ)
χ

ρ(1−ρ)
χ

ρµ
χ

0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

2
1
2

0 ρ(1−ρ)
θ

0 0 ρ2

θ
0 0 0 0 0 0 1−ρ2

θ
0

0 ρ(1−ρ)
θ

0 ρ2

θ
0 0 0 0 0 0 0 0 1−ρ2

θ

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

.

The steady-state PMF for EDTMC(K) is

ψ̃∗= 1
60+32ρ−94ρ2+23ρ3−ρ4 (0, ρ(1− ρ)(21− 12ρ+ ρ2), ρ(1− ρ)3, 5(2− ρ)(1 + ρ− ρ2),

5(2− ρ)(1 + ρ− ρ2), ρ3(1− ρ), ρ2(1− ρ)2, ρ2(1− ρ)2, 10ρ2(1− ρ),
5(2− ρ)(1 + ρ− ρ2), 5(2− ρ)(1 + ρ− ρ2), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

The steady-state PMF ψ̃∗ weighted by S̃J is

1
ρ2(60+32ρ−94ρ2+23ρ3−ρ4) (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, 0, ρ5(1 − ρ), ρ4(1− ρ)2,

ρ4(1− ρ)2, 0, 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

It remains to normalize the steady-state weighted PMF by dividing it by the
sum of its components

ψ̃∗S̃J
T
=

20 + 10ρ− 10ρ2 − 9ρ3 − ρ4

ρ2(60 + 32ρ− 94ρ2 + 23ρ3 − ρ4)
.

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, 0, ρ5(1 − ρ), ρ4(1− ρ)2,

ρ4(1− ρ)2, 0, 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

Otherwise, from TS(K), we can construct the DTMC of K, DTMC(K),
and then calculate ϕ̃ using it.

38 I.V. Tarasyuk

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃10

✛
✚

✘
✙s̃12

✛
✚

✘
✙s̃11

✛
✚

✘
✙s̃13

❄

❄ ❄

DTMC(K)

s̃4 s̃5

s̃9

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

❄

✛
✚

✘
✙s̃6

❄

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃8

✻ ✻

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙s̃3

✓
✒

✏
✑

✛ ✲

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✌

❇
❇
❇
❇
❇
❇
❇❇

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇▼

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙❙♦
�

�
�

�
�

�
�✠

❅
❅
❅
❅
❅
❅
❅❘

✞ ☎
❄

ρ3

ρ(1−ρ2) ρ(1−ρ2)

(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

1−ρ3

(10−ρ)(1−ρ)2

10

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(1−ρ)
10

ρ2(1−ρ)
10

ρ(1−ρ)2

10

ρ3

10

ρ2(10−ρ)
10

1 1

11 1

1

ρ2(1−ρ) ρ2(1−ρ)

ρ3 ρ3

1
2

1
2

ρ2 ρ2

✛ ✲

✻

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇◆

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

Fig. 5. The DTMC of the generalized shared memory system with maintenance

Performance analysis of the shared memory system in dtsdPBC 39

In Figure 5, the DTMC DTMC(K) is depicted.
Let us denote µ = 10− ρ. The TPM for DTMC(K) is

P̃=

1 − ρ3 ρ3 0 0 0 0 0 0 0 0 0 0 0

0
µ(1−ρ)2

10
ρ(1−ρ)2

10
ρµ(1−ρ)

10
ρµ(1−ρ)

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
ρ2µ
10

0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 ρ2(1 − ρ) 0 0 ρ3 0 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

0 ρ2(1 − ρ) 0 ρ3 0 0 0 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 0 0 0 ρ2 0 0 0 0 0 0 1 − ρ2 0

0 0 0 ρ2 0 0 0 0 0 0 0 0 1 − ρ2

.

The steady-state PMF for DTMC(K) is

ψ̃ = 1
20+10ρ+10ρ2+ρ3−21ρ4 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 5ρ2(2− ρ)(1 + ρ− ρ2),

5ρ2(2− ρ)(1 + ρ− ρ2), ρ5(1− ρ), ρ4(1 − ρ)2, ρ4(1− ρ)2, 10ρ4(1− ρ), 5ρ(2− ρ),
5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

Remember that DRT (K) = DRST (K) ∪DRWT (K) = {s̃1, s̃2, s̃3, s̃6, s̃7, s̃8,
s̃10, s̃11, s̃12, s̃13} and DRV (K) = {s̃4, s̃5, s̃9}. Hence,

∑
s̃∈DRT (K) ψ̃(s̃) = ψ̃(s̃1) + ψ̃(s̃2) + ψ̃(s̃3) + ψ̃(s̃6) + ψ̃(s̃7) + ψ̃(s̃8) + ψ̃(s̃10)+

ψ̃(s̃11) + ψ̃(s̃12) + ψ̃(s̃13) =
20+10ρ−10ρ2−9ρ3−ρ4

20+10ρ+10ρ2+ρ3−21ρ4 .

By Proposition 4 from [41], we have

ϕ̃(s̃1) = 0 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 0,

ϕ̃(s̃2) =
10ρ2(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃3) =
ρ3(1−ρ)3

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) = 0,

ϕ̃(s̃6) =
ρ5(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ5(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃7) =
ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃8) =
ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃9) = 0,

ϕ̃(s̃10) =
5ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃11) =
5ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃12) =
5(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃13) =
5(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

40 I.V. Tarasyuk

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, 0, ρ5(1 − ρ), ρ4(1− ρ)2,

ρ4(1− ρ)2, 0, 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
Alternatively, from TS(K), we can construct the reduced DTMC of K,

RDTMC(K), and then calculate ϕ̃ using it.
Remember that DRST (K) = {s̃1, s̃2, s̃10, s̃11, s̃12, s̃13}, DRWT (K) =

{s̃3, s̃6, s̃7, s̃8}, DRV (K) = {s̃4, s̃5, s̃9}. We reorder the elements of DR(K), by
moving vanishing states to the first positions and s-tangible states to the last
positions: s̃4, s̃5, s̃9, s̃3, s̃6, s̃7, s̃8, s̃1, s̃2, s̃10, s̃11, s̃12, s̃13.

Let us denote µ = 10− ρ. The reordered TPM for DTMC(K) is

P̃r=

0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 − ρ3 ρ3 0 0 0 0

ρµ(1−ρ)
10

ρµ(1−ρ)
10

ρ2µ
10

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
0

µ(1−ρ)2

10
0 0 0 0

0 ρ3 0 0 0 0 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 0 0 0 0 1 − ρ2

.

The result of the decomposing P̃r are the matrices

C̃ =

(
0 0 0
0 0 0
0 0 0

)
, D̃ =

(
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

2
1
2

)
, Ẽ =

0 0 0
0 0 1
1 0 0
0 1 0
0 0 0

ρµ(1−ρ)
10

ρµ(1−ρ)
10

ρ2µ
10

0 ρ3 0
ρ3 0 0
0 ρ2 0
ρ2 0 0

,

F̃=

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10 0 µ(1−ρ)2

10 0 0 0 0
0 0 0 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0
0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)
0 0 0 0 0 0 0 0 1 − ρ2 0
0 0 0 0 0 0 0 0 0 1 − ρ2

.

Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G̃ =

l∑

k=0

C̃k = C̃0 = I.

Performance analysis of the shared memory system in dtsdPBC 41

Further, the TPM for RDTMC(K) is

P̃⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
0

µ(1−ρ)2

10
ρµ(1−ρ)

10
ρµ(1−ρ)

10
ρ2µ
20

ρ2µ
20

0 0 0 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) ρ3 ρ(1 − ρ2) 0

0 0 0 0 0 ρ2(1 − ρ) ρ3 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 0 0 0 0 0 0 ρ2 1 − ρ2 0

0 0 0 0 0 0 ρ2 0 0 1 − ρ2

.

In Figure 6, the reduced DTMC RDTMC(K) is presented.

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃10

✛
✚

✘
✙s̃12

✛
✚

✘
✙s̃11

✛
✚

✘
✙s̃13

❄ ❄

RDTMC(K)

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

❄

✛
✚

✘
✙s̃6

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃8

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙s̃3

✓
✒

✏
✑

✛ ✲

✞ ☎
❄

ρ3

ρ(1−ρ2) ρ(1−ρ2)

(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

1−ρ3

(10−ρ)(1−ρ)2

10

ρ2(1−ρ)
10

ρ2(1−ρ)
10

ρ(1−ρ)2

10

1

ρ2(1−ρ) ρ2(1−ρ)
❄ ❄

✛ ✲

❳❳❳❳❳❳❳❳❳✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳②

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

PPPPPPPPPPPPPPPPPPP✐

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(10−ρ)
20

ρ2(10−ρ)
20

ρ3

10

1

1
2

1
2

ρ3

ρ3

ρ2 ρ2

1

❄

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇◆

✻
�

�
�

�
�

�
�✠

❅
❅
❅
❅
❅
❅
❅❘

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

�
�
�
�
�
��✒

❅
❅

❅
❅

❅
❅❅■

Fig. 6. The reduced DTMC of the generalized shared memory system with maintenance

Then the steady-state PMF for RDTMC(K) is

ψ̃⋄ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (ρ

3(1− ρ)3, ρ5(1 − ρ), ρ4(1− ρ)2, ρ4(1− ρ)2, 0,

10ρ2(1 − ρ), 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

42 I.V. Tarasyuk

Note that ψ̃⋄ = (ψ̃⋄(s̃3), ψ̃
⋄(s̃6), ψ̃

⋄(s̃7), ψ̃
⋄(s̃8), ψ̃

⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃10),
ψ̃⋄(s̃11), ψ̃

⋄(s̃12), ψ̃
⋄(s̃13)). By Proposition 5 from [41], we have

ϕ̃(s̃1) = 0, ϕ̃(s̃2) =
10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃3) =
ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃4) = 0,

ϕ̃(s̃5) = 0, ϕ̃(s̃6) =
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃7) =
ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃8) =
ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃9) = 0, ϕ̃(s̃10) =
5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃11) =
5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃12) =
(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃13) =
(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, 0, ρ5(1 − ρ), ρ4(1− ρ)2,

ρ4(1− ρ)2, 0, 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
We can now calculate the main performance indices.

– The average recurrence time in the state s̃2, where no processor requests
the memory and its maintenance is not initiated, called the average system

run-through, is 1
ϕ̃2

= 20+10ρ−10ρ2−9ρ3−ρ4

10ρ2(1−ρ) .

– The system is not activated only in the state s̃1. Then the steady-state
probability that the system is activated is 1 − ϕ̃1 = 1 − 0 = 1. The com-
mon memory is only available in the states s̃2, s̃4, s̃5, s̃9. Then the steady-
state probability that the memory is available is ϕ̃2 + ϕ̃4 + ϕ̃5 + ϕ̃9 =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 +0+0+0 = 10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 . The common memory is
maintained only in the states s̃3, s̃6, s̃7, s̃8. Then the steady-state probability

that the memory is maintained is ϕ̃3 + ϕ̃6+ ϕ̃7+ ϕ̃8 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 +
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 + ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 + ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 =
ρ3(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 . Thus, the steady-state probability that the memory is

used (i.e. neither available nor maintained), called the shared memory utiliza-

tion, is 1− 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 − ρ3(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 = 10(2+ρ−2ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

– After activation of the system, we leave the state s̃1 for ever, and the common
memory is either requested or allocated or maintained in every remaining
state, with exception of s̃2. Thus, the rate with which the necessity (also for
maintenance) of shared memory emerges coincides with the rate of leaving s̃2,

calculated as ϕ̃2

S̃J2
= 10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ·
ρ(21−12ρ+ρ2)

10 = ρ3(1−ρ)(21−12ρ+ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

– The parallel common memory request of two processors {({r1}, ρ), ({r2}, ρ)}
is only possible from the state s̃2. In this state, the request probability is the
sum of the execution probabilities for all multisets of activities containing

Performance analysis of the shared memory system in dtsdPBC 43

both ({r1}, ρ) and ({r2}, ρ). The steady-state probability of the shared mem-
ory request from two processors is ϕ̃2

∑
{Υ |({({r1},ρ),({r2},ρ)}⊆Υ} PT (Υ, s̃2) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ2(10−ρ)

10 + ρ3

10

)
= 10ρ4(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

– The common memory request of the first processor ({r1}, ρ) is possible from
the states s̃2, s̃11. In each of them, the request probability is the sum of the
execution probabilities for all sets of activities containing ({r1}, ρ). The ste-
ady-state probability of the shared memory request from the first processor is
ϕ̃2

∑
{Υ |({r1},ρ)∈Υ} PT (Υ, s̃2) + ϕ̃11

∑
{Υ |({r1},ρ)∈Υ} PT (Υ, s̃11) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ(10−ρ)(1−ρ)

10 + ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+

5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1 − ρ2) + ρ3) = 5ρ2(2+ρ−2ρ2)

20+10ρ−10ρ2−9ρ3−ρ4 .

In Figure 7, the marked dtsd-boxes corresponding to the dynamic expressions of
the generalized two processors, shared memory and shared memory system with
maintenance are presented, i.e.Ni=Boxdtsd(Ki) (1 ≤ i ≤ 3) andN=Boxdtsd(K).

({m2,z2},ρ)

({d2,y2},♮
0
l)

✍

✍✌✎☞✉ e

({r2},ρ)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞
x

✍✌✎☞

✜

✢

✛

({m1,z1},ρ)

✍✌✎☞
({d1,y1},♮

0
l)

✍✌✎☞
x

({r1},ρ)

✍✌✎☞
❄

❄

✠

✍✌✎☞✉ e

✍✌✎☞

❄

✛

✚

✲

({x1},ρ)
❄

❄

❄

❄

❄

❄

({x2},ρ)
❄

❄

N1 N2

({a,x̂1,x̂2},ρ)

({ẑ1},ρ) ({ẑ2},ρ)

({ŷ1},♮
0
l) ({ŷ2},♮

0
l)

({c}, ρ
10) ({e},♮1l)

✍✌✎☞

✍✌✎☞
��✠ ❅❅❘

✠✍ ✕✖

✻✻

N3

✍✌✎☞
x

✍✌✎☞✉
❄

e

✍✌✎☞❄

❄
✍✌✎☞❄

❄

({a},ρ3)

✍✌✎☞✉
❄

e

N

({m1},ρ
2) ({m2},ρ

2)

✍✌✎☞ ✍✌✎☞
({d1},♮

0
2l)

✍✌✎☞
x

({d2},♮
0
2l)

({r1},ρ)

✍✌✎☞
❄

❄

✠ ✍

✍✌✎☞✉ e✍✌✎☞✉ e

❅❅❘ ��✠

✍✌✎☞

❄

({r2},ρ)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞
x✍✌✎☞

x

✍✌✎☞

✍✌✎☞ ✍✌✎☞✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✚
✚❂

❩
❩⑦

��✠ ❅❅❘

✠✍

✛

✚

✜

✢

✲ ✛

✕✖

✻✻

({c}, ρ
10) ({e},♮1l)

✍✌✎☞

❇
❇
❇
❇
❇
❇
❇
❇▼ ✄

✄
✄
✄
✄
✄
✄
✄✎

❙
❙
❙✇ ✓

✓✓✼

�
�✒ ❅

❅❘

�
�✠❅

❅■

❚
❚❚
✄
✄
✄
✄
✄✎

✂
✂
✂
✂
✂✂✌

❅
❅

Fig. 7. The marked dtsd-boxes of the generalized two processors, shared memory and
shared memory system with maintenance

7.2 The abstract system and its reduction

Let us consider a modification of the generalized shared memory system with
maintenance via abstraction from identifiers of the processors, i.e. such that the

44 I.V. Tarasyuk

processors are indistinguishable. For example, we can just see that a processor
requires memory or the memory is allocated to it but cannot observe which
processor is it. We call this system the abstract generalized shared memory
system with maintenance. To implement the abstraction, we replace the actions
ri, di,mi (1 ≤ i ≤ 2) in the system specification by r, d,m, respectively.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, ♮
0
l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, ♮
0
l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10); ({e}, ♮

1
l))[](({ŷ1}, ♮

0
l); ({ẑ1}, ρ))[]

(({ŷ2}, ♮0l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with
maintenance is

L = (L1‖L2‖L3) sr (x1, x2, y1, y2, z1, z2).

DR(L) = {s̃′1, . . . , s̃
′
13} resembles DR(K), and TS(L) is similar to TS(K).

Since SMC(L) ≃ SMC(K), the average sojourn time vectors of L and K, the
TPMs and the steady-state PMFs for EDTMC(L) and EDTMC(K) coincide.

The first, second, third and fourth performance indices are the same for the
generalized system and its abstract modification. Let us consider the following
performance index which is specific to the abstract system.

– The common memory request of a processor ({r}, ρ) is possible from the
states s̃′2, s̃

′
10, s̃

′
11. In each of them, the request probability is the sum of

the execution probabilities for all sets of activities containing ({r}, ρ). The
steady-state probability of the shared memory request from a processor is
ϕ̃2

∑
{Υ |({r},ρ)∈Υ} PT (Υ, s̃

′
2) + ϕ̃10

∑
{Υ |({r},ρ)∈Υ} PT (Υ, s̃

′
10) +

ϕ̃11

∑
{Υ |({r},ρ)∈Υ} PT (Υ, s̃

′
11) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ(10−ρ)(1−ρ)

10 +

ρ(10−ρ)(1−ρ)
10 + ρ2(1−ρ)

10 + ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+

5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1− ρ2) + ρ3) + 5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1− ρ2) + ρ3) =
10ρ2(2−ρ)(1+ρ−ρ2)

20+10ρ−10ρ2−9ρ3−ρ4 .

We have DR(L)/Rss(L) = {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6, K̃7, K̃8, K̃9}, where K̃1 =

{s̃′1} (the initial state in which the system is not activated), K̃2 = {s̃′2} (the
system is activated and the memory is not requested and its maintenance is not
initiated), K̃3 = {s̃′3} (the memory maintenance is initiated), K̃4 = {s̃′4, s̃

′
5} (the

memory is requested by a processor), K̃5 = {s̃′6} (the memory maintenance is

Performance analysis of the shared memory system in dtsdPBC 45

initiated and the memory is requested by two processors), K̃6 = {s̃′7, s̃
′
8} (the

memory maintenance is initiated and the memory is requested by a processor),

K̃7 = {s̃′9} (the memory is requested by two processors), K̃8 = {s̃′10, s̃
′
11} (the

memory is allocated to a processor), K̃9 = {s̃′12, s̃
′
13} (the memory is allocated

to a processor and requested by another processor).

We have DRST (L)/Rss(L) = {K̃1, K̃2, K̃8, K̃9}, DRWT (L)/Rss(L) =

{K̃3, K̃5, K̃6}, DRV (L)/Rss(L) = {K̃4, K̃7}.

In Figure 8, the quotient transition system TS↔ss
(L) is presented. In Figure

9, the quotient underlying SMC SMC↔ss
(L) is depicted. Note that, in step

semantics, we may execute the following multiactions in parallel: {r}, {r}, as well
as {r}, {m}. We can also execute in parallel {r}, {c}, and even {r}, {r}, {c}. The

states K̃5, K̃6, K̃7 only exist in step semantics, since they are reachable exclusively
by executing all three multiactions {r}, {r}, {c} or any pair of them in parallel.

The quotient average sojourn time vector of F is

S̃J
′
=

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 1, 1, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2

)
.

The quotient sojourn time variance vector of F is

Ṽ AR
′
=

(
1− ρ3

ρ6
,
10(10− ρ)(1 − ρ)2

ρ2(21− 12ρ+ ρ2)2
, 0, 0, 0, 0, 0,

(1 − ρ2)(1− ρ)

ρ2(1 + ρ− ρ2)2
,
1− ρ2

ρ4

)
.

The TPM for EDTMC↔ss
(L) is

P̃′∗=

0 1 0 0 0 0 0 0 0

0 0 (1−ρ)2

21−12ρ+ρ2

2(10−ρ)(1−ρ)
21−12ρ+ρ2

ρ2

21−12ρ+ρ2

2ρ(1−ρ)
21−12ρ+ρ2

ρ(10−ρ)
21−12ρ+ρ2 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0

.

The steady-state PMF for EDTMC↔ss
(L) is

ψ̃′∗ = 1
60+32ρ−94ρ2+23ρ3−ρ4 (0, ρ(1− ρ)(21− 12ρ+ ρ2), ρ(1− ρ)3,

10(2− ρ)(1 + ρ− ρ2), ρ3(1− ρ), 2ρ2(1− ρ)2, 10ρ2(1− ρ), 10(2− ρ)(1 + ρ− ρ2),
10(1− ρ)(2 + ρ)).

The steady-state PMF ψ̃′∗ weighted by S̃J
′
is

46 I.V. Tarasyuk

✛
✚

✘
✙K̃1

✛
✚

✘
✙K̃2

✛
✚

✘
✙K̃8

✛
✚

✘
✙K̃9

❄

❄

TS↔ss
(L)

K̃4

K̃7

✲✞✝

✲✞✝

✝ ✆✻

❄

✛
✚

✘
✙K̃5

❄

✛
✚

✘
✙K̃6

✻

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙K̃3

✓
✒

✏
✑

✛

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

�
�

�
�

�
�

�✠

✞ ☎
❄

{a},ρ3

{r},ρ(1−ρ2)

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(10−ρ)(1−ρ)2

10

{r},
ρ(10−ρ)(1−ρ)

5

{{r},{c}},

ρ2(1−ρ)
5

{c},

ρ(1−ρ)2

10

{{r},{r},{c}},

ρ3

10

{{r},{r}},

ρ2(10−ρ)
10

{d},1

{e},1{e},1

{e},1

{m},ρ2(1−ρ)

{{r},{m}},

ρ3

{d},1

{m},ρ2

✂
✂
✂
✂
✂
✂
✂✂✍

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

❇
❇
❇
❇
❇
❇
❇❇

✛

✻

❈
❈
❈
❈
❈
❈
❈❲

✄
✄
✄
✄
✄
✄
✄✄

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

Fig. 8. The quotient transition system of the abstract generalized shared memory
system with maintenance

Performance analysis of the shared memory system in dtsdPBC 47

✛
✚

✘
✙K̃1

✛
✚

✘
✙K̃2

✛
✚

✘
✙K̃8

✛
✚

✘
✙K̃9

❄

❄

SMC↔ss
(L)

K̃4

K̃7

❄

✛
✚

✘
✙K̃5

❄

✛
✚

✘
✙K̃6

✻

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙K̃3

✓
✒

✏
✑

✛

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

�
�

�
�

�
�

�✠

1

1−ρ2

1+ρ−ρ2

2(10−ρ)(1−ρ)

21−12ρ+ρ2

2ρ(1−ρ)

21−12ρ+ρ2

(1−ρ)2

21−12ρ+ρ2

ρ2

21−12ρ+ρ2

ρ(10−ρ)

21−12ρ+ρ2

1

11

1

ρ(1−ρ)

1+ρ−ρ2
ρ2

1+ρ−ρ2

1

1

1
ρ3

10
ρ(21−12ρ+ρ2)

0

1

1
ρ(1+ρ−ρ2)

1

1
ρ2

1

0

✂
✂
✂
✂
✂
✂
✂✂✍

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

❇
❇
❇
❇
❇
❇
❇❇

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

✛

✻

❈
❈
❈
❈
❈
❈
❈❲

✄
✄
✄
✄
✄
✄
✄✄

Fig. 9. The quotient underlying SMC of the abstract generalized shared memory sys-
tem with maintenance

48 I.V. Tarasyuk

1
60+32ρ−94ρ2+23ρ3−ρ4 (0, 10(1− ρ), ρ(1− ρ)3, 0, ρ3(1− ρ), 2ρ2(1− ρ)2, 0,

10(2− ρ), 10(1− ρ)(2 + ρ)).

It remains to normalize the steady-state weighted PMF by dividing it by the
sum of its components

ψ̃′∗S̃J
′T

=
20 + 10ρ− 10ρ2 − 9ρ3 − ρ4

ρ2(60 + 32ρ− 94ρ2 + 23ρ3 − ρ4)
.

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0,

10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Otherwise, from TS↔ss
(L), we can construct the quotient DTMC of L,

DTMC↔ss
(L), and then calculate ϕ̃′ using it.

In Figure 10, the quotient DTMC DTMC↔ss
(L) is depicted.

The TPM for DTMC↔ss
(L) is

P̃′=

1− ρ3 ρ3 0 0 0 0 0 0 0

0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5
ρ3

10
ρ2(1−ρ)

5
ρ2(10−ρ)

10
0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 ρ2(1− ρ) 0 ρ3 0 0 0 (1− ρ)(1− ρ2) ρ(1− ρ2)
0 0 0 ρ2 0 0 0 0 1− ρ2

.

The steady-state PMF for DTMC↔ss
(L) is

ψ̃′ = 1
20+10ρ+10ρ2+ρ3−21ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 10ρ2(2− ρ)(1 + ρ− ρ2),

ρ5(1− ρ), 2ρ4(1− ρ)2, 10ρ4(1 − ρ), 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Remember that DRT (L)/Rss(L) = DRST (L)/Rss(L) ∪DRWT (L)/Rss(L) =

{K̃1, K̃2, K̃3, K̃5, K̃6, K̃8, K̃9} and DRV (L)/Rss(L) = {K̃4, K̃7}. Hence,

∑
K̃∈DRT (L)/Rss(L)

ψ̃′(K̃) = ψ̃′(K̃1) + ψ̃′(K̃2) + ψ̃′(K̃3) + ψ̃′(K̃5) + ψ̃′(K̃6)+

ψ̃′(K̃8) + ψ̃′(K̃9) =
20+10ρ−10ρ2−9ρ3−ρ4

20+10ρ+10ρ2+ρ3−21ρ4 .

By the “quotient” analogue of Proposition 4 from [41], we have

Performance analysis of the shared memory system in dtsdPBC 49

✛
✚

✘
✙K̃1

✛
✚

✘
✙K̃2

✛
✚

✘
✙K̃8

✛
✚

✘
✙K̃9

❄

❄

DTMC↔ss
(L)

K̃4

K̃7

✲✞✝

✲✞✝

✝ ✆✻

❄

✛
✚

✘
✙K̃5

❄

✛
✚

✘
✙K̃6

✻

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙K̃3

✓
✒

✏
✑

✛

❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

�
�

�
�

�
�

�✠

✞ ☎
❄

ρ3

ρ(1−ρ2)

(1−ρ)(1−ρ2)

1−ρ2

1−ρ3

(10−ρ)(1−ρ)2

10

ρ(10−ρ)(1−ρ)
5

ρ2(1−ρ)
5

ρ(1−ρ)2

10

ρ3

10

ρ2(10−ρ)
10

1

11

1

ρ2(1−ρ)ρ3

1

ρ2

✂
✂
✂
✂
✂
✂
✂✂✍

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

❇
❇
❇
❇
❇
❇
❇❇

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄ ✻

✛

❈
❈
❈
❈
❈
❈
❈❲

✄
✄
✄
✄
✄
✄
✄✄

Fig. 10. The quotient DTMC of the abstract generalized shared memory system with
maintenance

50 I.V. Tarasyuk

ϕ̃′(K̃1) = 0 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 0,

ϕ̃′(K̃2) =
10ρ2(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃3) =
ρ3(1−ρ)3

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃4) = 0,

ϕ̃′(K̃5) =
ρ5(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ5(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃6) =
2ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃7) = 0,

ϕ̃′(K̃8) =
10ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃9) =
10(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0,

10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

Alternatively, from TS↔ss
(L), we can construct the reduced quotient DTMC

of L, RDTMC↔ss
(L), and then calculate ϕ̃′ using it. By Proposition 9 from [42],

it coincides with the quotient reduced DTMC of L, the quotient of RDTMC(L).

Remember that DRST (L)/Rss(L) = {K̃1, K̃2, K̃8, K̃9}, DRWT (L)/Rss(L) =

{K̃3, K̃5, K̃6}, DRV (L)/Rss(L) = {K̃4, K̃7}. We reorder the elements of

DR(L)/Rss(L), by moving the equivalence classes of vanishing states to the first

positions and those of s-tangible states to the last positions: K̃4, K̃7, K̃3, K̃5, K̃6,
K̃1, K̃2, K̃8, K̃9.

The reordered TPM for DTMC↔ss
(L) is

P̃′
r=

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1− ρ3 ρ3 0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5
0 (10−ρ)(1−ρ)2

10
0 0

ρ3 0 0 0 0 0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)
ρ2 0 0 0 0 0 0 0 1− ρ2

.

The result of the decomposing P̃′
r are the matrices

Performance analysis of the shared memory system in dtsdPBC 51

C̃′ =

(
0 0
0 0

)
, D̃′ =

(
0 0 0 0 0 1 0
0 0 0 0 0 0 1

)
, Ẽ′ =

0 0
0 1
1 0
0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

ρ3 0
ρ2 0

,

F̃′ =

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1− ρ3 ρ3 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5 0 (10−ρ)(1−ρ)2

10 0 0
0 0 0 0 ρ2(1 − ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)
0 0 0 0 0 0 1− ρ2

.

Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G̃′ =

l∑

k=0

C̃′l = C̃′0 = I.

Further, the TPM for RDTMC↔ss
(L) is

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =

0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1− ρ3 ρ3 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5 0 (10−ρ)(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5
ρ2(10−ρ)

10
0 0 0 0 ρ2(1− ρ) 1− ρ− ρ2 + 2ρ3 ρ(1 − ρ2)
0 0 0 0 0 ρ2 1− ρ2

.

In Figure 11, the reduced quotient DTMC RDTMC↔ss
(L) is presented.

Then the steady-state PMF for RDTMC↔ss
(L) is

ψ̃′⋄ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (ρ

3(1− ρ)3, ρ5(1 − ρ), 2ρ4(1 − ρ)2, 0, 10ρ2(1− ρ),

10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃3), ψ̃
′⋄(K̃5), ψ̃

′⋄(K̃6), ψ̃
′⋄(K̃1), ψ̃

′⋄(K̃2), ψ̃
′⋄(K̃8), ψ̃

′⋄(K̃9)).
By the “quotient” analogue of Proposition 5 from [41], we have

52 I.V. Tarasyuk

✛
✚

✘
✙K̃1

✛
✚

✘
✙K̃2

✛
✚

✘
✙K̃8

✛
✚

✘
✙K̃9

❄

RDTMC↔ss
(L)

✲✞✝

✲✞✝

✝ ✆✻

✛
✚

✘
✙K̃5

✛
✚

✘
✙K̃6

✓
✒

✏
✑

✓
✒

✏
✑

✛
✚

✘
✙K̃3

✓
✒

✏
✑

✞ ☎
❄

ρ3

ρ(1−ρ2)

1−ρ−ρ2+2ρ3

1−ρ2

1−ρ3

(10−ρ)(1−ρ)2

10

ρ2(1−ρ)
5

ρ(1−ρ)2

10
1

ρ2(1−ρ)
❄

✛

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

ρ3

10

1

ρ2

1

✻

❄

❄

✻

✛

❈
❈
❈
❈
❈
❈
❈❲

✄
✄
✄
✄
✄
✄
✄✄

�
�
�
�
�
��✒
�

�
�

�
�

�
�✠

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁☛

Fig. 11. The reduced quotient DTMC of the abstract generalized shared memory sys-
tem with maintenance

Performance analysis of the shared memory system in dtsdPBC 53

ϕ̃′(K̃1) = 0, ϕ̃′(K̃2) =
10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′(K̃3) =

ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃4) = 0, ϕ̃′(K̃5) =
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′(K̃6) =

2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃7) = 0, ϕ̃′(K̃8) =
10ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′(K̃9) =

10(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0,

10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

We can now calculate the main performance indices.

– The average recurrence time in the state K̃2, where no processor requests
the memory and its maintenance is not initiated, called the average system

run-through, is 1
ϕ̃′

2
= 20+10ρ−10ρ2−9ρ3−ρ4

10ρ2(1−ρ) .

– The system is not activated only in the state K̃1. Then the steady-state
probability that the system is activated is 1− ϕ̃′

1 = 1− 0 = 1. The common

memory is available in the states K̃2, K̃4, K̃7. Then the steady-state proba-

bility that the memory is available is ϕ̃′
2 + ϕ̃′

4 + ϕ̃′
7 = 10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 +

0 + 0 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . The common memory is maintained only in

the states K̃3, K̃5, K̃6. Then the steady-state probability that the memory is

maintained is ϕ̃′
3 + ϕ̃′

5 + ϕ̃′
6 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 + ρ5(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 +

2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . Thus, the steady-state probabil-

ity that the memory is used (i.e. neither available nor maintained), the

shared memory utilization, is 1− 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 −

ρ3(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 =

10(2+ρ−2ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

– After activation of the system, we leave the state K̃1 for ever, and the com-
mon memory is either requested or allocated or maintained in every re-
maining state, with exception of K̃2. Thus, the rate with which the neces-
sity (also for maintenance) of shared memory emerges coincides with the

rate of leaving K̃2, calculated as
ϕ̃′

2

S̃J
′

2

= 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 · ρ(21−12ρ+ρ2)

10 =

ρ3(1−ρ)(21−12ρ+ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

– The parallel common memory request of two processors {{r}, {r}} is possible

from the state K̃2. In this state, the request probability is the sum of the
execution probabilities for all multisets of multiactions containing {r} twice.
The steady-state probability of the shared memory request from two processors
is ϕ̃′

2

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ2(10−ρ)

10 + ρ3

10

)
= 10ρ4(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

54 I.V. Tarasyuk

– The common memory request of a processor {r} is possible from the states

K̃2, K̃8. In each of them, the request probability is the sum of the execution
probabilities for all multisets of multiactions containing {r}. The steady-state
probability of the shared memory request from a processor is
ϕ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) +

ϕ̃′
8

∑
{A,K̃|{r}∈A, K̃8

A
→K̃}

PMA(K̃8, K̃) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ·

(
ρ(10−ρ)(1−ρ)

5 + ρ2(1−ρ)
5 + ρ2(10−ρ)

10 + ρ3

10

)
+

10ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1 − ρ2) + ρ3) = 10ρ2(2−ρ)(1+ρ−ρ2)

20+10ρ−10ρ2−9ρ3−ρ4 .

The performance indices are the same for the “complete” and the “quotient”
abstract generalized shared memory systems with maintenance. The coincidence
of the first, second and third performance indices obviously illustrates the re-
sults of Proposition 7 and Proposition 8 (both modified for RLss(L)). The co-
incidence of the fourth performance index is due to Theorem 3 (modified for
RLss(L)): one should just apply its result to the derived step traces {{r}, {r}}
and {{r}, {r}, {c}} of the expression L and itself, and then sum the left and right
parts of the two resulting equalities. The coincidence of the fifth performance
index is due to Theorem 3 (modified for RLss(L)): one should just apply its
result to the derived step traces {{r}}, {{r}, {c}}, {{r}, {r}}, {{r}, {r}, {c}},
{{r}, {m}} of the expression L and itself, and then sum the left and right parts
of the five resulting equalities.

Let us consider what is the effect of quantitative changes of the parameter ρ
upon performance of the “quotient” abstract generalized shared memory system
with maintenance in its steady state. Remember that ρ ∈ (0; 1) is the probability
of every stochastic multiaction in the specification of the system. The closer is ρ
to 0, the less is the probability to execute some activities at every discrete time
tick, hence, the system will most probably stand idle. The closer is ρ to 1, the
greater is the probability to execute some activities at every discrete time tick,
hence, the system will most probably operate.

Since ϕ̃′
1 = ϕ̃′

4 = ϕ̃′
7 = 0, only ϕ̃′

2 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′
3 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
5 = ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
6 = 2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′
8 = 10ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
9 = 10(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 depend on ρ. In Figure 12,

the plots of ϕ̃′
2, ϕ̃

′
8, ϕ̃

′
9 (large probability masses) as functions of ρ are depicted.

In Figure 13, the plots of ϕ̃′
3, ϕ̃

′
5, ϕ̃

′
6 (small probability masses) as functions of

ρ are drawn. Notice that, however, we do not allow ρ = 0 or ρ = 1.

One can see that ϕ̃′
2, ϕ̃

′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
8 tend to 0 and ϕ̃′

9 tends to 1 when ρ
approaches 0. Thus, when ρ is closer to 0, the probability that the memory is
allocated to a processor and requested by another processor increases, hence, we
have more unsatisfied memory requests.

Further, ϕ̃′
2, ϕ̃

′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
9 tend to 0 and ϕ̃′

8 tends to 1 when ρ approaches
1. Thus, when ρ is closer to 1, the probability that the memory is allocated to
a processor (and not requested by another processor) increases, hence, we have
less unsatisfied memory requests.

Performance analysis of the shared memory system in dtsdPBC 55

The maximal value 0.0792 of ϕ̃′
2 is reached when ρ ≈ 0.7427. Then the

probability that the system is activated and the memory is not requested and
its maintenance is not initiated is maximal, i.e. the maximal shared memory
availability is about 8%.

The maximal value 0.0007 of ϕ̃′
3 is reached when ρ ≈ 0.5158. Then the prob-

ability that the memory maintenance is initiated is maximal, i.e. the maximal
shared memory maintenance necessity is about 0.1%.

The maximal value 0.0044 of ϕ̃′
5 is reached when ρ ≈ 0.8724. then the proba-

bility that the memory maintenance is initiated and the memory is requested by
two processors is maximal, i.e. the maximal double (parallel) demand of shared
memory during its maintenance is about 0.4%.

The maximal value 0.0023 of ϕ̃′
6 is reached when ρ ≈ 0.7015. Then the prob-

ability that the memory maintenance is initiated and the memory is requested
by a (single) processor is maximal, i.e. the maximal single demand of shared
memory during its maintenance is about 0.2%.

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

9
¢

j
�

8
¢

j
�

2
¢

Fig. 12. Steady-state probabilities ϕ̃′
2, ϕ̃′

8, ϕ̃′
9 (large probability masses) as functions

of the parameter ρ

In Figure 14, the plot of the average system run-through, calculated as 1
ϕ̃′

2
, as

a function of ρ is depicted. The run-through tends to ∞ when ρ approaches 0 or
1. Its minimal value 12.6259 is reached when ρ ≈ 0.7427. To speed up operation
of the system, one should take the parameter ρ closer to 0.7427.

The first curve in Figure 15 represents the shared memory utilization, calcu-
lated as 1− ϕ̃′

2−7, where ϕ̃
′
2−7 = ϕ̃′

2 + ϕ̃′
3+ ϕ̃′

4+ ϕ̃′
5 + ϕ̃′

6+ ϕ̃′
7, as a function of ρ.

The utilization tends to 1 both when ρ approaches 0 and when ρ approaches 1.
The minimal value 0.9149 of the utilization is reached when ρ ≈ 0.7494. Thus,
the minimal shared memory utilization is about 91%. To increase the utilization,
one should take the parameter ρ closer to 0 or 1.

56 I.V. Tarasyuk

0.2 0.4 0.6 0.8 1.0
Ρ

0.001

0.002

0.003

0.004

j
�

6
¢

j
�

5
¢

j
�

3
¢

Fig. 13. Steady-state probabilities ϕ̃′
3, ϕ̃′

5, ϕ̃′
6 (small probability masses) as functions

of the parameter ρ

0.2 0.4 0.6 0.8 1.0
Ρ

50

100

150

200

1

j
�

2
¢

Fig. 14. Average system run-through 1
ϕ̃′
2
as a function of the parameter ρ

Performance analysis of the shared memory system in dtsdPBC 57

The second curve in Figure 15 represents the rate with which the necessity

of shared memory emerges, calculated as
ϕ̃′

2

S̃J
′

2

, as a function of ρ. The rate tends

to 0 both when ρ approaches 0 and when ρ approaches 1. The maximal value
0.0749 of the rate is reached when ρ ≈ 0.7723. Thus, the maximal rate with which
the necessity of shared memory emerges is about 1

13 . To decrease the mentioned
rate, one should take the parameter ρ closer to 0 or 1.

The third curve in Figure 15 represents the steady-state probability of the
shared memory request from two processors, calculated as ϕ̃′

2S̃
′
2, where

S̃ ′
2 =

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃), as function of ρ. The probability

tends to 0 both when ρ approaches 0 and when ρ approaches 1. The maximal
value 0.0514 of the probability is reached when ρ ≈ 0.8486. To decrease the
mentioned probability, one should take the parameter ρ closer to 0 or 1.

The fourth curve in Figure 15 represents the steady-state probability of the
shared memory request from a processor, calculated as ϕ̃′

2Σ̃
′
2+ϕ̃

′
8Σ̃

′
8, where Σ̃

′
i =∑

{A,K̃|{r}∈A, K̃i
A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 8}, as a function of ρ. The probability

tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1. To
increase the probability, one should take the parameter ρ closer to 1.

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

2
¢
S
�

2
¢
+j
�

8
¢
S
�

8
¢

j
�

2
¢
S
�

2

¢

j
�

2
¢

SJ
�

2
¢

1-j
�

2-7
¢

Fig. 15. Some performance indices as functions of the parameter ρ

8 Conclusion

In this paper, we have considered dtsdPBC, an extension with discrete stochastic
and deterministic time of Petri box calculus (PBC) [8, 10, 9]. Stochastic process
algebra dtsdPBC has a parallel step operational semantics, based on labeled pro-
babilistic transition systems, and a Petri net denotational semantics in terms of
dtsd-boxes, a special subclass of LDTSDPNs [40]. Step stochastic bisimulation

58 I.V. Tarasyuk

equivalence of the process expressions is used to reduce their transition systems
and Markov chains (SMCs, DTMCs and RDTMCs) with the quotienting. That
equivalence guarantees identity of the steady-state probabilities, sojourn time
averages and variances in the equivalence classes. Hence, the equivalence pre-
serves the stationary performance measures and can be used for minimization
of the state space.

The properties of the mentioned equivalence permit to provide dtsdPBC
with a method of modeling, quotient reduction and simplified performance eval-
uation of concurrent stochastic systems that maintains the semantic parallelism,
which stems from simultaneous executions. We have presented a case study of a
generalization of the shared memory system with maintenance, by allowing for
variable probabilities and weights in its specification. The generalized probabil-
ity has been interpreted as a parameter of the performance index functions. The
influence of the parameter value to the system’s performance has been analyzed
with the goal of optimization.

Future work consists in constructing a congruence relation for dtsdPBC, i.e.
the equivalence that withstands application of all operations of the algebra.
A possible candidate is a stronger version of the equivalence with respect to
transition systems, with two extra transitions skip and redo, like in sPBC [21].
Moreover, recursion operation could be added to dtsdPBC to increase specifica-
tion power of the algebra.

References

1. W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time
stochastic Petri nets, Statistica Neerlandica, 54:2 (2000), 237–255.
http://tmitwww.tm.tue.nl/staff/hreijers/H.A. Reijers Bestanden/Statistica.pdf.
Zbl 0994.68091

2. G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Science,
2090 (2001), 84–155. Zbl 0990.68092

3. G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Com-
puter Science, 4486 (2007), 83–131. Zbl 1323.68400

4. J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction,
Theoretical Computer Science, 37 (1985), 77–121.

5. M. Bernardo, A survey of Markovian behavioral equivalences, Lecture Notes in
Computer Science, 4486 (2007), 180–219. Zbl 1323.68402

6. M. Bernardo, Non-bisimulation-based Markovian behavioral equivalences, Journal
of Logic and Algebraic Programming, 72 (2007), 3–49. Zbl 1121.68077

7. M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer Sci-
ence, 202 (1998), 1–54.

8. E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with multi-
label communication, Lecture Notes in Computer Science, 609 (1992), 21–69.

9. E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on The-
oretical Computer Science, Springer, 2001.

10. E. Best, M. Koutny, A refined view of the box algebra, Lecture Notes in Computer
Science, 935 (1995), 1–20.

Performance analysis of the shared memory system in dtsdPBC 59

11. T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc.
IFIP WG 6.1 10th Int. Symposium on Protocol Specification, Testing and Verifi-
cation 1990 (L. Logrippo, L.R. Probert, H. Ural, eds.), Ottawa, Canada, 395–408,
Elsevier Science Publishers (North-Holland), Amsterdam, The Netherlands, 1990.

12. H.M. Hanish, Analysis of place/transition nets with timed-arcs and its application
to batch process control, Lecture Notes in Computer Science, 691 (1993), 282–299.

13. H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for
MTIPP, Proc. 2nd Int. Workshop on Process Algebras and Performance Modelling
(PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany,
July 1994, Arbeitsberichte des IMMD, 27:4 (1994), 71–88. http://ftp.informatik.
uni-erlangen.de/local/inf7/papers/Hermanns/syntax semantics equivalences
axioms for MTIPP.ps.gz

14. J. Hillston, A compositional approach to performance modelling, Cambridge Uni-
versity Press, Cambridge, UK, 1996. http://www.dcs.ed.ac.uk/pepa/book.pdf
Zbl 1080.68003

15. C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK,
1985. http://www.usingcsp.com/cspbook.pdf

16. C.-C. Jou, S.A. Smolka, Equivalences, congruences and complete axiomatizations
for probabilistic processes, Lecture Notes in Computer Science, 458 (1990), 367–
383.

17. M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer
Science, 1825 (2000), 303–322.

18. V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical
Science, 84, Chapman and Hall / CRC Press, 2010. Zbl 1191.60003

19. K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and
Computation, 94:1 (1991), 1–28.

20. H. Macià, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in sPBC,
Lecture Notes in Computer Science, 3235 (2004), 292–308. Zbl 1110.68420

21. H. Macià, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC,
Formal Methods in System Design, 32:2 (2008), 85–128. Zbl 1138.68040

22. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of
Petri box calculus with immediate multiactions, Fundamenta Informaticae, 87:3–4
(2008), 367–406. Zbl 1154.68092

23. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, I.V. Tarasyuk, Modelling a video
conference system with sPBC, Applied Mathematics and Information Sciences 10:2
(2016), 475–493.

24. H. Macià, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri
box calculus, Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models
(PNPM) 2001, Aachen, Germany, 207–216, IEEE Computer Society Press, 2001.
http://www.info-ab.uclm.es/retics/publications/2001/pnpm01.ps

25. O. Marroqúın, D. de Frutos, TPBC: timed Petri box calculus, Technical Re-
port, Departamento de Sistemas Infofmáticos y Programación, Universidad Com-
plutense de Madrid, Spain, 2000 (in Spanish).

26. O. Marroqúın, D. de Frutos, Extending the Petri box calculus with time, Lecture
Notes in Computer Science, 2075 (2001), 303–322. Zbl 0986.68082

27. M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in
Computer Science, 424 (1990), 1–29.

28. M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with
generalised stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley
and Sons, 1995. http://www.di.unito.it/˜greatspn/GSPN-Wiley/. Zbl 0843.68080

60 I.V. Tarasyuk

29. Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications
of a theoretical study, IEEE Transactions on Communications, 24:9 (1976), 1036–
1043. Zbl 0362.68096

30. R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle
River, NJ, USA, 1989. Zbl 0683.68008

31. M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921, 108 p., University of Cal-
ifornia, Los Angeles, CA, USA, 1981.

32. M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software
Engineering, 11:4 (1985), 417–423. Zbl 0558.68053

33. A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture Notes
in Computer Science, 3407 (2005), 447–462. Zbl 1109.68076

34. A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report, CS-
TR-895, 60 p., School of Computer Science, University of Newcastle upon Tyne,
UK, 2005. http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf

35. C. Ramchandani, Performance evaluation of asynchronous concurrent systems
by timed Petri nets, Ph.D. thesis, Department of Electrical Engineering, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1973.

36. I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem De-
partment für Informatik, 3/05, 25 p., Carl von Ossietzky Universität Oldenburg,
Germany, 2005. http://itar.iis.nsk.su/files/itar/pages/dtspbcib cov.pdf

37. I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of
the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue, 24
(2006), 129–148. Zbl 1249.68132

38. I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Infor-
maticae, 76:1–2 (2007), 189–218.

39. I.V. Tarasyuk, Equivalence relations for modular performance evaluation in dt-
sPBC, Mathematical Structures in Computer Science, 24:1 (2014), e240103.

40. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus dts-
dPBC, Siberian Electronic Mathematical Reports, 17 (2020), 1598–1679. Zbl
1448.68352

41. I.V. Tarasyuk, Performance evaluation in stochastic process algebra dtsdPBC,
Siberian Electronic Mathematical Reports, 18:2 (2021), 1105–1145. Zbl 1482.68156

42. I.V. Tarasyuk, Performance preserving equivalence for stochastic process algebra
dtsdPBC, Siberian Electronic Mathematical Reports, 20:2 (2023), 646–699.

43. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with
immediate multiactions, Technical Report, DIAB-10-03-1, 25 p., Department of
Computer Systems, High School of Computer Science Engineering, University of
Castilla - La Mancha, Albacete, Spain, 2010. http://www.dsi.uclm.es/descargas/
technicalreports/DIAB-10-03-1/dtsipbc.pdf

44. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with
immediate multiactions dtsiPBC, Proc. 6th Int. Workshop on Practical Applica-
tions of Stochastic Modelling (PASM) 2012 and 11th Int. Workshop on Parallel and
Distributed Methods in Verification (PDMC) 2012 (J. Bradley, K. Heljanko, W.
Knottenbelt, N. Thomas, eds.), London, UK, 2012, Electronic Notes in Theoretical
Computer Science, 296 (2013), 229–252.

45. I.V. Tarasyuk, H. Macià, V. Valero, Performance analysis of concurrent systems
in algebra dtsiPBC, Programming and Computer Software, 40:5 (2014), 229–249.
Zbl 1339.68033

Performance analysis of the shared memory system in dtsdPBC 61

46. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic process reduction for performance
evaluation in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015), 513–
551. Zbl 1346.60118

47. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic equivalence for performance analysis
of concurrent systems in dtsiPBC, Siberian Electronic Mathematical Reports, 15
(2018), 1743–1812. Zbl 1414.60062

48. R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Workshop
on Quality of Communication-Based Systems 1994, Technical University of Berlin,
Germany, 123–136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

49. R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D.
thesis, Technical University of Berlin, Germany, 1997.

50. R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc.
11th Int. Conf. on Analysis and Optimization of Systems, Discrete Event Systems
(DES) 1994 (G. Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, 1994, Lec-
ture Notes in Control and Information Sciences, 199 (1994), 198–204.

