
Under consideration for publication in Math. Struct. in Comp. Science

Equivalence relations for modular

performance evaluation in dtsPBC †

IGOR V. TARASYUK

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,
6, Acad. Lavrentiev ave., 630090 Novosibirsk, Russian Federation.
E-mail: itar@iis.nsk.su

Received 15 September 2011; Revised 9 January 2013

In the framework of a discrete time stochastic extension dtsPBC of finite Petri box

calculus (PBC) enriched with iteration, we define a number of stochastic equivalences.

They allow one to identify stochastic processes with similar behaviour that are however

differentiated by the semantics of the calculus. We explain in which way the equivalences

we propose can be used to reduce transition systems of expressions. It is demonstrated

how to apply the equivalences to compare the stationary behaviour. The equivalences

guarantee a coincidence of performance indices for stochastic systems and can be used

for performance analysis simplification. In a case study, a method of modeling,

performance evaluation and behaviour preserving reduction of concurrent computing

systems is outlined and applied to the dining philosophers system.

Keywords: stochastic process algebra, Petri box calculus, iteration, discrete time,

stochastic equivalence, reduction, stationary behaviour, performance evaluation.

1. Introduction

Process algebras (PAs), such as CCS (Milner 1989), are a widely used formal model

designed to specify concurrent systems and analyze their behavioural properties. In such

calculi, processes are specified by compositional formulas constructed by operators from

symbols of actions, and verification of properties is accomplished syntactically by means

of algebraic laws and equivalences. In the last decades, stochastic extensions of PAs were

proposed. Stochastic process algebras (SPAs) do not just specify actions which can occur

(qualitative features) like standard PAs, but they associate with actions the distribution

parameters of their random time delays (quantitative characteristics). The best-known

SPAs are MTIPP (Hermanns and Rettelbach 1994), PEPA (Hillston 1996) and EMPA

(Bernardo and Gorrieri 1998).

† The work was supported in part by Deutsche Forschungsgemeinschaft (DFG), grant 436 RUS
113/1002/01, and Russian Foundation for Basic Research (RFBR), grant 09-01-91334.

Igor V. Tarasyuk 2

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syn-

tax. On the other hand, Petri nets (PNs) provide a graphical representation of such

systems and capture explicit asynchrony in their behaviour. To combine advantages of

both models, a semantics of algebraic formulas in terms of PNs is defined. Petri box

calculus (PBC) (Best et al. 1992; Best and Koutny 1995) is a flexible and expressive

process algebra intended to provide support for compositional translation from high

level concurrent programming languages into PNs. Formulas of PBC are combined not

from single actions, like in CCS, but from multisets of elementary actions and their

conjugates, called multiactions (basic formulas). In contrast to CCS, synchronization is

separated from parallelism (concurrent constructs). Synchronization is defined as a unary

multi-way stepwise operation based on communication of actions and their conjugates,

thus, it extends the CCS approach with conjugate matching labels. Synchronization in

PBC is asynchronous, unlike that in Synchronous CCS (SCCS) (Milner 1989). The other

operations are sequence and choice (sequential constructs). The calculus includes also

restriction and relabeling (abstraction constructs). To specify infinite processes, the re-

finement, recursion and iteration operations were added (hierarchical constructs). Thus,

unlike CCS, PBC has an additional iteration construction to specify infinite behaviour

when the semantic interpretation in finite PNs is possible. PBC has a step operational

semantics in terms of labeled transition systems based on rules in the Structured Op-

erational Semantics (SOS) style. A denotational semantics of PBC was proposed via a

subclass of PNs equipped with an interface and considered up to isomorphism, called

Petri boxes. Recently, the extensions of PBC with deterministic, a nondeterministic or

stochastic time were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real time systems, deterministic (fixed)

or nondeterministic (interval) time delays are used. A time extension of PBC with a

nondeterministic time model, called time Petri box calculus (tPBC), was proposed in

(Koutny 2000). In tPBC, timing information is added by associating time intervals (the

earliest and the latest firing time) with instantaneous actions. Its denotational semantics

was defined in terms of a subclass of labeled time Petri nets (LtPNs), based on tPNs

(Merlin and Farber 1976), and called time Petri boxes (ct-boxes). tPBC has a step time

operational semantics in terms of labeled transition systems. Another time enrichment of

PBC, called timed Petri box calculus (TPBC), was defined in (Marroqúın and de-Frutos

2001), it accommodates a deterministic model of time. In contrast to tPBC, multiac-

tions of TPBC are not instantaneous, but have time durations. Additionally, in TPBC

there exist no “illegal” multiaction occurrences, unlike tPBC. The complexity of “illegal”

occurrences mechanism was one of the main intentions to construct TPBC though this

calculus appeared to be more complicated than tPBC. The denotational semantics of

TPBC was defined in terms of a subclass of labeled timed Petri nets (LTPNs), based on

TPNs (Ramchandani 1973), and called timed Petri boxes (T-boxes). TPBC has a step

Equivalence relations for modular performance evaluation in dtsPBC 3

timed operational semantics in terms of labeled transition systems. Note that tPBC and

TPBC differ in ways they capture time information, and they are not in competition but

complement each other. The third time extension of PBC, called arc time Petri box cal-

culus (atPBC), was constructed in (Niaouris 2005), and it implements a nondeterministic

time. In atPBC, multiactions are associated with time delay intervals. Its denotational

semantics was defined on a subclass of labeled arc time Petri nets (atPNs), where time

restrictions are associated with the arcs, called arc time Petri boxes (at-boxes). atPBC

possesses a step operational semantics in terms of labeled transition systems.

The set of states for the systems with deterministic or nondeterministic delays differs

drastically from that for the untime systems, hence, the analysis results for untime sys-

tems may be not valid for the time ones. To solve this problem, stochastic delays are

considered, which are the random values with a (discrete or continuous) probability dis-

tribution. A continuous time stochastic extension of a finite part of PBC called stochastic

Petri box calculus (sPBC) was proposed in (Macià et al. 2001). sPBC in its former ver-

sion had neither refinement nor recursion nor iteration operations and thus specified finite

processes only. An interleaving operational semantics of the calculus was constructed via

labeled probabilistic transition systems. A denotational semantics of sPBC was defined

in terms of a subclass of labeled continuous time stochastic PNs (LCTSPNs), based

on CTSPNs (Marsan 1990), and called stochastic Petri boxes (s-boxes). In (Macià et

al. 2004), the iteration operation was added to sPBC to specify infinite processes and

the producer/consumer system was specified. In sPBC with iteration, performance of

the processes is evaluated by analyzing their underlying continuous time Markov chains

(CTMCs). In (Macià et al. 2008), the resulting calculus was enriched with immediate

multiactions, and a manufacturing system, as well as the AUY-protocol, were modeled.

A denotational semantics of such an sPBC extension (we call it generalized sPBC or

gsPBC) was defined via a subclass of labeled generalized SPNs (LGSPNs), based on

GSPNs (Marsan 1990), and called generalized stochastic Petri boxes (gs-boxes). The

performance analysis in gsPBC is based on the underlying semi-Markov chains (SMCs).

The example systems considered within sPBC and its extensions had an interleaving

semantics. The performance indices were calculated only for the systems from (Macià et

al. 2008).

PBC has a step operational semantics, whereas sPBC has only an interleaving one,

hence, a stochastic extension of PBC with a step semantics is needed to keep the con-

currency degree of behavioural analysis at the same level as in PBC. A discrete time

stochastic extension dtsPBC of finite PBC was presented in (Tarasyuk 2005; Tarasyuk

2007). A step operational semantics of the algebra was constructed with the use of la-

beled probabilistic transition systems. dtsPBC has a denotational semantics in terms

of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs

(Molloy 1985), and called discrete time stochastic Petri boxes (dts-boxes). A number of

stochastic equivalences were proposed to identify stochastic processes with similar be-

haviour which are differentiated by the semantic equivalence. The interrelations of the

introduced equivalences were studied. In (Tarasyuk 2006; Tarasyuk 2008), the syntax

of dtsPBC was supplemented by the iteration operator. The performance evaluation in

dtsPBC with iteration is accomplished via the underlying discrete time Markov chains

Igor V. Tarasyuk 4

(DTMCs) of the algebraic processes. In (Tarasyuk et al. 2010), we presented the extension

dtsiPBC of the latter calculus with immediate multiactions. The performance analysis in

dtsiPBC is based on the underlying semi-Markov chains (SMCs) and (reduced) DTMCs.

Since dtsPBC has a discrete time semantics and geometrically distributed sojourn time

in the process states, unlike sPBC with continuous time semantics and exponentially

distributed delays, the calculi apply two different approaches to the stochastic extension

of PBC, in spite of some similarity of their syntax and semantics inherited from PBC.

The main advantage of dtsPBC is that concurrency is treated naturally, like in PBC,

whereas in sPBC parallelism is simulated by interleaving, obliging one to collect the

information on causal independence of activities before constructing the semantics.

If to compare dtsPBC with classical SPAs MTIPP, PEPA, EMPA, the first main differ-

ence between them comes from PBC, since dtsPBC is based on this calculus: all algebraic

operations and a notion of multiaction are inherited from PBC. The second main differ-

ence is discrete probabilities of activities induced by the discrete time approach, whereas

action rates are used in the standard SPAs with continuous time. As a consequence,

dtsPBC has a non-interleaving step operational semantics. This is in contrast to the

classical SPAs, where concurrency is modeled by interleaving because of the continuous

probability distributions of action delays and the race condition applied when several ac-

tions can be executed in a state. The salient point of dtsPBC is a combination of discrete

stochastic time and step semantics in an SPA.

1.3. Equivalence relations

A notion of equivalence is important in theory of computing systems. Equivalences are

applied both to compare behaviour of systems and reduce their structure. There is a

wide diversity of behavioural equivalences, and their interrelations were well explored

in the literature. The most well-known and widely used one is bisimulation. Typically,

the mentioned equivalences take into account only functional (qualitative) but not per-

formance (quantitative) aspects. Additionally, the equivalences are usually interleaving

ones, i.e. they interpret concurrency as sequential nondeterminism. To respect quanti-

tative features of behaviour, probabilistic equivalences have additional requirement on

execution probabilities. Two equivalent processes must be able to execute the same se-

quences of actions, and for every such sequence, its execution probabilities within both

processes should coincide. In case of bisimulation equivalence, the states from which sim-

ilar future behaviours start are grouped into equivalence classes that form elements of

the aggregated state space. From every two bisimilar states, the same actions can be

executed, and the subsequent states resulting from execution of an action belong to the

same equivalence class. In addition, for both states, the cumulative probabilities to move

to the same equivalence class by executing the same action coincide. A different kind

of quantitative relations are Markovian equivalences, which take rate (the parameter of

exponential distribution that governs time delays) instead of probability.

Interleaving probabilistic strong bisimulation equivalence was proposed in (Larsen and

Skou 1991) on labeled probabilistic transition systems. Interleaving Markovian strong

bisimulation equivalence was constructed in (Hermanns and Rettelbach 1994) for MTIPP,

Equivalence relations for modular performance evaluation in dtsPBC 5

in (Hillston 1996) for PEPA and in (Bernardo and Gorrieri 1998) for EMPA. Interleav-

ing probabilistic equivalences were defined for probabilistic processes in (Jou and Smolka

1990; van Glabbeek et al. 1995). Interleaving Markovian weak bisimulation equivalence

was introduced in (Buchholz 1995) on labeled CTSPNs and in (Buchholz 1998) on gen-

eralized SPNs (GSPNs). In (Bernardo 2007), a comparison of a variety of interleaving

Markovian trace, test and bisimulation equivalences was carried out on sequential and

concurrent Markovian process calculi. At the same time, no appropriate equivalence no-

tion was defined for concurrent SPAs so far.

1.4. Contributions of the paper

In this paper, a problem of performance preservation by the equivalence notions is dis-

cussed within dtsPBC enriched with iteration. First, we present the syntax of the calcu-

lus. Second, we describe its operational semantics in terms of labeled transition systems

and its denotational semantics based on a subclass of LDTSPNs. Further, we propose a

number of stochastic equivalences. We describe how the stochastic equivalences can be

used to reduce transition systems of expressions and the related formalisms while pre-

serving their qualitative and quantitative behaviour. We investigate which equivalences

guarantee identity of the stationary behaviour. The mentioned property implies a coin-

cidence of performance indices based on steady-state probabilities of modeled stochastic

systems. The equivalences possessing the property can be used to reduce the state space

of a system and thus simplify its performance evaluation, that is usually complex due

to the state space explosion problem. At the end, we present a case study of the dining

philosophers system explaining how to model concurrent computing systems within the

calculus and analyze their performance as well as in which way to reduce the systems

preserving their performance indices and making simpler the performance evaluation.

Thus, the main contributions of the paper are the following.

— New powerful and expressive discrete time SPA dtsPBC.

— Step operational semantics of dtsPBC via labeled probabilistic transition systems.

— Petri net denotational semantics of dtsPBC via discrete time stochastic Petri nets.

— Performance analysis based on underlying discrete time Markov chains.

— Stochastic equivalence used for reduction that simplifies the performance evaluation.

— Extended case study illustrating how to apply the theoretical results in practice.

1.5. Structure of the paper

The paper is organized as follows. The syntax of dtsPBC is presented in Section 2.

Section 3 describes the operational semantics of the calculus and Section 4 presents its

denotational semantics. Stochastic algebraic equivalences are defined and investigated in

Section 5. In Section 6 we explain how to reduce transition systems and the related for-

malisms modulo the equivalences. Section 7 is devoted to the application of the relations

to the stationary behaviour comparison and determining the performance preserving

equivalences. Section 8 describes specification, performance evaluation and reduction of

the dining philosophers system within the calculus. The difference between dtsPBC and

Igor V. Tarasyuk 6

other well-known or similar SPAs is considered in Section 9. The advantages of dtsPBC

are explained in Section 10. The concluding Section 11 summarizes the results obtained

and outlines research perspectives in this area.

2. Syntax

In this section, we propose the syntax of the discrete time stochastic extension of finite

PBC enriched with iteration, discrete time stochastic PBC (dtsPBC).

Definition 2.1. Let X be a set. A finite multiset (bag) M over X is a mapping M :

X → IN such that |{x ∈ X | M(x) > 0}| < ∞, i.e. it can contain a finite number of

elements only.

We denote the set of all finite multisets over a set X by INX
f . The cardinality of a

multiset M is defined as |M | =
∑
x∈XM(x). We write x ∈M if M(x) > 0 and M ⊆M ′

if for all x ∈ X we have M(x) ≤ M ′(x). We define (M +M ′)(x) = M(x) +M ′(x) and

(M −M ′)(x) = max{0,M(x)−M ′(x)}. When for all x ∈ X we have M(x) ≤ 1 then M

can be interpreted as a proper set and denoted by M ⊆ X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the

set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let A = Act ∪ Âct

be the set of all actions, and L = INA
f be the set of all multiactions. Note that ∅ ∈ L,

this corresponds to an internal move, i.e. the execution of a multiaction that contains no

visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the

probability of the multiaction α. This probability is interpreted as that of independent

execution of the stochastic multiaction at the next discrete time moment. Such proba-

bilities are used to calculate those to execute (possibly empty) multisets of stochastic

multiactions after one time unit delay. The probabilities of stochastic multiactions are

required not to be equal to 1 to avoid extra model complexity due to assigning with them

weights needed to make a choice when several stochastic multiactions with probability 1

can be executed from a state. In this case, some problems appear with conflicts resolv-

ing. See (Molloy 1985) for the discussion on SPNs. This decision also allows us to avoid

technical difficulties related to conditioning events with probability 0. Another reason is

that not allowing probability 1 for multiactions excludes a potential source of periodicity

(hence, non-ergodicity) in the underlying DTMCs of the algebraic expressions. On the

other hand, there is no sense to allow zero probabilities of multiactions, since they would

never be performed in this case. Let SL be the set of all activities. Let us note that

the same multiaction α ∈ L may have different probabilities in the same specification.

The alphabet of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). The alphabet of Γ ∈ INSL
f

is defined as A(Γ) = ∪(α,ρ)∈ΓA(α). For (α, ρ) ∈ SL, we define its multiaction part as

L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ. The multiaction part of Γ ∈ INSL
f is

defined as L(Γ) =
∑

(α,ρ)∈Γ α. Remember that sums and products are considered with

the multiplicity when applied to multisets.

Activities are combined into formulas by the following operations: sequential execution

;, choice [], parallelism ‖, relabeling [f] of actions, restriction rs over a single action, syn-

Equivalence relations for modular performance evaluation in dtsPBC 7

chronization sy on an action and its conjugate, and iteration [∗ ∗] with three arguments:

initialization, body and termination.

Sequential execution and choice have a standard interpretation, like in other process

algebras, but parallelism does not include synchronization, unlike the corresponding op-

eration in CCS.

Relabeling functions f : A → A are bijections preserving conjugates, i.e. for all x ∈ A

we have f(x̂) = f̂(x). Relabeling is extended to multiactions in a usual way: for α ∈ L we

define f(α) =
∑

x∈α f(x). Relabeling is extended to the multisets of activities as follows:

for Γ ∈ INSL
f we define f(Γ) =

∑
(α,ρ)∈Γ(f(α), ρ).

Restriction over an elementary action a ∈ Act means that, for a given expression, any

process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we have

a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then synchronization of α and β by a is defined

as α⊕a β = γ, where γ(x) =

{
α(x) + β(x) − 1, if x = a or x = â;

α(x) + β(x), otherwise.
In other words, we

require that α⊕a β = α+β−{a, â}, i.e. we remove one exemplar of a and one exemplar

of â from the multiset sum α+ β, since the synchronization of a and â produces ∅.

In the iteration, the initialization subprocess is executed first, then the body is per-

formed zero or more times and, finally, the termination is executed.

Static expressions specify the structure of processes. The expressions correspond to

unmarked LDTSPNs (note that LDTSPNs are marked by definition). Remember that

a marking is the allocation of tokens in the places of a PN and markings are used to

describe dynamic behaviour of PNs in terms of transition firings.

Definition 2.2. Let (α, ρ) ∈ SL, a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denotes the set of all static expressions of dtsPBC.

To make the grammar above unambiguous, one can add parentheses in the productions

with binary operations: (E;E), (E[]E), (E‖E) or to associate priorities with operations.

However, we prefer the PBC approach, i.e. we add parentheses to resolve ambiguities and

we assume no priorities.

To avoid technical difficulties with the iteration operator, we should not allow any

concurrency at the highest level of the second argument of iteration. This is not a severe

restriction though, since we can always prefix parallel expressions by an activity with

the empty multiaction. Later on, in Example 4.3, we shall demonstrate that relaxing the

restriction can result in nets which are not safe. Alternatively, we can use a different, safe,

version of the iteration operator, but its net translation has six arguments. See also (Best

et al. 2001) for discussion on this subject. Remember that a PN is n-bounded (n ∈ IN)

if for all its reachable (from the initial marking by the sequences of transition firings)

markings there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

Definition 2.3. Let (α, ρ) ∈ SL, a ∈ Act. A regular static expression of dtsPBC is

Igor V. Tarasyuk 8

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, ρ) | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

RegStatExpr denotes the set of all regular static expressions of dtsPBC.

Dynamic expressions specify the states of processes. The expressions correspond to

LDTSPNs (marked by default). Dynamic expressions are obtained from static ones which

are annotated with upper or lower bars and specify active components of the system at

the current time instant. The dynamic expression with upper bar (the overlined one)

E denotes the initial, and that with lower bar (the underlined one) E denotes the final

state of the process specified by a static expression E. The underlying static expression

of a dynamic one is obtained by removing all upper and lower bars from it.

Definition 2.4. Let E ∈ StatExpr, a ∈ Act. A dynamic expression of dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |

[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

DynExpr denotes the set of all dynamic expressions of dtsPBC.

If the underlying static expression of a dynamic one is not regular, then the correspond-

ing LDTSPN can be non-safe, as Example 4.3 will show (but the LDTSPN is 2-bounded

in the worst case (Best et al. 2001)).

Definition 2.5. A dynamic expression is regular if its underlying static expression is

regular.

RegDynExpr denotes the set of all regular dynamic expressions of dtsPBC.

3. Operational semantics

In this section, we define the step operational semantics via labeled transition systems.

An illustrating example will be given at the end of the section.

3.1. Inaction rules

The inaction rules for dynamic expressions describe their structural transformations not

changing the states of the specified processes. The goal of these syntactic transformations

is to obtain the well-structured terminal expressions called operative ones to which no

inaction rules can be further applied. As we shall see, the application of an inaction rule

to a dynamic expression does not lead to any discrete time step in the corresponding

LDTSPN, hence, no transitions fire and its current marking remains unchanged.

Thus, an application of every inaction rule does not require any time delay, i.e. the

dynamic expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions in the form of

overlined and underlined static ones. In this table, E,F,K ∈ RegStatExpr and a ∈ Act.

In Table 2, we propose inaction rules for regular dynamic expressions in the arbitrary

form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Equivalence relations for modular performance evaluation in dtsPBC 9

Table 1. Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f] ⇒ E[f] E[f] ⇒ E[f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

Table 2. Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃

G⇒G̃

G‖H⇒G̃‖H

H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f]⇒G̃[f]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a
G⇒G̃

[G∗E∗F]⇒[G̃∗E∗F]

G⇒G̃

[E∗G∗F]⇒[E∗G̃∗F]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 3.1. A regular dynamic expression G is operative if no inaction rule can be

applied to it.

OpRegDynExpr denotes the set of all operative regular dynamic expressions of dt-

sPBC. Any regular dynamic expression can be transformed into a (possibly not unique)

operative one by the inaction rules. In the following, we shall consider regular expressions

only and omit the word “regular”.

Definition 3.2. Let ≈ = (⇒ ∪ ⇐)∗ be a structural equivalence of dynamic expressions

in dtsPBC. Thus, two dynamic expressions G and G′ are structurally equivalent, denoted

by G ≈ G′, if they can be reached from each other by applying the inaction rules in a

forward or backward direction.

3.2. Action and empty loop rules

The action rules are applied when some activities are executed. We also have the empty

loop rule which is used to capture a delay of one time unit in the same state when the

empty multiset of activities is executed. The action and empty loop rules will be used

later to determine all multisets of activities which can be executed from the structural

equivalence class of every dynamic expression (i.e. from the state of the corresponding

process). This information together with that about probabilities of the activities to

be executed from the process state will be used to calculate the probabilities of such

executions.

The action rules describe dynamic expression transformations due to execution of non-

empty multisets of activities. The rules represent possible state changes of the specified

Igor V. Tarasyuk 10

processes when some non-empty multisets of activities are executed. As we shall see, the

application of an action rule to a dynamic expression leads to a discrete time step in

the corresponding LDTSPN at which some transitions fire and the current marking is

changed, unless there is a self-loop produced by the iterative execution of a non-empty

multiset (which should be one-element, i.e. the single activity, since we do not allow

concurrency at the highest level of the second argument of iteration).

The empty loop rule G
∅
→ G describes dynamic expression transformations due to

execution of the empty multiset of activities at a discrete time step. The rule reflects a

non-zero probability to stay in the current state at the next time moment, which is an

essential feature of discrete time stochastic processes. As we shall see, the application

of the empty loop rule to a dynamic expression leads to a discrete time step in the

corresponding LDTSPN at which no transitions fire and the current marking is not

changed. This is a new rule that has no prototype among inaction rules of PBC, since

it represents a time delay. The PBC rule G
∅
→ G from (Best et al. 2001) in our setting

would correspond to the rule G ⇒ G describing the stay in the current state when no

time elapses. Since we do not need the latter rule to transform dynamic expressions into

operative ones and it can even destroy the definition of operative expressions, we do not

introduce it in dtsPBC.

Thus, an application of every action rule or the empty loop rule requires one discrete

time unit delay, i.e. the execution of a (possibly empty) multiset of activities resulting to

the dynamic expression transformation described by the rule is accomplished instantly

after one unit of time elapses.

In Table 3, we define the action and empty loop rules. In this table, (α, ρ), (β, χ) ∈ SL,

E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Moreover, Γ,∆ ∈ INSL
f \ {∅} and Γ′ ∈ INSL

f .

Table 3. Action and empty loop rules

El G
∅
→ G B (α, ρ)

{(α,ρ)}
−−−−−→ (α, ρ) SC1

G
Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2
G

Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3
G

Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−−−→G̃‖H̃

L G
Γ
→G̃

G[f]
f(Γ)
−−−→G̃[f]

Rs
G

Γ
→G̃, a,â6∈A(Γ)

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F]
Γ
→[G̃∗E∗F]

I2 G
Γ
→G̃

[E∗G∗F]
Γ
→[E∗G̃∗F]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−−→G̃ sy a

Almost all the rules in Table 3 (excepting El, P3 and Sy2) resemble those of sPBC

(Macià et al. 2001), but the former correspond to execution of multisets of activities, not

of single activities, as in the latter.

Rule El corresponds to one discrete time unit delay while executing no activities and

Equivalence relations for modular performance evaluation in dtsPBC 11

therefore it has no analogues among the rules of sPBC that adopts the continuous time

model.

Rule P3 has no similar rules in sPBC, since interleaving semantics of the algebra

allows no simultaneous execution of activities. On the other hand, P3 has in PBC the

analogous rule PAR that is used to construct step semantics of the calculus, but the

former rule corresponds to execution of multisets of activities, unlike that of multisets of

multiactions in the latter rule.

Rule Sy2 differs from the corresponding synchronization rule in sPBC, since the prob-

ability of synchronization in the former rule and the rate of synchronization in the latter

rule are calculated in a distinct way.

Rule Sy2 establishes that the synchronization of two stochastic multiactions is made

by taking the product of their probabilities, since we are considering that both must

occur for the synchronization to happen, so this corresponds, in some sense, to the prob-

ability of the independent event intersection, but the real situation is more complex,

since these stochastic multiactions can also be executed in parallel. Nevertheless, when

scoping (the combined operation consisting of synchronization followed by restriction

over the same action (Best et al. 2001)) is applied over a parallel execution, we get as

final result just the simple product of the probabilities, since no normalization is needed

there. Multiplication is an associative and commutative binary operation that is distribu-

tive over addition, i.e. it fulfills all practical conditions imposed on the synchronization

operator in (Hillston 1994). Further, if both arguments of multiplication are from (0; 1)

then the result belongs to the same interval, hence, multiplication naturally maintains

probabilistic compositionality in our model. Our approach is similar to the multiplica-

tion of rates of the synchronized actions in MTIPP (Hermanns and Rettelbach 1994) in

the case when the rates are less than 1. Moreover, for the probabilities ρ and χ of two

stochastic multiactions to be synchronized we have ρ · χ < min{ρ, χ}, i.e. multiplication

meets the performance requirement stating that the probability of the resulting synchro-

nized stochastic multiaction should be less than the probabilities of the two ones to be

synchronized. While performance evaluation, it is usually supposed that the execution

of two components together require more system resources and time than the execution

of each single one. This resembles the bounded capacity assumption from (Hillston 1994).

Thus, multiplication is easy to handle with and it satisfies the algebraic, probabilistic,

time and performance requirements. Therefore, we have chosen the product of the proba-

bilities for the synchronization. See also (Brinksma et al. 1995; Brinksma and Hermanns

2001) for a discussion about binary operations producing the rates of synchronization in

the continuous time setting.

As we shall see, for every LDTSPN obtained by synchronization of two LDTSPNs,

this approach allows us to calculate the transition firing probabilities using the standard

transition probability function for that net class. If concurrency aspects are not relevant

then interleaving semantics is used which abstracts from steps with more than one el-

ement. After the abstraction, the probabilities of the remaining one-element steps are

normalized to keep the sums of outgoing probabilities equal to one. For two synchronized

LDTSPNs, our approach allows us to extract the interleaving probabilities from the step

ones in the same way as for two non-synchronized parallel LDTSPNs.

Igor V. Tarasyuk 12

✉(a)
1

✉
✉ ✉
(b)

1 2

�
�

�

❅
❅
❅

✉
✉ ✉
(c)

1

�
�

�

❅
❅
❅

✉ ✉
2 3

�
�

�

❅
❅
❅

Fig. 1. The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

We do not allow self-synchronization, i.e. synchronization of an activity with itself, to

avoid an unexpected behaviour and many technical difficulties (Best et al. 2001).

3.3. Transition systems

Now we construct labeled probabilistic transition systems associated with dynamic ex-

pressions and used to define the operational semantics of dtsPBC.

The expressions of dtsPBC can contain identical activities. To avoid technical diffi-

culties, we must enumerate coinciding activities, for instance, from left to right in the

syntax of expressions. The new activities resulted from synchronization will be annotated

with concatenation of numberings of the activities they come from, hence, the numbering

should have a tree structure to reflect the effect of multiple synchronizations. We define

the numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.3. The numbering of expressions is defined as ι ::= n | (ι)(ι), where

n ∈ IN .

Num denotes the set of all numberings of expressions.

Example 3.1. The numbering 1 encodes the binary tree depicted in Figure 1(a) with

the root labeled by 1. The numbering (1)(2) corresponds to the binary tree depicted in

Figure 1(b) without internal nodes and with two leaves labeled by 1 and 2. The numbering

(1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one internal node,

which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from applications of the second rule for synchronization

Sy2 in different orders should be considered up to permutation of their numbering. In

this way, we shall recognize different instances of the same activity. If we compare the

contents of different numberings, i.e. the sets of natural numbers in them, we shall be

able to identify the mentioned instances. The content of a numbering ι ∈ Num is defined

as Cont(ι) =

{
{ι}, if ι ∈ IN ;

Cont(ι1) ∪ Cont(ι2), if ι = (ι1)(ι2).
After we apply the enumeration, the multisets of activities from the expressions become

the proper sets. In the following, we suppose that the identical activities are enumerated

when needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 3.4. Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the

Equivalence relations for modular performance evaluation in dtsPBC 13

equivalence class of G w.r.t. the structural equivalence. The derivation set of a dynamic

expression G, denoted by DR(G), is the minimal set such that

— [G]≈ ∈ DR(G);

— if [H]≈ ∈ DR(G) and there exists Γ such that H
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable in s is Exec(s) = {Γ | ∃H ∈ s ∃H̃

H
Γ
→ H̃}. Note that if Γ ∈ Exec(s) then by rules P3, Sy2 and definition of Exec(s) for

all ∆ ⊆ Γ we have ∆ ∈ Exec(s).

Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ is ready for

execution in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), if Exec(s) 6= {∅};

1, otherwise.

Thus, if Exec(s) 6= {∅} then PF (Γ, s) can be interpreted as a joint probability of

independent events. Each such an event consists in the positive or negative decision to

be executed of a particular activity. Every executable activity decides probabilistically

(using its probabilistic part) and independently (from others), if it wants to be executed

in s. If Γ is a multiset of all executable activities which have decided to be executed

in s and Γ ∈ Exec(s) then Γ is ready for execution in s. The multiplication in the

definition is used because it reflects the probability of the independent event intersection.

Alternatively, when Γ 6= ∅, PF (Γ, s) can be interpreted as the probability to execute

exclusively the multiset of activities Γ in s, i.e. the probability of intersection of two events

calculated using the conditional probability formula in the form P(X∩Y) = P(X |Y)P(Y).

The event X consists in the execution of Γ in s. The event Y consists in the non-

execution in s of all the executable activities not belonging to Γ. Since the mentioned

non-executions are obviously independent events, the probability of Y is a product of

the probabilities of the non-executions: P(Y) =
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}(1 − χ). The

conditioning of X by Y makes the executions of the activities from Γ independent,

since all of them can be executed in parallel in s by definition of Exec(s). Hence, the

probability to execute Γ under condition that no executable activities not belonging to Γ

are executed in s is a product of probabilities of these activities: P(X |Y) =
∏

(α,ρ)∈Γ ρ.

Thus, the probability that Γ is executed and no executable activities not belonging to Γ

are executed in s is the probability of X conditioned by Y multiplied by the probability

of Y : P(X ∩ Y) = P(X |Y)P(Y) =
∏

(α,ρ)∈Γ ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}(1 − χ). When

Γ = ∅, PF (Γ, s) can be interpreted as the probability not to execute in s any executable

activities, thus, PF (∅, s) =
∏

{(β,χ)}∈Exec(s)(1 − χ). When only the empty multiset of

activities can be executed in s, i.e. Exec(s) = {∅}, we have PF (∅, s) = 1, since we stay

in s in this case.

Igor V. Tarasyuk 14

Let Γ ∈ Exec(s). Besides Γ, some other multisets of activities may be ready for ex-

ecution in s, hence, a kind of conditioning or normalization is needed to calculate the

execution probability. The probability to execute the multiset of activities Γ in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

Thus, PT (Γ, s) can be interpreted as the conditional probability to execute Γ in s

calculated using the conditional probability formula in the form P(Z|W) = P(Z∩W)
P(W) .

The event Z consists in the exclusive execution of Γ in s, hence, P(Z) = PF (Γ, s). The

event W consists in the exclusive execution of any multiset (including the empty one)

∆ ∈ Exec(s) in s. Thus,W = ∪jZj , where for all j, Zj are mutually exclusive events and

there exists i such that Z = Zi. We have P(W) =
∑

j P(Zj) =
∑

∆∈Exec(s) PF (∆, s),

because summation reflects the probability of the mutually exclusive event union. Since

Z ∩ W = Zi ∩ (∪jZj) = Zi = Z, we have P(Z|W) = P(Z)
P(W) = PF (Γ,s)∑

∆∈Exec(s) PF (∆,s) .

PF (Γ, s) can also be seen as the potential probability to execute Γ in s, since we have

PF (Γ, s) = PT (Γ, s) only when all multisets (including the empty one) consisting of

the executable activities can be executed in s. In this case, all the mentioned activities

can be executed in parallel in s and we have
∑

∆∈Exec(s) PF (∆, s) = 1, since this sum

collects the products of all combinations of the probability parts of the activities and

the negations of these parts. But in general, for example, for two activities (α, ρ) and

(β, χ) executable in s, it may happen that they cannot be executed in s together, in

parallel, i.e. ∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ), (β, χ)} 6∈ Exec(s). Note that

PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability to stay in the state s at the next

time moment, and the residence time in s is at least 1 discrete time unit.

Note that the sum of outgoing probabilities for the expressions belonging to the deriva-

tions of G is equal to 1, i.e. for all s ∈ DR(G) we have
∑

Γ∈Exec(s) PT (Γ, s) = 1. This

follows from the definition of PT (Γ, s) and guarantees that PT (Γ, s) defines a probability

distribution.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).

Example 3.2. Let E = ({a}, ρ)[]({a}, χ). DR(E) consists of the equivalence classes

s1 = [E]≈ and s2 = [E]≈. The execution probabilities are calculated as follows. Since

Exec(s1) = {∅, {({a}, ρ)}, {({a}, χ)}}, we get PF ({({a}, ρ)}, s1) = ρ(1− χ),

PF ({({a}, χ)}, s1) = χ(1− ρ) and PF (∅, s1) = (1− ρ)(1 − χ).

Then
∑

∆∈Exec(s1)
PF (∆, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ. Thus,

PT ({({a}, ρ)}, s1) =
ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) =

χ(1−ρ)
1−ρχ and PT (∅, s1) = PM(s1, s1) =

(1−ρ)(1−χ)
1−ρχ . Further, Exec(s2) = {∅}, hence,

∑
∆∈Exec(s2)

PF (∆, s2) = PF (∅, s2) = 1

and PT (∅, s2) = PM(s2, s2) = 1
1 = 1. Finally, PM(s1, s2) = PT ({({a}, ρ)}, s1) +

PT ({({a}, χ)}, s1) =
ρ(1−χ)
1−ρχ + χ(1−ρ)

1−ρχ = ρ+χ−2ρχ
1−ρχ .

Equivalence relations for modular performance evaluation in dtsPBC 15

Definition 3.5. Let G be a dynamic expression. The (labeled probabilistic) transition

system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

— the set of states is SG = DR(G);

— the set of labels is LG = INSL
f × (0; 1];

— the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃

H
Γ
→ H̃};

— the initial state is sG = [G]≈.

The definition of TS(G) is correct, i.e. for every state, the sum of the probabilities of

all the transitions starting from it is 1. This is guaranteed by the note after the definition

of PT (Γ, s). Thus, we have defined a generative model of probabilistic processes (Jou and

Smolka 1990), according to the classification from (van Glabbeek et al. 1995). The reason

is that the sum of the probabilities of the transitions with all possible labels should be

equal to 1, not only of those with the same labels (up to enumeration of activities they

include) as in the reactive models (Larsen and Skou 1991), and we do not have the nested

probabilistic choice as in the stratified models (van Glabbeek et al. 1995).

The transition system TS(G) of a dynamic expression G describes all steps that occur

at discrete time moments with some (one-step) probability and that consist of multisets

of activities. Every step occurs instantly after one discrete time unit delay, the step

can change the current state to another one. The states are the structural equivalence

classes of dynamic expressions obtained by application of action rules starting from the

expressions belonging to [G]≈. A transition (s, (Γ,P), s̃) ∈ TG is written as s
Γ
→P s̃ and

interpreted as follows: the probability to change the state s to s̃ by executing Γ is P .

Note that Γ can be the empty multiset, and its execution does not change the current

state (the equivalence class), since we have a loop transition s
∅
→P s from a state s to

itself as a result of executing the empty multiset. This corresponds to application of the

empty loop rule to expressions from the equivalence class. We have to keep track of such

executions, called empty loops, because they have nonzero probabilities. This follows from

the definition of PF (∅, s) and the fact that multiaction probabilities cannot be equal to

1 as they belong to the interval (0; 1). The step probabilities belong to the interval (0; 1].

The step probability is 1 when we cannot leave a state s, hence, there exists only one

transition from it, namely, the empty loop transition s
∅
→1 s.

We write s
Γ
→ s̃ if there exists P such that s

Γ
→P s̃ and s → s̃ if there exists Γ such

that s
Γ
→ s̃. For a one-element multiset of activities Γ = {(α, ρ)}, we write s

(α,ρ)
−→P s̃ and

s
(α,ρ)
−→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components. Let ≃

denote isomorphism between transition systems that binds their initial states.

Definition 3.6. Dynamic expressions G and G′ are equivalent w.r.t. transition systems,

denoted by G =ts G
′, if TS(G) ≃ TS(G′).

Definition 3.7. Let G be a dynamic expression. The underlying discrete time Markov

chain (DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial state

[G]≈ and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

Igor V. Tarasyuk 16

For a dynamic expressionG, a discrete random variable is associated with every state of

DTMC(G). The variable captures a residence time in the state. One can interpret staying

in a state at the next discrete time moment as a failure and leaving it as a success of

some trial series. It is easy to see that the random variables are geometrically distributed

with the parameter 1−PM(s, s), since the probability to stay in the state s ∈ DR(G) for

k−1 time moments and leave it at the moment k ≥ 1 is PM(s, s)k−1(1−PM(s, s)) (the

residence time is k in this case). The mean value formula for the geometrical distribution

allows us to calculate the average sojourn time in the state s as SJ(s) = 1
1−PM(s,s) . The

average sojourn time vector of G, denoted by SJ , has the elements SJ(s), s ∈ DR(G).

Analogously, the sojourn time variance in the state s is V AR(s) = PM(s,s)
(1−PM(s,s))2 . The

sojourn time variance vector of G, denoted by V AR, has the elements V AR(s), s ∈

DR(G).

Example 3.3. Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ) and E =

[E1 ∗E2 ∗E3]. The identical activities of the composite static expression are enumerated

as follows: E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]. In Figure 2, the transition

system TS(E) and the underlying DTMC DTMC(E) are presented. For simplicity, the

states are labeled by expressions belonging to the corresponding equivalence classes, and

singleton multisets of activities are written without braces.

DR(E) consists of the equivalence classes s1 = [[E1 ∗ E2 ∗ E3]]≈, s2 = [[E1 ∗ E2 ∗

E3]]≈, s3 = [[E1 ∗ E2 ∗ E3]]≈. Let us demonstrate how the transition probabilities are

calculated. For instance, we have PF ({({a}, ρ)1}, s1) = PF ({({a}, ρ)2}, s1) = ρ(1 − ρ)

and PF (∅, s1) = (1 − ρ)2. Hence,
∑

∆∈Exec(s1)
PF (∆, s1) = 2ρ(1 − ρ) + (1 − ρ)2 =

1 − ρ2. Thus, PT ({({a}, ρ)1}, s1) = PT ({({a}, ρ)2}, s1) = ρ(1−ρ)
1−ρ2 = ρ(1−ρ)

(1−ρ)(1+ρ) = ρ
1+ρ

and PT (∅, s1) =
(1−ρ)2

1−ρ2 = (1−ρ)2

(1−ρ)(1+ρ) = 1−ρ
1+ρ . Other probabilities are calculated similarly.

The average sojourn time vector of E is SJ =
(

1+ρ
2ρ ,

1−χθ
θ(1−χ) ,∞

)
. The sojourn time

variance vector of E is V AR =
(

1−ρ2

4ρ2 ,
(1−θ)(1−χθ)
θ2(1−χ)2 ,∞

)
.

4. Denotational semantics

In this section, we define the denotational semantics in terms of a subclass of LDTSPNs,

called discrete time stochastic Petri boxes (dts-boxes). An illustrating example will be

given at the end of the section.

4.1. Labeled DTSPNs

We introduce a class of labeled discrete time stochastic PNs (LDTSPNs), a subclass of

DTSPNs (Molloy 1985) (we do not allow the transition probabilities to be equal to 1)

with transition labeling. LDTSPNs are somewhat similar to labeled weighted DTSPNs

(LWDTSPNs) from (Buchholz and Tarasyuk 2001), but in LWDTSPNs all transitions

have weights, the transition probabilities may be equal to 1 and only maximal fireable

subsets of the enabled transitions are fired.

Equivalence relations for modular performance evaluation in dtsPBC 17

[E1∗E2∗E3]

[E1∗E2∗E3]

TS(E)✞✝ ✲

✞✝ ✲

∅,
1−ρ
1+ρ

∅,
(1−χ)(1−θ)

1−χθ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲

({a},ρ)2,
ρ

1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡

✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

✞✝ ✲

1

❄
[E1∗E2∗E3]

✞✝ ✲

∅,1

({c},θ),
θ(1−χ)
1−χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

Fig. 2. The transition system and the underlying DTMC of E for E = [(({a}, ρ)1[]

({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

Definition 4.1. A labeled DTSPN (LDTSPN) is a tuple

N = (PN , TN ,WN ,ΩN , LN ,MN), where

— PN and TN are finite sets of places and transitions, respectively, such that PN∪TN 6= ∅

and PN ∩ TN = ∅;

— WN : (PN×TN)∪(TN×PN) → IN is a function providing the weights of arcs between

places and transitions;

— ΩN : TN → (0; 1) is the transition probability function associating transitions with

probabilities;

— LN : TN → L is the transition labeling function assigning multiactions to transitions;

— MN ∈ INPN

f is the initial marking.

A graphical representation of LDTSPNs is like that for standard labeled PNs, but with

probabilities written near the corresponding transitions. In the case the probabilities are

not given in the picture, they are considered to be of no importance. The weights of

arcs are depicted near them. The names of places and transitions are depicted near them

when needed.

Let N be an LDTSPN and t ∈ TN , U ∈ INTN

f . The precondition •t and the post-

condition t• of t are the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) =

WN (t, p). The precondition •U and the postcondition U• of U are the multisets of places

defined as •U =
∑
t∈U

•t and U• =
∑
t∈U t

•. Note that for U = ∅ we have •∅ = ∅ = ∅•.

A transition t ∈ TN is enabled in a marking M ∈ INPN

f of LDTSPN N if •t ⊆

M . Let Ena(M) be the set of all transitions (such that each of them is) enabled in a

marking M . A set of transitions U ⊆ Ena(M) is enabled in a marking M if •U ⊆ M .

Firings of transitions are atomic operations, and transitions may fire concurrently in

steps. We assume that all transitions participating in a step should differ, hence, only

the sets (not multisets) of transitions may fire. Thus, we do not allow self-concurrency,

i.e. firing of transitions concurrently to themselves. This restriction is introduced because

we would like to avoid technical difficulties while calculating probabilities for multisets of

Igor V. Tarasyuk 18

transitions as we shall see after the following formal definitions. Moreover, we do not need

to consider self-concurrency, since denotational semantics of expressions will be defined

via dts-boxes which are safe LDTSPNs (hence, no self-concurrency is possible).

LetM be a marking of an LDTSPN N . A transition t ∈ Ena(M) fires with probability

ΩN (t) when no other transitions conflicting with it are enabled.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆ M . The probability that the set of transitions U

is ready for firing in M is

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =

{ ∏
u∈Ena(M)(1− ΩN (u)), if Ena(M) 6= ∅;

1, otherwise.

Let U ⊆ Ena(M) and •U ⊆M . Besides U , some other sets of transitions may be ready

for firing in M , hence, a kind of conditioning or normalization is needed to calculate the

firing probability. The concurrent firing of the transitions from U changes the marking

M to M̃ =M − •U +U•, denoted by M
U
→P M̃ , where P = PT (U,M) is the probability

that the set of transitions U fires in M defined as

PT (U,M) =
PF (U,M)∑

{V⊆Ena(M)|•V⊆M} PF (V,M)
.

Note that in the case U = ∅ we have M = M̃ .

Let Ena(M) = {t1, . . . , tn} be a mutually exclusive set of transitions (i.e. firing of

any transition from the set results in a marking in which no other transition from the

set is enabled) and ρi = ΩN (ti) (1 ≤ i ≤ n). Then PT ({ti},M) resembles the proba-

bilistic function P [Ei] from (Molloy 1985), which defines the probability of the event Ei,

that transition ti in a mutually exclusive set of transitions {t1, . . . , tn} will fire in the

marking M . We have P [Ei] =
ρi

1−ρi

1+
∑

n
j=1

ρj
1−ρj

=
ρi(1−ρ1)···(1−ρn)

1−ρi

(1−ρ1)···(1−ρn)+
∑

n
j=1

ρj(1−ρ1)···(1−ρn)

1−ρj

, where

ρi(1−ρ1)···(1−ρn)
1−ρi

corresponds to PF ({ti},M) in our setting. Further, PT (∅,M) resem-

bles the probabilistic function P [E0], which defines the probability of the event E0, that

no transitions from the mutually exclusive set of transitions {t1, . . . , tn} will fire in the

marking M . We have P [E0] =
1

1+
∑

n
j=1

ρj
1−ρj

= (1−ρ1)···(1−ρn)

(1−ρ1)···(1−ρn)+
∑

n
j=1

ρj(1−ρ1)···(1−ρn)

1−ρj

, where

(1−ρ1) · · · (1−ρn) corresponds to PF (∅,M) in our setting. If Ena(M) is not a mutually

exclusive set of transitions, our way to define PT (U,M) for U ⊆ Ena(M), U 6= ∅, also

extends the approach of (Molloy 1985; Molloy 1981). The advantage of our two-stage

definition of PT (U,M) is that it has a closed form and we do not need to consider which

sets of transitions are exclusive, instead, we just consider the probability that U fires in

M under condition that only particular subsets of Ena(M) can fire in M .

Equivalence relations for modular performance evaluation in dtsPBC 19

Note that for all markings of an LDTSPN N the sum of outgoing probabilities is equal

to 1, i.e. for all M ∈ INPN

f we have PT (∅,M) +
∑

{U⊆Ena(M)|•U⊆M} PT (U,M) = 1.

This follows from the definition of PT (U,M) and guarantees that it defines a probability

distribution.

We write M
U
→ M̃ if there exists P such that M

U
→P M̃ and M → M̃ if there exists

U such that M
U
→ M̃ .

Definition 4.2. Let N be an LDTSPN.

— The reachability set RS(N) of N is the minimal set of markings such that

– MN ∈ RS(N);

– if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

— The reachability graph RG(N) of N is a directed labeled graph with the set of nodes

RS(N) and an arc labeled with (U,P) from node M to M̃ if M
U
→P M̃ .

— The underlying discrete time Markov chain (DTMC) DTMC(N) of N has the state

space RS(N), the initial state MN and the transitions M →P M̃ , if M → M̃ ,

where P = PM(M, M̃) is the probability to move from M to M̃ by firing any set of

transitions defined as

PM(M, M̃) =
∑

{U|M
U
→M̃}

PT (U,M).

Let N be an LDTSPN and M ∈ RS(N). The average sojourn time in the marking

M is SJ(M) = 1
1−PM(M,M) . The average sojourn time vector of N , denoted by SJ ,

has the elements SJ(M), M ∈ RS(N). The sojourn time variance in the marking M is

V AR(M) = PM(M,M)
(1−PM(M,M))2 . The sojourn time variance vector of N , denoted by V AR,

has the elements V AR(M), M ∈ RS(N).

Example 4.1. In Figure 3, an LDTSPN N with two visible transitions t1 (labeled by

{a}), t2 (labeled by {b}) and one invisible transition t3 (labeled by ∅) is presented.

Transition probabilities of N are denoted by ρ = ΩN (t1), χ = ΩN (t2), θ = ΩN(t3).

In the figure one can see the reachability graph RG(N) and the underlying DTMC

DTMC(N) as well. RS(N) consists of the markingsM1 = (1, 1, 0), M2 = (0, 1, 1), M3 =

(1, 0, 1), M4 = (0, 0, 2). The average sojourn time vector of N is SJ =
(

1
ρ+χ−ρχ ,

1
χ
, 1
ρ
, 1
θ

)
.

The sojourn time variance vector of N is V AR =
(

1−ρ−χ+ρχ
(ρ+χ−ρχ)2 ,

1−χ
χ2 ,

1−ρ
ρ2
, 1−θ
θ2

)
.

4.2. Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes and associated algebraic operations

to define a net representation of dtsPBC expressions.

Definition 4.3. A discrete time stochastic Petri box (dts-box) is a tuple

N = (PN , TN ,WN ,ΛN), where

Igor V. Tarasyuk 20

{a} {b}

∅

ρ χ

θ

p1 p2

p3

t1 t2

t3

✍✌✎☞✍✌✎☞

✍✌✎☞
✉ ✉
❄ ❄

❏❏❫ ✡✡✢

❄2

✎

✍

✔

✕✕✖

✲ ✛

N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛✞✝ ✲
✞✝ ✲

✞✝ ✲

✞✝ ✲
∅,(1−ρ)(1−χ)

∅,1−χ ∅,1−ρ

∅,1−θ

{t1,t2},
ρχ

t1,ρ(1−χ) t2,(1−ρ)χ

t2,χ t1,ρ

t3,θ

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

DTMC(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛

ρχ

ρ(1−χ) (1−ρ)χ

χ ρ

θ

✞✝ ✲
✞✝ ✲

✞✝ ✲

✞✝ ✲
(1−ρ)(1−χ)

1−χ 1−ρ

1−θ

Fig. 3. LDTSPN, its reachability graph and the underlying DTMC

— PN and TN are finite sets of places and transitions, respectively, such that PN∪TN 6= ∅

and PN ∩ TN = ∅;

— WN : (PN×TN)∪(TN×PN) → IN is a function providing the weights of arcs between

places and transitions;

— ΛN is the place and transition labeling function such that

– ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN
: TN → {̺ | ̺ ⊆ INSL

f × SL} (it associates transitions with the relabeling

relations on activities).

We require that for all t ∈ TN we have •t 6= ∅ 6= t•. In addition, for the set of entry places

of N defined as ◦N = {p ∈ PN | ΛN (p) = e} and the set of exit places of N defined as

N◦ = {p ∈ PN | ΛN (p) = x}, it holds: ◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A dts-box is plain if for all t ∈ TN we have ΛN (t) ∈ SL, i.e. ΛN (t) is a constant

relabeling that will be defined later. In case of the constant relabeling, the shorthand

notation (by an activity) for ΛN(t) will be used. Amarked plain dts-box is a pair (N,MN),

where N is a plain dts-box andMN ∈ INPN

f is its marking. We use the following notation:

N = (N, ◦N) and N = (N,N◦). A marked plain dts-box (PN , TN ,WN ,ΛN ,MN) could

be interpreted as the LDTSPN (PN , TN ,WN ,ΩN , LN ,MN), where functions ΩN and LN
are defined as follows: for all t ∈ TN we have ΩN (t) = Ω(ΛN (t)) and LN(t) = L(ΛN (t)).

Behaviour of the marked dts-boxes follows from the firing rule of LDTSPNs. A plain

dts-box N is n-bounded (n ∈ IN) if N is so, i.e. for all M ∈ RS(N) and for all p ∈ PN
we have M(p) ≤ n, and it is safe if it is 1-bounded. A plain dts-box N is clean if for all

M ∈ RS(N) we have ◦N ⊆ M implies M = ◦N and N◦ ⊆ M implies M = N◦ i.e. if

there are tokens in all its entry (exit) places then no other places have tokens.

The structure of the plain dts-box corresponding to a static expression is constructed

like in PBC (Best and Koutny 1995; Best et al. 2001), i.e. we use a simultaneous refine-

ment and relabeling meta-operator (net refinement) in addition to the operator dts-boxes

corresponding to the algebraic operations of dtsPBC and featuring transformational tran-

sition relabelings. Thus, the resulting plain dts-boxes are safe and clean. In the definition

of the denotational semantics, we shall apply standard constructions used for PBC. Let

Θ denote an operator box and u denote a transition name from PBC setting.

Equivalence relations for modular performance evaluation in dtsPBC 21

(α, ρ)

✍✌✎☞

✍✌✎☞
❄

❄

N(α,ρ)ι

e

x

tι ̺[f]

✍✌✎☞

✍✌✎☞
❄

❄

Θ[f]

e

x

u[f] ̺rs a

✍✌✎☞

✍✌✎☞
❄

❄

Θrs a

e

x

urs a
̺sy a

✍✌✎☞

✍✌✎☞
❄

❄

Θsy a

e

x

usy a ̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ;

e

u1;

̺id

✍✌✎☞
❄

❄
x

u2;

i

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ‖

e

u1‖

x

̺id

✍✌✎☞

✍✌✎☞
❄

❄

e

u2‖

x

̺idu1[]
̺id u2[]

Θ[]

✍✌✎☞

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✞ ☎
✝ ✆

❄

✻

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ[∗ ∗]

e

u1[∗ ∗]

̺id

✍✌✎☞
❄

❄
x

u3[∗ ∗]

i ̺id u2[∗ ∗]

Fig. 4. The plain and operator dts-boxes

The relabeling relations ̺ ⊆ INSL
f × SL are defined as follows:

— ̺id = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL} is the identity relabeling keeping the interface;

— ̺(α,ρ) = {(∅, (α, ρ))} is the constant relabeling identified with (α, ρ) ∈ SL itself;

— ̺[f] = {({(α, ρ)}, (f(α), ρ)) | (α, ρ) ∈ SL};

— ̺rs a = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL, a, â 6∈ α};

— ̺sy a is the least relabeling relation containing ̺id such that if (Γ, (α, ρ)), (∆, (β, χ)) ∈

̺sy a and a ∈ α, â ∈ β, then (Γ +∆, (α⊕a β, ρ · χ)) ∈ ̺sy a.

The plain and operator dts-boxes are presented in Figure 4. The symbol i is often omitted.

To construct a semantic function associating a plain dts-box with every static expres-

sion of dtsPBC, we need to propose the enumeration function Enu : T → Num. It

associates numberings with transitions of the plain dts-box N = (P, T,W,Λ) according

to those of activities. In the case of synchronization, the function associates concatena-

tion of the parenthesized numberings of the synchronized transitions with a resulting new

transition.

Now we define the enumeration function Enu for every operator of dtsPBC. Let

Boxdts(E) = (PE , TE ,WE ,ΛE) be the plain dts-box corresponding to a static expression

E, and EnuE : TE → Num be the enumeration function for Boxdts(E). We shall use

the analogous notation for static expressions F and K.

— Boxdts(E ◦F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖}. Since we do not introduce

any new transitions, we preserve the initial numbering:

Enu(t) =

{
EnuE(t), if t ∈ TE ;

EnuF (t), if t ∈ TF .

— Boxdts(E[f]) = Θ[f](Boxdts(E)). Since we only replace the labels of some multiac-

tions by a bijection, we preserve the initial numbering:

Igor V. Tarasyuk 22

Enu(t) = EnuE(t), t ∈ TE .

— Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled with

multiactions containing a or â, this does not change the numbering of the remaining

transitions:

Enu(t) = EnuE(t), t ∈ TE, a, â 6∈ L(ΛE(t)).

— Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that for all v, w ∈ TE such that ΛE(v) =

(α, ρ), ΛE(w) = (β, χ) and a ∈ α, â ∈ β, the new transition t resulting from syn-

chronization of v and w has the label Λ(t) = (α ⊕a β, ρ · χ) and the numbering

Enu(t) = (EnuE(v))(EnuE(w)). The enumeration function is

Enu(t) =

{
EnuE(t), if t ∈ TE ;

(EnuE(v))(EnuE(w)), if t results from synchronization of v and w.

When we synchronize the same set of transitions in different orders, we get several

resulting transitions with the same label and probability, but with different number-

ings having the same content. Then we shall consider only a single transition from

the resulting ones in the plain dts-box to avoid introducing redundant ones.

— Boxdts([E ∗ F ∗ K]) = Θ[∗ ∗](Boxdts(E), Boxdts(F), Boxdts(K)). Since we do not

introduce any new transitions, we preserve the initial numbering:

Enu(t) =





EnuE(t), if t ∈ TE ;

EnuF (t), if t ∈ TF ;

EnuK(t), if t ∈ TK .

Definition 4.4. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr. The denota-

tional semantics of dtsPBC is a mapping Boxdts from RegStatExpr into the area of

plain dts-boxes defined as follows:

1 Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2 Boxdts(E ◦ F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖};

3 Boxdts(E[f]) = Θ[f](Boxdts(E));

4 Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};

5 Boxdts([E ∗ F ∗K]) = Θ[∗ ∗](Boxdts(E), Boxdts(F), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) = Boxdts(E).

This definition is compositional in the sense that, for any dynamic expression, we may

decompose it in some inner dynamic and static expressions, for which we may apply

the definition, thus obtaining the corresponding plain dts-boxes, which can be joined

according to the term structure (by definition of Boxdts), the resulting plain box being

marked in the places that were marked in the argument nets.

Let ≃ denote the isomorphism between transition systems and reachability graphs or

between DTMCs that binds their initial states. The names of transitions of the dts-box

corresponding to a static expression could be identified with the enumerated activities of

Equivalence relations for modular performance evaluation in dtsPBC 23

100

010

RG(N)✞✝ ✲

✞✝ ✲
∅, 1−ρ

1+ρ

∅,
(1−χ)(1−θ)

1−χθ

DTMC(N)

✲ ✛

t1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
t2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

✞✝ ✲
1

❄✞✝ ✲
∅,1

t4,
θ(1−χ)
1−χθ

❄
001

☎✆✛

t3,
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

✝ ✆✻

({a},ρ)2

✍✌✎☞

✍✌✎☞

N

e

t2

({c},θ)

✍✌✎☞
❄

❄
x

t4

({b},χ) t3

({a},ρ)1t1

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

✉ 100

010

001

✲

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

p1

p2

p3

Fig. 5. The marked dts-box N = Boxdts(E) for E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ)∗

({c}, θ)], its reachability graph and the underlying DTMC

the latter. For a dts-box N , we denote its reachability graph by RG(N) and its underlying

DTMC by DTMC(N).

Theorem 4.1. (Tarasyuk 2006) For any static expression E

TS(E) ≃ RG(Boxdts(E)).

Proof. As for the qualitative behaviour, we have the same isomorphism as in PBC. The

quantitative behaviour is the same, since the activities of an expression have probability

parts coinciding with the probabilities of the transitions belonging to the corresponding

dts-box and, both in stochastic processes specified by expressions and dts-boxes, conflicts

are resolved via analogous probability functions.

Proposition 4.1. (Tarasyuk 2006) For any static expression E

DTMC(E) ≃ DTMC(Boxdts(E)).

Proof. By Theorem 4.1 and definitions of underlying DTMCs for dynamic expressions

and LDTSPNs, since transition probabilities of the associated DTMCs are the sums of

those belonging to transition systems or reachability graphs.

Example 4.2. Let E be from Example 3.3. In Figure 5, the marked dts-box N =

Boxdts(E), its reachability graph RG(N) and the underlying DTMC DTMC(N) are

presented. It is easy to see that TS(E) and RG(N) are isomorphic, as well as DTMC(E)

and DTMC(N).

The following example shows that without the syntactic restriction on regularity of

expressions the corresponding marked dts-boxes may be not safe.

Igor V. Tarasyuk 24

({a}, 12)

✍✌✎☞✉
❄

e

N

({b}, 12) ({c}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄
✍✌✎☞ ✍✌✎☞

❏
❏❫

✁
✁☛

✍✌✎☞x

❄ ❄

({d},12)

❄

❏❏❫ ✓✓✴

✟✟✟✟✯
❍❍❍❍❨

☞

✌

✎

✍✲ ✛

✻ ✻

★

✧

✥

✦✲ ✛

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

❄

❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

100000

011110

011200 011020

011001

t1, 1
2

t2, 1
2

t3, 1
2

t3, 1
5

t2, 1
5

t4, 1
5

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲ �✁✛

✞✝ ✲

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

Fig. 6. The marked dts-box N = Boxdts(E) for E = [(({a}, 1
2
) ∗ (({b}, 1

2
)‖({c}, 1

2
))∗

({d}, 1
2
)] and its reachability graph

Example 4.3. Let E = [(({a}, 12)∗(({b},
1
2)‖({c},

1
2))∗({d},

1
2)]. In Figure 6, the marked

dts-box N = Boxdts(E) and its reachability graph RG(N) are presented. In the mark-

ing (0, 1, 1, 2, 0, 0) there are 2 tokens in the place p4. Symmetrically, in the marking

(0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus, allowing concurrency in the

second argument of iteration in the expression E can lead to non-safeness of the cor-

responding marked dts-box N , though, it is 2-bounded in the worst case (Best et al.

2001). The origin of the problem is that N has as a self-loop with two subnets which can

function independently. Therefore, we have decided to consider regular expressions only,

since the alternative, which is a safe version of the iteration operator with six arguments

in the corresponding dts-box, like that from (Best et al. 2001), is rather cumbersome and

has too intricate Petri net interpretation. Our motivation was to keep the algebraic and

Petri net specifications as simple as possible.

5. Stochastic equivalences

Consider the expressions E = ({a}, 12) and E
′ = ({a}, 13)1[]({a},

1
3)2, for which E 6=ts E′,

since TS(E) has only one transition from the initial to the final state (with probabil-

ity 1
2) while TS(E′) has two such ones (with probabilities 1

4). On the other hand, all

the mentioned transitions are labeled by activities with the same multiaction part {a}.

Moreover, the overall probabilities of the mentioned transitions of TS(E) and TS(E′)

coincide: 1
2 = 1

4 + 1
4 . Further, TS(E) (as well as TS(E

′)) has one empty loop transition

from the initial state to itself with probability 1
2 and one empty loop transition from

the final state to itself with probability 1. The empty loop transitions are labeled by

Equivalence relations for modular performance evaluation in dtsPBC 25

the empty multiset of activities. For calculating the transition probabilities of TS(E′),

take ρ = χ = 1
3 in Example 3.2. Unlike =ts, most of the probabilistic and stochastic

equivalences proposed in the literature do not differentiate between the processes such

as those specified by E and E′.

Since the semantic equivalence =ts is too discriminating in many cases, we need weaker

equivalence notions. These equivalences should possess the following necessary proper-

ties. First, any two equivalent processes must have the same sequences of multisets of

multiactions, which are the multiaction parts of the activities executed in steps starting

from the initial states of the processes. Second, for every such sequence, its execution

probabilities within both processes must coincide. Third, the desired equivalence should

preserve the branching structure of computations, i.e. the points of choice of an exter-

nal observer between several extensions of a particular computation should be taken

into account. In this section, we define two such notions: step stochastic bisimulation

equivalence and stochastic isomorphism.

5.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the behavior of a

system. To define stochastic bisimulation equivalences, we have to consider a bisimulation

as an equivalence relation that partitions the states of the union of the transition systems

TS(G) and TS(G′) of two dynamic expressionsG andG′ to be compared. ForG andG′ to

be bisimulation equivalent, the initial states of their transition systems, [G]≈ and [G′]≈,

are to be related by a bisimulation having the following transfer property: two states are

related if in each of them the same multisets of multiactions can occur, and the resulting

states belong to the same equivalence class. In addition, the sums of probabilities for all

such occurrences should be the same for both states.

Thus, we follow the approaches of (Jou and Smolka 1990; Larsen and Skou 1991;

Hermanns and Rettelbach 1994; Hillston 1996; Bernardo and Gorrieri 1998; Bernardo

2007), but we implement step semantics instead of interleaving one considered in these

papers. Recall also that we use the generative probabilistic transition systems, like in

(Jou and Smolka 1990), in contrast to the reactive model, treated in (Larsen and Skou

1991), and we take transition probabilities instead of transition rates from (Hermanns and

Rettelbach 1994; Hillston 1996; Bernardo and Gorrieri 1998; Bernardo 2007). Thus, step

stochastic bisimulation equivalence that we define further is (in the probabilistic sense)

comparable only with interleaving probabilistic bisimulation equivalence from (Jou and

Smolka 1990), and our equivalence is obviously stronger.

In the definition below, we consider L(Γ) ∈ INL
f for Γ ∈ INSL

f , i.e. (possibly empty)

multisets of multiactions. The multiactions can be empty, then L(Γ) contains the elements

∅, and it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and

A ∈ INL
f , we write s

A
→P H, where P = PMA(s,H) is the overall probability to move

from s into the set of states H via steps with the multiaction part A defined as

Igor V. Tarasyuk 26

PMA(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃, L(Γ)=A}

PT (Γ, s).

We write s
A
→ H if there exists P such that s

A
→P H. Further, we write s →P H if

there exists A such that s
A
→ H, where P = PM(s,H) is the overall probability to move

from s into the set of states H via any steps defined as

PM(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃}

PT (Γ, s).

To introduce a stochastic bisimulation between dynamic expressions G and G′, we

should consider the “composite” set of states DR(G)∪DR(G′), since we have to identify

the probabilities to come from any two equivalent states into the same “composite”

equivalence class (w.r.t. the stochastic bisimulation). Note that, for G 6= G′, transitions

starting from the states of DR(G) (or DR(G′)) always lead to those from the same set,

since DR(G)∩DR(G′) = ∅, and this allows us to “mix” the sets of states in the definition

of stochastic bisimulation.

Definition 5.1. Let G and G′ be dynamic expressions. An equivalence relation R ⊆

(DR(G) ∪ DR(G′))2 is a step stochastic bisimulation between G and G′, denoted by

R : G↔ssG
′, if:

1 ([G]≈, [G
′]≈) ∈ R.

2 (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
f

s1
A
→P H ⇔ s2

A
→P H.

Dynamic expressions G and G′ are step stochastic bisimulation equivalent, denoted by

G↔ssG
′, if there exists R : G↔ssG

′.

Let Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} be the union of all step stochastic bisimulations

between G and G′. The following proposition proves thatRss(G,G
′) is also an equivalence

and Rss(G,G
′) : G↔ssG

′.

Proposition 5.1. Let G and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G

′)

is the largest step stochastic bisimulation between G and G′.

Proof. See Appendix A.1.

The algorithm for determining bisimulation of transition systems from (Paige and

Tarjan 1987) can be adapted for our framework. This algorithm has time complexity

O(m log n), where n is the number of states and m is the number of transitions.

Equivalence relations for modular performance evaluation in dtsPBC 27

5.2. Stochastic isomorphism

Stochastic isomorphism is weaker than =ts. The main idea is to collect the probabilities

of all transitions between the same pair of states such that the transition labels have the

same multiaction parts.

For a dynamic expression G, let s, s̃ ∈ DR(G) and s
A
→P {s̃}. Then we write s

A
→P s̃.

Definition 5.2. Let G and G′ be dynamic expressions. A mapping β : DR(G) →

DR(G′) is a stochastic isomorphism between G and G′, denoted by β : G =sto G
′, if

1 β is a bijection such that β([G]≈) = [G′]≈;

2 ∀s, s̃ ∈ DR(G) ∀A ∈ INL
f s

A
→P s̃ ⇔ β(s)

A
→P β(s̃).

Dynamic expressions G and G′ are stochastically isomorphic, denoted by G =sto G
′, if

there exists β : G =sto G
′.

5.3. Interrelations of the stochastic equivalences

Now we compare the discrimination power of the stochastic equivalences.

Theorem 5.1. For dynamic expressions G and G′ the following strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G =sto G

′ ⇒ G↔ssG
′.

Proof. Let us check the validity of the forward implications.

— The implication =sto→ ↔ss is proved as follows. Let β : G =sto G
′. Then it is easy

to see that R : G↔ssG
′, where R = {(s, β(s)) | s ∈ DR(G)}.

— The implication =ts→=sto is valid, since stochastic isomorphism is that of transition

systems up to merging of transitions with labels having identical multiaction parts.

— The implication ≈→=ts is valid, since the transition system of a dynamic formula is

defined based on its structural equivalence class.

Let us see that that the implications are strict, i.e. the reverse ones do not work, by

the following counterexamples.

(a) Let E = ({a}, 12); ({b},
1
2) and E

′ = ({a}, 13); ({b},
1
2)[]({a},

1
3); ({b},

1
2). Then

E↔ssE
′, but E 6=sto E′, since TS(E′) has more states than TS(E).

(b) Let E = ({a}, 12) and E
′ = ({a}, 13)1[]({a},

1
3)2. Then E =sto E′, but E 6=ts E′, since

TS(E) has only one transition from the initial to the final state while TS(E′) has

two such ones.

(c) Let E = ({a}, 12); ({â},
1
2) and E′ = (({a}, 12); ({â},

1
2)) sy a. Then E =ts E′, but

E 6≈ E′, since E and E′ cannot be reached from each other by inaction rules.

Example 5.1. In Figure 7, the marked dts-boxes corresponding to the dynamic expres-

sions from equivalence examples of Theorem 5.1 are presented, i.e. N = Boxdts(E) and

N ′ = Boxdts(E′) for each picture (a)–(c).

Igor V. Tarasyuk 28

({a}, 12) ({a}, 12)

({b}, 12) ({b}, 12)

✍✌✎☞ ✍✌✎☞
✍✌✎☞✉

✍✌✎☞

❄

❄

❄

❄

��✠
❩❩⑦

❙
❙✇

�
�✠

x

e

N ′

({a}, 12)

({b}, 12)

✍✌✎☞❄
❄

✍✌✎☞✉

✍✌✎☞x

e

N(a)

❄

❄

↔ss

6=sto

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e

x

N(b)

❄ =sto

6=ts
({a}, 12) ({a}, 12)

✍✌✎☞

✍✌✎☞
❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e
N ′

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e
N(c)

❄

=ts

6≈

({a}, 12)

({â}, 12)

✍✌✎☞❄
❄

✍✌✎☞✉

✍✌✎☞x

e

N ′

❄

❄

(∅, 14)

❙
❙
❙
❙
❙✇

✡
✡

✡
✡

✡✡✢

✞ ☎
✝ ✆

❄

✻
({â}, 12)

✍✌✎☞
❄

✍✌✎☞x❄
Fig. 7. Dts-boxes of the dynamic expressions from equivalence examples of Theorem 5.1

6. Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and

DTMCs of expressions (reachability graphs and DTMCs of dts-boxes). Reductions of

graph-based models, like transition systems, reachability graphs and DTMCs, result in

those with less states (the graph nodes). The goal of the reduction is to decrease the

number of states in the semantic representation of the modeled system while preserving

its important qualitative and quantitative properties. Thus, the reduction allows one to

simplify the behaviour and performance analysis of systems.

An autobisimulation is a bisimulation between an expression and itself. For a dynamic

expression G and a step stochastic autobisimulation on it R : G↔ssG, let K ∈ DR(G)/R
and s1, s2 ∈ K. We have for all K̃ ∈ DR(G)/R and for all A ∈ INL

f the following holds:

s1
A
→P K̃ iff s2

A
→P K̃. The previous statement is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K
A
→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→ K̃ if there exists P such that K

A
→P K̃ and K → K̃ if there exists A such

that K
A
→ K̃ The similar arguments allow us to write K →P K̃, where P = PM(K, K̃) =

PM(s1, K̃) = PM(s2, K̃).

The average sojourn time in the equivalence class (w.r.t. R) of states K is SJR(K) =
1

1−PM(K,K) . The average sojourn time vector for the equivalence classes (w.r.t. R) of

states of G, denoted by SJR, has the elements SJR(K), K ∈ DR(G)/R. The sojourn

time variance in the equivalence class (w.r.t. R) of states K is V ARR(K) = PM(K,K)
(1−PM(K,K))2 .

The sojourn time variance vector for the equivalence classes (w.r.t. R) of states of G,

denoted by V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic autobisimulations

on G. By Proposition 5.1, Rss(G) is the largest step stochastic autobisimulation on

G. Based on the equivalence classes w.r.t. Rss(G), the quotient (by ↔ss) transition

systems and the quotient (by ↔ss) underlying DTMCs of expressions can be defined.

The mentioned equivalence classes become the quotient states. Every quotient transition

between two such composite states represents all steps (having the same multiaction part

in case of the transition system quotient) from the first state to the second one.

Definition 6.1. Let G be a dynamic expression. The quotient (by ↔ss) (labeled prob-

Equivalence relations for modular performance evaluation in dtsPBC 29

abilistic) transition system of G is a quadruple TS↔ss
(G) = (S↔ss

, L↔ss
, T↔ss

, s↔ss
),

where

— S↔ss
= DR(G)/Rss(G);

— L↔ss
⊆ INL

f × (0; 1];

— T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

— s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→P K̃.

Definition 6.2. Let G be a dynamic expression. The quotient (by ↔ss) underlying

DTMC of G, denoted by DTMC↔ss
(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

The quotient (by ↔ss) average sojourn time vector of G is SJ↔ss
= SJRss(G). The

quotient (by ↔ss) sojourn time variance vector of G is V AR↔ss
= V ARRss(G).

The quotients of both transition systems and underlying DTMCs are the minimal

reductions of the mentioned objects modulo ↔ss. The quotients can be used to simplify

analysis of system properties preserved by ↔ss, since less states should be examined for

it. Such reduction method resembles that from (Autant and Schnoebelen 1992) based on

place bisimulation equivalence for PNs, excepting that the former method merges states,

while the latter one merges places.

The algorithms which can be adapted for our framework exist for constructing the

quotients of transition systems by bisimulation (Paige and Tarjan 1987) and those of

(discrete or continuous time) Markov chains by ordinary lumping (Derisavi et al. 2003).

The algorithms have time complexity O(m log n) and space complexity O(m + n) (the

case of Markov chains), where n is the number of states and m is the number of transi-

tions. As mentioned in (Wimmer et al. 2010), the algorithm from (Derisavi et al. 2003)

can be easily adjusted to produce quotients of labeled probabilistic transition systems by

the probabilistic bisimulation equivalence. In (Wimmer et al. 2010), the symbolic par-

tition refinement algorithm on state space of CTMCs was proposed. The algorithm can

be straightforwardly accommodated to DTMCs and other Markovian models, Kripke

structures and labeled probabilistic transition systems. Such a symbolic lumping uses

memory efficiently due to compact representation of the state space partition. The sym-

bolic lumping is time efficient, since fast algorithm of the partition representation and

refinement is applied.

The comprehensive quotient example will be presented in Section 8.

7. Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour

of stochastic processes in their steady states. We shall consider only formulas specifying

stochastic processes with infinite behavior, i.e. expressions with the iteration operator.

Note that the iteration operator does not guarantee infiniteness of behaviour, since there

can exist a deadlock within the body (the second argument) of iteration when the cor-

responding subprocess does not reach its final state by some reasons. Let us define the

Igor V. Tarasyuk 30

expression Stop = ({g}, 12) rs g specifying the non-terminating process that performs

only empty loops with probability 1. In particular, if the body of iteration contains the

Stop expression, then the iteration will be “broken”. On the other hand, the iteration

body can be left after a finite number of its repeated executions and then the iteration

termination is started. To avoid executing any activities after the iteration body, we take

Stop as the termination argument of iteration.

Like in the framework of DTMCs, in DTSPNs the most common systems for per-

formance analysis are ergodic (recurrent non-null, aperiodic and irreducible) ones. For

ergodic DTSPNs, the steady-state marking probabilities exist and can be determined.

In (Molloy 1985), the following sufficient (but not necessary) conditions for ergodicity

of DTSPNs are stated: liveness (for each transition and any reachable marking there

exists a sequence of markings from it leading to the marking enabling that transition),

boundedness (the number of tokens in every place is not greater than some fixed number

for any reachable marking) and nondeterminism (the transition probabilities are strictly

less than 1). Let the dts-box of a dynamic expression has no deadlocks in the body of

some iteration operator it contains and Stop is the termination argument of this operator.

Then the three ergodicity conditions are satisfied: the subnet corresponding to such an

iteration body is live, safe (1-bounded) and nondeterministic (since all markings of the

live subnet are non-terminal, the probabilities of transitions from them are strictly less

than 1). Hence, its DTMC restricted to the states between the initial and final states

of this iteration body is ergodic. The isomorphism between DTMCs of expressions and

those of the corresponding dts-boxes which is stated by Proposition 4.1 guarantees that

the underlying DTMC of an expression with infinite behaviour is ergodic if restricted to

the states in which such an iteration body is executed.

In this section, we consider the expressions such that their underlying DTMCs contain

one ergodic subset of states to guarantee that a single steady state exists.

7.1. Theoretical background

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of the

(one-step) transition probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), if si → sj ;

0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF) ψ[k] = (ψ1[k], . . . , ψn[k])

for DTMC(G) is calculated as

ψ[k] = ψ[0]Pk,

where ψ[0] = (ψ1[0], . . . , ψn[0]) is the initial PMF defined as ψi[0] =

{

1, if si = [G]≈;

0, otherwise.

Note also that ψ[k + 1] = ψ[k]P (k ∈ IN).

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the equation

system

Equivalence relations for modular performance evaluation in dtsPBC 31

{
ψ(P − I) = 0

ψ1T = 1
,

where I is the identity matrix of size n and 0 is a row vector of n values 0, 1 is that of

n values 1.

If DTMC(G) has a single steady state then ψ = limk→∞ ψ[k].

For s = si ∈ DR(G) (1 ≤ i ≤ n) let ψ[k](s) = ψi[k] (k ∈ IN) and ψ(s) = ψi.

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following

performance indices (measures) can be calculated based on the steady-state PMF for

DTMC(G).

— The average recurrence (return) time in the state s (i.e. the number of discrete time

units or steps required for this) is 1
ψ(s) .

— The fraction of residence time in the state s is ψ(s).

— The fraction of residence time in the set of states S ⊆ DR(G) or the probability of

the event determined by a condition that is true for all states from S is
∑
s∈S ψ(s).

— The relative fraction of residence time in the set of states S w.r.t. that in S̃ is∑
s∈S ψ(s)∑
s̃∈S̃

ψ(s̃) .

— The steady-state probability to perform a step with an activity (α, ρ) is∑
s∈DR(G) ψ(s)

∑
{Γ|(α,ρ)∈Γ} PT (Γ, s).

— The probability of the event determined by a reward function r is
∑
s∈DR(G) ψ(s)r(s).

7.2. Steady state and equivalences

The following proposition demonstrates that, for two dynamic expressions related by

↔ss, the steady-state probabilities to enter into an equivalence class coincide. One can

also interpret the result stating that the mean recurrence time for an equivalence class

is the same for both expressions.

Proposition 7.1. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ψ be the

steady-state PMF for DTMC(G), ψ′ be the steady-state PMF for DTMC(G′). Then

for all H ∈ (DR(G) ∪DR(G′))/R we have

∑

s∈H∩DR(G)

ψ(s) =
∑

s′∈H∩DR(G′)

ψ′(s′).

Proof. See Appendix A.2.

Let G be a dynamic expression. The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is

defined like the corresponding notion ψ for DTMC(G). By Proposition 7.1, for all H ∈

DR(G)/Rss(G) we have ψ↔ss
(H) =

∑
s∈H ψ(s). Thus, for every equivalence class H ∈

DR(G)/Rss(G), the value of ψ↔ss
corresponding to H is the sum of all values of ψ

corresponding to the states from H. Hence, using DTMC↔ss
(G) instead of DTMC(G)

simplifies the analytical solution, since we have less states, but constructing the TPM

for DTMC↔ss
(G), denoted by P↔ss

, also requires some efforts, including determining

Igor V. Tarasyuk 32

Rss(G) and calculating the probabilities to move from one equivalence class to other. The

behaviour of DTMC↔ss
(G) stabilizes quicker than that of DTMC(G) (if each of them

has a single steady state), since P↔ss
is denser matrix than P due to the fact that the

former matrix is smaller and the transitions between the equivalence classes “include”

all the transitions between the states belonging to these equivalence classes.

By Proposition 7.1, ↔ss preserves the quantitative properties of the stationary be-

haviour. Now we intend to demonstrate that the qualitative properties of the stationary

behaviour based on the multiaction labels are preserved as well.

Definition 7.1. A derived step trace of a dynamic expression G is a chain

Σ = A1 · · ·An ∈ (INL
f)

∗, where there exists s ∈ DR(G) such that s
Γ1→ s1

Γ2→ · · ·
Γn→ sn

and L(Γi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived step trace Σ in

s is

PT (Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→s1

Γ2→···
Γn→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT (Γi, si−1).

The following theorem demonstrates that, for two dynamic expressions related by ↔ss,

the steady-state probabilities to enter into an equivalence class and start a derived step

trace from it coincide.

Theorem 7.1. Let G,G′ be dynamic expressions with R : G↔ssG
′ and ψ be the steady-

state PMF for DTMC(G), ψ′ be the steady-state PMF for DTMC(G′) and Σ be a

derived step trace of G and G′. Then for all H ∈ (DR(G) ∪DR(G′))/R we have

∑

s∈H∩DR(G)

ψ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ψ′(s′)PT (Σ, s′).

Proof. See Appendix A.3.

Example 7.1. Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop] and

E′ = [({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop].

We have E =sto E′, hence, E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈.

Equivalence relations for modular performance evaluation in dtsPBC 33

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 13)1 ({c}, 13)2

({b}, 12)

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({c}, 12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({b}, 13)1

✍✌✎☞x

❄

({b}, 13)2

��✠
❩❩⑦

❄ ❄

✍✌✎☞✥

✦

★

✧✠ ✍ ✠ ✍

=sto

6=ts

✲ ✛✍✌✎☞❄
❄

��✠
❩❩⑦
✍✌✎☞❄

✲ ✛ ✥

✦

★

✧
Fig. 8. ↔ss implies a coincidence of the steady-state probabilities to enter into an

equivalence class and start a derived step trace from it

The steady-state PMFs ψ for DTMC(E) and ψ′ for DTMC(E′) are

ψ =

(
0,

1

2
,
1

2

)
, ψ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider the equivalence class (w.r.t. Rss(E,E′)) H = {s3, s′3, s
′
4}. One can see that

the steady-state probabilities for H coincide:
∑

s∈H∩DR(E) ψ(s) = ψ(s3) =
1
2 = 1

4 + 1
4 =

ψ′(s′3) +ψ′(s′4) =
∑
s′∈H∩DR(E′) ψ

′(s′). Let Σ = {{c}}. The steady-state probabilities to

enter into the equivalence class H and start the derived step trace Σ from it coincide as

well: ψ(s3)(PT ({({c},
1
3)1}, s3) + PT ({({c}, 13)2}, s3)) =

1
2

(
1
4 + 1

4

)
= 1

4 = 1
4 ·

1
2 +

1
4 · 1

2 =

ψ′(s′3)PT ({({c},
1
2)1}, s

′
3) + ψ′(s′4)PT ({({c},

1
2)2}, s

′
4).

In Figure 8, the marked dts-boxes corresponding to the dynamic expressions above are

presented, i.e. N = Boxdts(E) and N ′ = Boxdts(E′).

7.3. Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter into a set

of similar states or, after coming in it, to start a derived step trace from this set. The

similarity of states is usually captured by an equivalence relation, hence, the sets are

often the equivalence classes. Proposition 7.1 and Theorem 7.1 guarantee a coincidence

of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss (hence, all the

stronger equivalences we have considered) preserves performance of stochastic systems

modeled by expressions of dtsPBC.

In addition, it is easier to evaluate performance using a DTMC with less states, since

Igor V. Tarasyuk 34

in this case the size of the transition probability matrix is smaller, and we solve systems

of less equations to calculate steady-state probabilities. The reasoning above validates

the following method of performance analysis simplification.

1 The investigated system is specified by a static expression of dtsPBC.

2 The transition system of the expression is constructed.

3 After treating the transition system for self-similarity, a step stochastic autobisimu-

lation equivalence for the expression is determined.

4 The quotient underlying DTMC is constructed from the quotient transition system.

5 Stationary probabilities and performance indices are calculated via the DTMC.

The limitation of the method above is its applicability only to the expressions such that

their corresponding DTMCs contain one irreducible subset of states, i.e. the existence of

exactly one stationary state is required. If a DTMC contains several irreducible subsets

of states then several steady states may exist which depend on the initial PMF. There

is an analytical method to determine the stable states for DTMCs of this kind as well

(Kulkarni 2009). Note that, for every expression, the underlying DTMC has by definition

only one initial PMF (that at the time moment 0), hence, the stationary state will be

only one in this case too. The general steady-state probability will be calculated as a

sum of the stationary probabilities of the irreducible subsets of states weighted by the

probabilities to enter these subsets starting from the initial state and passing through

some transient states. Further, it is worth applying the method only to the systems with

similar subprocesses.

For transition systems reduction one can also use an analogue of the approach from

(Katoen et al. 2011): first perform the fast symmetry reduction based on the method from

(Kwiatkowska et al. 2006), then construct a quotient of the resulting transition system

by bisimulation equivalence by applying the time-optimal partition refinement algorithm

from (Derisavi et al. 2003) to the state space of this system. As mentioned in (Katoen

et al. 2011), for a number of case studies, minimization by bisimulation results in more

significant state space reduction than symmetry reduction, but the latter is much faster

than the former, since symmetries are determined on a syntactical level. In (Baarir et al.

2011), the effective analysis methods were proposed for partially symmetric models.

8. Dining philosophers system

8.1. The standard system

Consider a model of five dining philosophers, for which the Petri net interpretation was

proposed in (Peterson 1981). We investigate this dining philosophers system in the dis-

crete time stochastic setting of dtsPBC. The philosophers occupy a round table, and

there is one fork between every neighboring persons, hence, there are five forks on the

table. A philosopher needs two forks to eat, namely, his left and right ones. Hence, all five

philosophers cannot eat together, since otherwise there will not be enough forks available,

but only one of two of them who are not neighbors. The model works as follows. After

the activation of the system (the philosophers come in the dining room), five forks are

placed on the table. If the left and right forks are available for a philosopher, he takes

Equivalence relations for modular performance evaluation in dtsPBC 35

Fig. 9. The diagram of the dining philosophers system

them simultaneously and begins eating. At the end of eating, the philosopher places both

his forks simultaneously back on the table. The strategy to pick up and release two forks

simultaneously prevents the situation when a philosopher takes one fork but is not able

to pick up the second one since their neighbor has already done so. In particular, we

avoid a deadlock when all the philosophers take their left (right) forks and wait until

their right (left) forks will be available. Figure 9 presents the diagram of the system.

One can explore what happens if there will be another number of philosophers at

the table. The most interesting is to find the maximal sets of philosophers which can

dine together, since all other combinations of the dining persons will be the subsets of

these maximal sets. For the system with 1 philosopher the only maximal set is ∅. For

the system with 2 philosophers the maximal sets are {1}, {2}. For the system with 3

philosophers the maximal sets are {1}, {2}, {3}. For the system with 4 philosophers

the maximal sets are {1, 3}, {2, 4}. For the system with 5 philosophers the maximal sets

are {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}. For the system with 6 philosophers the maximal

sets are {1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}. For the system with 7 philosophers the

maximal sets are {1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}, {3, 5, 7}. Thus,

the system demonstrates a nontrivial behaviour when there are at least 5 philosophers.

Since the neighbors cannot dine together, the maximal number of the dining persons

for the system with n philosophers will be ⌊n2 ⌋, i.e. the maximal natural number that is

not greater than n
2 . If the philosopher i belongs to some maximal set then the philosopher

i(mod n) + 1 will belong to the next one. Let us calculate how many such maximal sets

consisting of the maximal number of the philosophers (⌊n2 ⌋) are there. If n is an even

number then there will be only 2 such maximal sets of n
2 dining persons, namely, the

philosophers numbered with all odd natural numbers which are not greater than n and

those numbered with all even natural numbers which are not greater than n. If n is an

odd number then there will be n such maximal sets of n−1
2 dining persons, since, starting

from some maximal set one can “shift” clockwise n− 1 times by one element modulo n

until the next maximal set will coincide with the initial one.

We proceed with the 5 dining philosophers system. Let us explain the meaning of

actions from the syntax of dtsPBC expressions which will specify the system modules.

The action a corresponds to the system activation. The actions bi and ei correspond to

Igor V. Tarasyuk 36

the beginning and the end, respectively, of eating of philosopher i (1 ≤ i ≤ 5). The other

actions are used for communication purposes only via synchronization, and we abstract

from them later using restriction. Note that the expression of each philosopher includes

two alternative subexpressions such that the second one specifies a resource (fork) sharing

with the right neighbor.

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ei = [({xi},
1
2) ∗ ((({bi, ŷi},

1
2); ({ei, ẑi},

1
2))[](({yi+1},

1
2); ({zi+1},

1
2))) ∗ Stop].

The static expression of the philosopher 5 is

E5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop].

For a1, . . . , an ∈ Act (n ∈ IN), we shall abbreviate sy a1 · · · sy an rs a1 · · · rs an to

sr (a1, . . . , an). The static expression of the dining philosophers system is

E = (E1‖E2‖E3‖E4‖E5) sr (x1, x2, x3, x4, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5).

Let us illustrate an effect of synchronization. In the result of synchronization of the

activities ({bi, yi},
1
2) and ({ŷi},

1
2) we obtain the new activity ({bi},

1
4) (1 ≤ i ≤ 5). The

synchronization of ({ei, zi},
1
2) and ({ẑi},

1
2) produces ({ei},

1
4) (1 ≤ i ≤ 5). The result of

synchronization of ({a, x̂1, x̂2, x̂3, x̂4},
1
2) and ({x1},

1
2) is ({a, x̂2, x̂3, x̂4},

1
4). The result of

synchronization of ({a, x̂2, x̂3, x̂4},
1
4) and ({x2},

1
2) is ({a, x̂3, x̂4},

1
8). The result of syn-

chronization of ({a, x̂3, x̂4},
1
8) and ({x3},

1
2) is ({a, x̂4},

1
16). The result of synchronization

of ({a, x̂4},
1
16) and ({x4},

1
2) is ({a},

1
32).

DR(E) has 12 states interpreted as follows: s1 is the initial state, s2: the system is

activated and no philosophers dine, s3: philosopher 1 dines, s4: philosophers 1 and 4

dine, s5: philosophers 1 and 3 dine, s6: philosopher 4 dines, s7: philosopher 3 dines, s8:

philosophers 2 and 4 dine, s9: philosophers 3 and 5 dine, s10: philosopher 2 dines, s11:

philosopher 5 dines, s12: philosophers 2 and 5 dine.

In Figure 10, the transition system TS(E) is presented.

The average sojourn time vector of E is

SJ =

(
32,

29

20
,
20

11
,
16

7
,
16

7
,
20

11
,
20

11
,
16

7
,
16

7
,
20

11
,
20

11
,
16

7

)
.

The sojourn time variance vector of E is

V AR =

(
992,

261

400
,
180

121
,
144

49
,
144

49
,
180

121
,
180

121
,
144

49
,
144

49
,
180

121
,
180

121
,
144

49

)
.

The transition probability matrix (TPM) for DTMC(E) is

Equivalence relations for modular performance evaluation in dtsPBC 37

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s4

✛
✚
✘
✙s6

✛
✚
✘
✙s7

✛
✚
✘
✙s8

✛
✚
✘
✙s9

✛
✚
✘
✙s10

✛
✚
✘
✙s11

✛
✚
✘
✙s12

✛
✚
✘
✙s3

✛
✚
✘
✙s1

TS(E)

✻

❄

❄

✻

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙♦❙

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

PPPPPPPPPPPPPPPPP✐
PPPPPPPPPPPPPPPPPq

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮

❳❳❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳②

❄

✻

✘✘✘✘✘✘✘✘✘✘✘✾
✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳② ❳❳❳❳❳❳❳❳❳③

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

✻

❄

✘✘✘✘✘✘✘✘✘✘✘✿
✘✘✘✘✘✘✘✘✘✾

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✛ ✲
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖ ❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✚
✚
✚
✚
✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚✚❃✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙
❙♦

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

({a}, 1
32

), 1
32

({e4}, 1
4
), 3

16

({b4}, 1
4
), 3

20

({b3}, 1
4
), 3

20

({e3}, 1
4
), 3

16

({e1}, 1
4
), 3

16
({b1}, 1

4
), 3

20

({b5}, 1
4
),

3
20

({e5}, 1
4
),

3
16

({e3}, 1
4
), 3

16

({b3}, 1
4
), 3

20

({b2}, 1
4
), 3

20

({e2}, 1
4
), 3

16

({e5}, 1
4
), 3

16

({b5}, 1
4
), 3

20

({b4}, 1
4
), 3

20

({e4}, 1
4
), 3

16

({e2}, 1
4
),

3
16

({b2}, 1
4
),

3
20

({e1}, 1
4
), 3

16
({b1}, 1

4
), 3

20

({b1}, 1
4
), 3

29

({e1}, 1
4
), 3

20

{({b1}, 1
4
),

({b3}, 1
4
)}, 1

29

{({e1}, 1
4
),

({e3}, 1
4
)}, 1

16

({b3}, 1
4
), 3

29

({e3}, 1
4
), 3

20

{({b3}, 1
4
),

({b5}, 1
4
)}, 1

29

{({e3}, 1
4
),

({e5}, 1
4
)}, 1

16

({b5}, 1
4
), 3

29

({e5}, 1
4
), 3

20

{({b2}, 1
4
),

({b5}, 1
4
)}, 1

29

{({e2}, 1
4
),

({e5}, 1
4
)}, 1

16

({b2}, 1
4
), 3

29

({e2}, 1
4
), 3

20

{({b2}, 1
4
),

({b4}, 1
4
)}, 1

29

{({e2}, 1
4
),

({e4}, 1
4
)}, 1

16

({b4}, 1
4
), 3

29

({e4}, 1
4
), 3

20

{({b1}, 1
4
),

({b4}, 1
4
)}, 1

29

{({e1}, 1
4
),

({e4}, 1
4
)}, 1

16

{({b1}, 1
4
),

({e4}, 1
4
)},

1
20

{({b4}, 1
4
),

({e1}, 1
4
)}, 1

20

{({b3}, 1
4
),

({e1}, 1
4
)},

1
20

{({b1}, 1
4
),

({e3}, 1
4
)}, 1

20

{({b5}, 1
4
),

({e3}, 1
4
)},

1
20

{({b3}, 1
4
),

({e5}, 1
4
)}, 1

20

{({b5}, 1
4
),({e2}, 1

4
)}, 1

20

{({b2}, 1
4
),({e5}, 1

4
)}, 1

20

{({b4}, 1
4
),

({e2}, 1
4
)},

1
20

{({b2}, 1
4
),

({e4}, 1
4
)}, 1

20

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮
PPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPP✐

❏
❏

❏
❏

❏
❏

❏
❏

❏❪
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✡
✡
✡
✡
✡
✡
✡
✡
✡✣✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩

❩
❩
❩
❩❩⑦❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩❩⑥

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✗

☎✆

✞✝✲
✞✝✲

✞✝✲

✞✝✲

✞✝✲

✛

☎✆✛

☎✆✛ ✞✝✲

✞✝✲
✞✝✲

☎✆✛

∅, 31
32

∅, 9
29

∅, 9
20

∅, 9
16

∅, 9
16

∅, 9
20

∅, 9
20

∅, 9
16

∅, 9
16

∅, 9
20 ∅, 9

20

∅, 9
16

Fig. 10. The transition system of the dining philosophers system

P =




31
32

1
32 0 0 0 0 0 0 0 0 0 0

0 9
29

3
29

1
29

1
29

3
29

3
29

1
29

1
29

3
29

3
29

1
29

0 3
20

9
20

3
20

3
20

1
20

1
20 0 0 0 0 0

0 1
16

3
16

9
16 0 3

16 0 0 0 0 0 0

0 1
16

3
16 0 9

16 0 3
16 0 0 0 0 0

0 3
20

1
20

3
20 0 9

20 0 3
20 0 1

20 0 0

0 3
20

1
20 0 3

20 0 9
20 0 3

20 0 1
20 0

0 1
16 0 0 0 3

16 0 9
16 0 3

16 0 0

0 1
16 0 0 0 0 3

16 0 9
16 0 3

16 0

0 3
20 0 0 0 1

20 0 3
20 0 9

20
1
20

3
20

0 3
20 0 0 0 0 1

20 0 3
20

1
20

9
20

3
20

0 1
16 0 0 0 0 0 0 0 3

16
3
16

9
16




.

In Table 4, the transient and the steady-state probabilities ψi[k] (1 ≤ i ≤ 4) of the

Igor V. Tarasyuk 38

Table 4. Transient and steady-state probabilities of the dining philosophers system

k 0 20 40 60 80 100 120 140 160 180 200 ∞

ψ1[k] 1 0.5299 0.2808 0.1488 0.0789 0.0418 0.0222 0.0117 0.0062 0.0033 0.0017 0
ψ2[k] 0 0.0842 0.1098 0.1234 0.1306 0.1345 0.1365 0.1375 0.1381 0.1384 0.1386 0.1388
ψ3[k] 0 0.0437 0.0681 0.0811 0.0880 0.0916 0.0935 0.0945 0.0951 0.0954 0.0955 0.0957
ψ4[k] 0 0.0335 0.0537 0.0645 0.0701 0.0732 0.0748 0.0756 0.0760 0.0763 0.0764 0.0766

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææà

àà
ààààà
àààààà
ààààààà
ààààààààà
àààààààààààà

ààààààààààààààààààà
àà

àà

ììììì
ììììì
ìììììì
ìììììììì
ìììììììììì

ìììììììììììììì
ìììììììììììììììììììììììììì

ììì

òòòòòòòò
òòòòòòò
òòòòòòòòò
òòòòòòòòòòòò

òòòòòòòòòòòòòòòòòòòò
òò

òòò

50 100 150 200
k

0.2

0.4

0.6

0.8

1.0

ò Ψ4@kD

ì Ψ3@kD

à Ψ2@kD

æ Ψ1@kD

Fig. 11. Transient probabilities alteration diagram of the dining philosophers system

dining philosophers system at the time moments k ∈ {0, 20, 40, . . . , 200} and k = ∞

are presented, and in Figure 11, the alteration diagram (evolution in time) for the tran-

sient probabilities is depicted. It is sufficient to consider the probabilities for the states

s1, . . . , s4 only, since the corresponding values coincide for s3, s6, s7, s10, s11 as well as for

s4, s5, s8, s9, s12.

The steady-state PMF for DTMC(E) is

ψ =

(
0,

29

209
,
20

209
,
16

209
,
16

209
,
20

209
,
20

209
,
16

209
,
16

209
,
20

209
,
20

209
,
16

209

)
.

We can now calculate the main performance indices.

— The average recurrence time in the state s2, where all the forks are available, called

the average system run-through, is 1
ψ2

= 209
29 = 7 6

29 .

— Nobody eats in the state s2. Then, the fraction of time when no philosophers dine is

ψ2 = 29
209 .

Equivalence relations for modular performance evaluation in dtsPBC 39

({ei,ẑi},
1
2
)

({bi,ŷi},
1
2
)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

Ni (1 ≤ i ≤ 4)

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
({xi},

1
2)

❄

❄

({e5,ẑ5}, 1
2
) ({z1},

1
2)

({b5,ŷ5}, 1
2
) ({y1},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N5

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
❄

❄

({a,x̂1,x̂2,x̂3,x̂4},
1
2)

({zi+1}, 1
2
)

({yi+1}, 1
2
)

Fig. 12. The marked dts-boxes of the dining philosophers

Only one philosopher eats in the states s3, s6, s7, s10, s11. Then, the fraction of time

when only one philosopher dines is ψ3+ψ6+ψ7+ψ10+ψ11 = 20
209 +

20
209 +

20
209 +

20
209 +

20
209 = 100

209 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. Then, the fraction of time

when two philosophers dine is ψ4+ψ5+ψ8+ψ9+ψ12 = 16
209+

16
209+

16
209+

16
209+

16
209 = 80

209 .

The relative fraction of time when two philosophers dine w.r.t. when only one philoso-

pher dines is 80
209 · 209

100 = 4
5 .

— The beginning of eating of first philosopher ({b1},
1
4) is only possible from the states

s2, s6, s7. In each of the states, the beginning of eating probability is the sum of the

execution probabilities for all multisets of activities containing ({b1},
1
4). Thus, the

steady-state probability of the beginning of eating of first philosopher is

ψ2

∑
{Γ|({b1},

1
4)∈Γ} PT (Γ, s2) + ψ6

∑
{Γ|({b1},

1
4)∈Γ} PT (Γ, s6) +

ψ7

∑
{Γ|({b1},

1
4)∈Γ} PT (Γ, s7) =

29
209

(
3
29 + 1

29 + 1
29

)
+ 20

209

(
3
20 + 1

20

)
+ 20

209

(
3
20 + 1

20

)
=

13
209 .

In Figure 12, the marked dts-boxes corresponding to the dynamic expressions of the

dining philosophers are presented, i.e. Ni = Boxdts(Ei) (1 ≤ i ≤ 5). In Figure 13,

the marked dts-box corresponding to the dynamic expression of the dining philosophers

system is depicted, i.e. N = Boxdts(E).

8.2. The abstract system and its reduction

Let us consider a modification of the dining philosophers system with abstraction from

personalities such that all the philosophers are indistinguishable. For example, we can

just see that one or two philosophers dine but cannot observe who they are. We call this

Igor V. Tarasyuk 40

({a}, 1
32)

✍✌✎☞✉
❄

e

N

({e2}, 1
4) ({e3}, 1

4)

✍✌✎☞ ✍✌✎☞
({b2}, 1

4)

✍✌✎☞
x

({b3}, 1
4)

✍✌✎☞✉ e✍✌✎☞✉ e

✍✌✎☞
x ✍✌✎☞

x

✍✌✎☞

✍✌✎☞ ✍✌✎☞✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠ ❅❅❘

✠✍ ✕✖

✻✻

✍✌✎☞✉ e ✍✌✎☞✉ e

✍✌✎☞
x ✍✌✎☞

x

✍✌✎☞
❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍ ✕

✻

({e1}, 14)

✍✌✎☞
({b1}, 1

4)

✍✌✎☞✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠

✍ ✕

✻

({e4}, 1
4)

✍✌✎☞
({b4}, 14)

✍✌✎☞✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍ ✕

✻

({e5}, 1
4)

✍✌✎☞
({b5}, 1

4)

✍✌✎☞✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

❅❅❘

✠✖

✻

✫ ✪

✻

✛ ✘
❄

❄

✏✏✏✏✏✏✏✏✏✏✮

PPPPPPPPPPq

◗
◗

◗
◗◗s

✑
✑

✑
✑✑✰

PPPPPq
✏✏✏✏✏✮

❩
❩⑦

✚
✚❂

Fig. 13. The marked dts-box of the dining philosophers system

system the abstract dining philosophers one. To implement the abstraction, we replace

the actions bi and ei (1 ≤ i ≤ 5) in the system specification by b and e, respectively.

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Fi = [({xi},
1
2) ∗ ((({b, ŷi},

1
2); ({e, ẑi},

1
2))[](({yi+1},

1
2); ({zi+1},

1
2))) ∗ Stop].

The static expression of the philosopher 5 is

F5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b, ŷ5},

1
2); ({e, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop].

The static expression of the abstract dining philosophers system is

F = (F1‖F2‖F3‖F4‖F5) sr (x1, x2, x3, x4, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5).

DR(F) resembles DR(E), TS(F) is similar to TS(E) and DTMC(F) ≃ DTMC(E).

Thus, the TPM and the steady-state PMF for DTMC(F) and DTMC(E) coincide.

The first performance index and the second group of them coincide for the standard

and the abstract systems. The following performance index is based on non-personalized

viewpoint to the philosophers.

— The beginning of eating of a philosopher ({b}, 14) is only possible from the states

s2, s3, s6, s7, s10, s11. In each of the states, the beginning of eating probability is the

sum of the execution probabilities for all multisets of activities containing ({b}, 14).

Thus, the steady-state probability of the beginning of eating of a philosopher is

ψ2

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s2) + ψ3

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s3) +

ψ6

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s6) + ψ7

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s7) +

ψ10

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s10) + ψ11

∑
{Γ|({b}, 14)∈Γ} PT (Γ, s11) =

29
209

(
3
29 + 1

29 + 3
29 + 1

29 + 3
29 + 1

29 + 3
29 + 1

29 + 3
29 + 1

29

)
+

Equivalence relations for modular performance evaluation in dtsPBC 41

✛
✚
✘
✙

TS↔
ss
(F)

K1

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

❄

❄

✻

❅
❅

❅
❅

❅
❅■

�
�
�
�
�
�✒�
�

�
�

�
��✠

❅
❅
❅
❅

❅
❅❅❘

{a}, 1
32

{b}, 1529

{b}, 3
10

{e}, 3
20

{e}, 38

{{e},{e}}, 1
16

{{b},{b}}, 5
29✞✝✲

{{b},{e}}, 1
10

✞✝✲
∅, 9

16

✞✝✲
∅, 9

29

✞✝✲
∅, 31

32

☎✆✛

∅, 9
20

Fig. 14. The quotient transition system of the abstract dining philosophers system

20
209

(
3
20 + 1

20 + 3
20 + 1

20

)
+ 20

209

(
3
20 + 1

20 + 3
20 + 1

20

)
+ 20

209

(
3
20 + 1

20 + 3
20 + 1

20

)
+

20
209

(
3
20 + 1

20 + 3
20 + 1

20

)
+ 20

209

(
3
20 + 1

20 + 3
20 + 1

20

)
= 60

209 .

The marked dts-boxes corresponding to the dynamic expressions of the standard and

the abstract dining philosophers are similar as well as the marked dts-boxes corresponding

to the dynamic expression of the standard and the abstract dining philosophers systems.

We have DR(F)/Rss(F) = {K1,K2,K3,K4}, where K1 = {s1} (the initial state), K2 =

{s2} (the system is activated and no philosophers dine), K3 = {s3, s6, s7, s10, s11} (one

philosopher dines), K4 = {s4, s5, s8, s9, s12} (two philosophers dine).

In Figure 14, the quotient transition system TS↔ss
(F) is presented.

The quotient average sojourn time vector of F is

SJ ′ =

(
32,

29

20
,
20

9
,
16

7

)
.

The quotient sojourn time variance vector of F is

V AR′ =

(
992,

261

400
,
180

121
,
144

49

)
.

The TPM for DTMC↔ss
(F) is

Igor V. Tarasyuk 42

Table 5. Transient and steady-state probabilities of the quotient abstract dining

philosophers system

k 0 20 40 60 80 100 120 140 160 180 200 ∞

ψ′
1[k] 1 0.5299 0.2808 0.1488 0.0789 0.0418 0.0222 0.0117 0.0062 0.0033 0.0017 0
ψ′
2[k] 0 0.0842 0.1098 0.1234 0.1306 0.1345 0.1365 0.1375 0.1381 0.1384 0.1386 0.1388
ψ′
3[k] 0 0.2183 0.3406 0.4054 0.4398 0.4580 0.4676 0.4727 0.4754 0.4769 0.4776 0.4785
ψ′
4[k] 0 0.1675 0.2687 0.3223 0.3507 0.3658 0.3738 0.3780 0.3802 0.3814 0.3821 0.3828

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææà

àà
ààààà
àààààà
ààààààà
ààààààààà
àààààààààààà

ààààààààààààààààààà
ààà

ààà

ìì
ì
ì
ì
ì
ì
ì
ì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ììì
ììì
ììì
ììì
ìììì
ìììì
ììììì
ììììì
ìììììì
ìììììììì
ìììììììììì

ììììììììììììììì
ìììììììììììììììììììììììììììì

ììì

òòò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òòò
òòò
òòò
òòò
òòòò
òòòò
òòòòò
òòòòò
òòòòòò
òòòòòòòò
òòòòòòòòòò

òòòòòòòòòòòòòò
òòòòòòòòòòòòòòòòòòòòòòòòòò

òò

50 100 150 200
k

0.2

0.4

0.6

0.8

1.0

ò Ψ4
¢@kD

ì Ψ3
¢@kD

à Ψ2
¢@kD

æ Ψ1
¢@kD

Fig. 15. Transient probabilities alteration diagram of the quotient abstract dining

philosophers system

P′ =




31
32

1
32 0 0

0 9
29

15
29

5
29

0 3
20

11
20

3
10

0 1
16

3
8

9
16


 .

In Table 5, the transient and the steady-state probabilities ψ′
i[k] (1 ≤ i ≤ 4) of the

quotient abstract dining philosophers system at the time moments k ∈ {0, 20, 40, . . . , 200}

and k = ∞ are presented, and in Figure 15, the alteration diagram (evolution in time)

for the transient probabilities is depicted.

The steady-state PMF for DTMC↔ss
(F) is

ψ′ =

(
0,

29

209
,
100

209
,
80

209

)
.

Equivalence relations for modular performance evaluation in dtsPBC 43

We can now calculate the main performance indices.

— The average recurrence time in the state K2, where all the forks are available, called

the average system run-through, is 1
ψ′

2
= 209

29 = 7 6
29 .

— Nobody eats in the state K2. The fraction of time when no philosophers dine is

ψ′
2 = 29

209 .

Only one philosopher eats in the state K3. The fraction of time when only one philoso-

pher dines is ψ′
3 = 100

209 .

Two philosophers eat together in the state K4. The fraction of time when two philoso-

phers dine is ψ′
4 = 80

209 .

The relative fraction of time when two philosophers dine w.r.t. when only one philoso-

pher dines is 80
209 · 209

100 = 4
5 .

— The beginning of eating of a philosopher {b} is only possible from the states K2,K3.

In each of the states, the beginning of eating probability is the sum of the execution

probabilities for all multisets of multiactions containing {b}. Thus, the steady-state

probability of the beginning of eating of a philosopher is

ψ′
2

∑
{A,K|{b}∈A, K2

A
→K}

PMA(K2,K) + ψ′
3

∑
{A,K|{b}∈A, K3

A
→K}

PMA(K3,K) =
29
209

(
15
29 + 5

29

)
+ 100

209

(
3
10 + 1

10

)
= 60

209 .

Observe that the performance indices are the same for the complete and the quotient

abstract dining philosophers systems. The coincidence of the first performance index as

well as the second group of indices obviously illustrates the result of Proposition 7.1. The

coincidence of the third performance index is due to Theorem 7.1: one should just apply

its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of the expressions F

and F ′, and then sum the left and right parts of the three resulting equalities.

8.3. The generalized system

Let us determine which is the influence of the multiaction probabilities from specification

of the dining philosophers system on its performance. Let all these multiactions have the

same probability ρ. The resulting specification K of the generalized dining philosophers

system is defined as follows.

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ki = [({xi}, ρ) ∗ ((({bi, ŷi}, ρ); ({ei, ẑi}, ρ))[](({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

K5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b5, ŷ5}, ρ); ({e5, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ))) ∗ Stop].

The static expression of the generalized dining philosophers system is

K = (K1‖K2‖K3‖K4‖K5) sr (x1, x2, x3, x4, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5).

DR(K) has 12 states interpreted as follows: s̃1 is the initial state, s̃2: the system is

activated and no philosophers dine, s̃3: philosopher 1 dines, s̃4: philosophers 1 and 4

dine, s̃5: philosophers 1 and 3 dine, s̃6: philosopher 4 dines, s̃7: philosopher 3 dines, s̃8:

philosophers 2 and 4 dine, s̃9: philosophers 3 and 5 dine, s̃10: philosopher 2 dines, s̃11:

philosopher 5 dines, s̃12: philosophers 2 and 5 dine.

The average sojourn time vector of K is

Igor V. Tarasyuk 44

S̃J =
(

1
ρ5
, 1+3ρ2+ρ4

5ρ2 , 1+ρ2

ρ2(3−ρ2) ,
1

ρ2(2−ρ2) ,
1

ρ2(2−ρ2) ,
1+ρ2

ρ2(3−ρ2) ,

1+ρ2

ρ2(3−ρ2) ,
1

ρ2(2−ρ2) ,
1

ρ2(2−ρ2) ,
1+ρ2

ρ2(3−ρ2) ,
1+ρ2

ρ2(3−ρ2) ,
1

ρ2(2−ρ2)

)
.

The sojourn time variance vector of K is

Ṽ AR =
(

1−ρ5

ρ10
, (1−ρ

2)2(1+3ρ2+ρ4)
25ρ4 , (1−ρ

2)2(1+ρ2)
ρ4(3−ρ2)2 , (1−ρ2)2

ρ4(2−ρ2)2 ,
(1−ρ2)2

ρ4(2−ρ2)2 ,
(1−ρ2)2(1+ρ2)
ρ4(3−ρ2)2 ,

(1−ρ2)2(1+ρ2)
ρ4(3−ρ2)2 , (1−ρ2)2

ρ4(2−ρ2)2 ,
(1−ρ2)2

ρ4(2−ρ2)2 ,
(1−ρ2)2(1+ρ2)
ρ4(3−ρ2)2 , (1−ρ

2)2(1+ρ2)
ρ4(3−ρ2)2 , (1−ρ2)2

ρ4(2−ρ2)2

)
.

Let us denote χ = 1− ρ2 and θ = 1 + 3ρ2 + ρ4. The TPM for DTMC(K) is

P̃=




1 − ρ5 ρ5 0 0 0 0 0 0 0 0 0 0

0 χ2

θ
ρ2χ
θ

ρ4

θ
ρ4

θ
ρ2χ
θ

ρ2χ
θ

ρ4

θ
ρ4

θ
ρ2χ
θ

ρ2χ
θ

ρ4

θ

0 ρ2χ

1+ρ2
χ2

1+ρ2
ρ2χ

1+ρ2
ρ2χ

1+ρ2
ρ4

1+ρ2
ρ4

1+ρ2
0 0 0 0 0

0 ρ4 ρ2χ χ2 0 ρ2χ 0 0 0 0 0 0
0 ρ4 ρ2χ 0 χ2 0 ρ2χ 0 0 0 0 0

0 ρ2χ

1+ρ2
ρ4

1+ρ2
ρ2χ

1+ρ2
0 χ2

1+ρ2
0 ρ2χ

1+ρ2
0 ρ4

1+ρ2
0 0

0 ρ2χ

1+ρ2
ρ4

1+ρ2
0 ρ2χ

1+ρ2
0 χ2

1+ρ2
0 ρ2χ

1+ρ2
0 ρ4

1+ρ2
0

0 ρ4 0 0 0 ρ2χ 0 χ2 0 ρ2χ 0 0
0 ρ4 0 0 0 0 ρ2χ 0 χ2 0 ρ2χ 0

0 ρ2χ

1+ρ2
0 0 0 ρ4

1+ρ2
0 ρ2χ

1+ρ2
0 χ2

1+ρ2
ρ4

1+ρ2
ρ2χ

1+ρ2

0 ρ2χ

1+ρ2
0 0 0 0 ρ4

1+ρ2
0 ρ2χ

1+ρ2
ρ4

1+ρ2
χ2

1+ρ2
ρ2χ

1+ρ2

0 ρ4 0 0 0 0 0 0 0 ρ2χ ρ2χ χ2




.

The steady-state PMF for DTMC(K) is

ψ̃ = 1
11+8ρ2+ρ4 (0, 1 + 3ρ2 + ρ4, 1 + ρ2, 1, 1, 1 + ρ2, 1 + ρ2, 1, 1, 1 + ρ2, 1 + ρ2, 1).

We can now calculate the main performance indices.

— The average recurrence time in the state s̃2, where all the forks are available, called

the average system run-through, is 1
ψ̃2

= 11+8ρ2+ρ4

1+3ρ2+ρ4 .

— Nobody eats in the state s̃2. The fraction of time when no philosophers dine is ψ̃2 =
1+3ρ2+ρ4

11+8ρ2+ρ4 .

Only one philosopher eats in the states s̃3, s̃6, s̃7, s̃10, s̃11. The fraction of time when

only one philosopher dines is ψ̃3 + ψ̃6 + ψ̃7 + ψ̃10 + ψ̃11 = 1+ρ2

11+8ρ2+ρ4 + 1+ρ2

11+8ρ2+ρ4 +
1+ρ2

11+8ρ2+ρ4 + 1+ρ2

11+8ρ2+ρ4 + 1+ρ2

11+8ρ2+ρ4 = 5(1+ρ2)
11+8ρ2+ρ4 .

Two philosophers eat together in the states s̃4, s̃5, s̃8, s̃9, s̃12. The fraction of time

when two philosophers dine is ψ̃4 + ψ̃5 + ψ̃8 + ψ̃9 + ψ̃12 = 1
11+8ρ2+ρ4 + 1

11+8ρ2+ρ4 +
1

11+8ρ2+ρ4 + 1
11+8ρ2+ρ4 + 1

11+8ρ2+ρ4 = 5
11+8ρ2+ρ4 .

The relative fraction of time when two philosophers dine w.r.t. when only one philoso-

pher dines is 5
11+8ρ2+ρ4 · 11+8ρ2+ρ4

5(1+ρ2) = 1
1+ρ2 .

— The beginning of eating of first philosopher ({b1}, ρ2) is only possible from the

states s̃2, s̃6, s̃7. In each of the states, the beginning of eating probability is the

sum of the execution probabilities for all multisets of activities containing ({b1}, ρ2).

Thus, the steady-state probability of the beginning of eating of first philosopher is

Equivalence relations for modular performance evaluation in dtsPBC 45

ψ̃2

∑
{Γ|({b1},ρ2)∈Γ} PT (Γ, s̃2) + ψ̃6

∑
{Γ|({b1},ρ2)∈Γ} PT (Γ, s̃6) +

ψ̃7

∑
{Γ|({b1},ρ2)∈Γ} PT (Γ, s̃7) =

1+3ρ2+ρ4

11+8ρ2+ρ4

(
ρ2(1−ρ2)
1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2

)
+ 1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2

)
= ρ2(3+ρ2)

11+8ρ2+ρ4 .

8.4. The abstract generalized system and its reduction

Consider a modification of the generalized dining philosophers system with abstraction

from personalities. We call this system the abstract generalized dining philosophers one.

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Li = [({xi}, ρ) ∗ ((({b, ŷi}, ρ); ({e, ẑi}, ρ))[] (({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

L5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b, ŷ5}, ρ); ({e, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ))) ∗ Stop].

The static expression of the abstract generalized dining philosophers system is

L = (L1‖L2‖L3‖L4‖L5) sr (x1, x2, x3, x4, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5).

DR(L) resembles DR(K), and TS(L) is similar to TS(K). We have DTMC(L) ≃

DTMC(K). Thus, the TPM and the steady-state PMF for DTMC(L) and DTMC(K)

coincide.

The first performance index and the second group of the indices coincide for the stan-

dard and the abstract generalized systems. The following performance index is based on

non-personalized viewpoint to the philosophers.

— The beginning of eating of a philosopher ({b}, ρ2) is only possible from the states

s̃2, s̃3, s̃6, s̃7, s̃10, s̃11. In each of the states, the beginning of eating probability is the

sum of the execution probabilities for all multisets of activities containing ({b}, ρ2).

Thus, the steady-state probability of the beginning of eating of a philosopher is

ψ̃2

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃2) + ψ̃3

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃3) +

ψ̃6

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃6) + ψ̃7

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃7) +

ψ̃10

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃10) + ψ̃11

∑
{Γ|({b},ρ2)∈Γ} PT (Γ, s̃11) =

1+3ρ2+ρ4

11+8ρ2+ρ4

(
ρ2(1−ρ2)
1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4 + ρ2(1−ρ2)
1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4 + ρ2(1−ρ2)
1+3ρ2+ρ4+

ρ4

1+3ρ2+ρ4 + ρ2(1−ρ2)
1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4 + ρ2(1−ρ2)
1+3ρ2+ρ4 + ρ4

1+3ρ2+ρ4

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2 + ρ2(1−ρ2)
1+ρ2 + ρ4

1+ρ2

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2 + ρ2(1−ρ2)
1+ρ2 + ρ4

1+ρ2

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2 + ρ2(1−ρ2)
1+ρ2 + ρ4

1+ρ2

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2 + ρ2(1−ρ2)
1+ρ2 + ρ4

1+ρ2

)
+

1+ρ2

11+8ρ2+ρ4

(
ρ2(1−ρ2)

1+ρ2 + ρ4

1+ρ2 + ρ2(1−ρ2)
1+ρ2 + ρ4

1+ρ2

)
= 15ρ2

11+8ρ2+ρ4 .

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4}, where K̃1 = {s̃1} (the initial state), K̃2 =

{s̃2} (the system is activated and no philosophers dine), K̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11} (one

philosopher dines), K̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12} (two philosophers dine).

The quotient average sojourn time vector of L is

Igor V. Tarasyuk 46

S̃J
′
=

(
1

ρ5
,
1 + 3ρ2 + ρ4

5ρ2
,

1 + ρ2

ρ2(3− ρ2)
,

1

ρ2(2 − ρ2)

)
.

The quotient sojourn time variance vector of L is

Ṽ AR
′
=

(
1− ρ5

ρ10
,
(1− ρ2)2(1 + 3ρ2 + ρ4)

25ρ4
,
(1− ρ2)2(1 + ρ2)

ρ4(3− ρ2)2
,

(1− ρ2)2

ρ4(2− ρ2)2

)
.

The TPM for DTMC↔ss
(L) is

P̃′ =




1− ρ5 ρ5 0 0

0 (1−ρ2)2

1+3ρ2+ρ4
5ρ2(1−ρ2)
1+3ρ2+ρ4

5ρ4

1+3ρ2+ρ4

0 ρ2(1−ρ2)
1+ρ2

1−2ρ2+3ρ4

1+ρ2
2ρ2(1−ρ2)

1+ρ2

0 ρ4 2ρ2(1− ρ2) (1− ρ2)2


 .

The steady-state PMF for DTMC↔ss
(L) is

ψ̃′ =

(
0,

1 + 3ρ2 + ρ4

11 + 8ρ2 + ρ4
,

5(1 + ρ2)

11 + 8ρ2 + ρ4
,

5

11 + 8ρ2 + ρ4

)
.

We can now calculate the main performance indices.

— The average recurrence time in the state K̃2, where all the forks are available, called

the average system run-through, is 1
ψ̃′

2

= 11+8ρ2+ρ4

1+3ρ2+ρ4 .

— Nobody eats in the state K̃2. The fraction of time when no philosophers dine is

ψ̃′
2 = 1+3ρ2+ρ4

11+8ρ2+ρ4 .

Only one philosopher eats in the state K̃3. The fraction of time when only one philoso-

pher dines is ψ̃′
3 = 5(1+ρ2)

11+8ρ2+ρ4 .

Two philosophers eat together in the state K̃4. The fraction of time when two philoso-

phers dine is ψ̃′
4 = 5

11+8ρ2+ρ4 .

The relative fraction of time when two philosophers dine w.r.t. when only one philoso-

pher dines is 5
11+8ρ2+ρ4 · 11+8ρ2+ρ4

5(1+ρ2) = 1
1+ρ2 .

— The beginning of eating of a philosopher {b} is only possible from the states K̃2, K̃3.

In each of the states, the beginning of eating probability is the sum of the execution

probabilities for all multisets of multiactions containing {b}. Thus, the steady-state

probability of the beginning of eating of a philosopher is

ψ̃′
2

∑
{A,K̃|{b}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) + ψ̃′
3

∑
{A,K̃|{b}∈A, K̃3

A
→K̃}

PMA(K̃3, K̃) =

1+3ρ2+ρ4

11+8ρ2+ρ4

(
5ρ2(1−ρ2)
1+3ρ2+ρ4 + 5ρ4

1+3ρ2+ρ4

)
+ 5(1+ρ2)

11+8ρ2+ρ4

(
2ρ2(1−ρ2)

1+ρ2 + 2ρ4

1+ρ2

)
= 15ρ4

11+8ρ2+ρ4 .

Observe again that the performance indices are the same for the complete and the

quotient abstract generalized dining philosophers systems. The explanation of this fact is

just the same as that presented earlier for the complete and the quotient abstract dining

philosophers systems.

Let us consider what is the effect of quantitative changes of the parameter ρ upon

performance of the quotient abstract generalized dining philosophers system in its steady

Equivalence relations for modular performance evaluation in dtsPBC 47

0.2 0.4 0.6 0.8 1.0
Ρ

0.1

0.2

0.3

0.4

0.5

Ψ
�

4
¢

Ψ
�

3
¢

Ψ
�

2
¢

Fig. 16. Steady-state probabilities ψ̃′
2, ψ̃

′
3, ψ̃

′
4 as functions of the parameter ρ

state. Remember that ρ ∈ (0; 1) is the probability of every multiaction of the system. The

closer is ρ to 0, the less is the probability to execute some activities at every discrete time

step, hence, the system will most probably stand idle. The closer is ρ to 1, the greater is

the probability to execute some activities at every discrete time step, hence, the system

will most probably operate.

Since ψ̃′
1 = 0, only ψ̃′

2 = 1+3ρ2+ρ4

11+8ρ2+ρ4 , ψ̃
′
3 = 5(1+ρ2)

11+8ρ2+ρ4 , ψ̃
′
4 = 5

11+8ρ2+ρ4 depend on ρ. In

Figure 16, the graphs of ψ̃′
2, ψ̃

′
3, ψ̃

′
4 as functions of ρ are depicted. The diagrams for ψ̃′

2

and ψ̃′
4 are symmetric w.r.t. the constant probability 1

4 . One can see that, the more is

value of ρ, the less is difference between ψ̃′
2 and ψ̃′

4 and the more is difference between

ψ̃′
3 and ψ̃′

4. Notice that, however, we do not allow ρ = 0 or ρ = 1.

In Figure 17, the plot of the average system run-through, calculated as 1
ψ̃′

2

, as a function

of ρ is depicted. One can see that the run-through tends to 11 when ρ approaches 0,

whereas it tends to 4 when ρ approaches 1. To speed up the operation of the system, one

should take the parameter ρ closer to 1.

The fraction of time when no philosophers dine, calculated as ψ̃′
2, tends to

1
11 when ρ

approaches 0, whereas it tends to 1
4 when ρ approaches 1. The fraction of time when only

one philosopher dines, calculated as ψ̃′
3, tends to

5
11 when ρ approaches 0, whereas it tends

to 1
2 when ρ approaches 1. The fraction of time when two philosophers dine, calculated

as ψ̃′
4, tends to

5
11 when ρ approaches 0, whereas it tends to 1

4 when ρ approaches 1.

The first plot in Figure 18 represents the relative fraction of time when two philosophers

dine w.r.t. when only one philosopher dines, calculated as
ψ̃′

4

ψ̃′
3

, as a function of ρ. One

can see that the relative fraction tends to 1 when ρ approaches 0, whereas it tends to 1
2

when ρ approaches 1. To increase the mentioned relative fraction, one should take the

parameter ρ closer to 0.

The second plot in Figure 18 represents the steady-state probability of the beginning

of eating of a philosopher, calculated as ψ̃′
2Σ̃

′
2 + ψ̃′

3Σ̃
′
3, where

Σ̃′
i =

∑
{A,K̃|{b}∈A, K̃i

A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 3}, as a function of ρ. One can see that

Igor V. Tarasyuk 48

0.2 0.4 0.6 0.8 1.0
Ρ

2

4

6

8

10

1

Ψ
�

2
¢

Fig. 17. Average system run-through 1

ψ̃′
2

as a function of the parameter ρ

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

Ψ
�

2

¢
S
�

2
¢
+Ψ
�

3

¢
S
�

3
¢

Ψ
�

4

¢

Ψ
�

3

¢

Fig. 18. Some performance indices as functions of the parameter ρ

the probability tends to 0 when ρ approaches 0 and it tends to 3
4 , when ρ approaches 1.

To increase the mentioned probability, one should take the parameter ρ closer to 1.

Since ψ̃′
4 − ψ̃′

2 = 4−3ρ2−ρ4

11+8ρ2+ρ4 , the difference tends to 4
11 when ρ approaches 0, whereas

it tends to 0 when ρ approaches 1. The difference can be treated as that between the

fractions of time when two and when no philosophers dine. Since ψ̃′
3 − ψ̃′

4 = 5ρ2

11+8ρ2+ρ4 ,

the difference tends to 0 when ρ approaches 0, whereas it tends to 1
4 when ρ approaches

1. The difference can be treated as the that between the fractions of time when one and

when two philosophers dine.

From the performance viewpoint, it is more interesting is to consider the expression

ψ̃′
3 + ψ̃′

4 − ψ̃′
2 = 9+2ρ2−ρ4

11+8ρ2+ρ4 . In Figure 19, the graph of ψ̃′
3 + ψ̃′

4 − ψ̃′
2 as a function of ρ is

depicted. The value of the expression tends to 9
11 when ρ approaches 0, whereas it tends

Equivalence relations for modular performance evaluation in dtsPBC 49

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

Ψ
�

3
¢
+Ψ
�

4
¢
-Ψ
�

2
¢

Fig. 19. Expression ψ̃′
3 + ψ̃′

4 − ψ̃′
2 as a function of the parameter ρ

to 1
2 when ρ approaches 1. The value can be interpreted as the difference between the

fractions of time when some (one or two) and when no philosophers dine.

Thus, when ρ is closer to 0, more time is spent for eating and less time remains for

thinking, i.e. dining is preferred. In this case, the dining time fractions for one and two

philosophers approach the same value 5
11 (the relative time fraction tends to 1). When

ρ is closer to 1, the situation is symmetric, i.e. thinking is preferred. In this case, the

dining time fraction of one philosopher approaches its maximum 1
2 , whereas the dining

time fraction of two philosophers approaches its minimum 1
4 (the relative time fraction

tends to 1
2).

9. Related work

In this section, we consider in detail differences and similarities between dtsPBC and

other well-known or similar SPAs for the purpose of subsequent determining the specific

advantages of dtsPBC.

9.1. Continuous time and interleaving semantics

Let us compare dtsPBC with classical SPAs: Markovian Timed Processes for Performance

Evaluation (MTIPP) (Hermanns and Rettelbach 1994), Performance Evaluation Process

Algebra (PEPA) (Hillston 1996) and Extended Markovian Process Algebra (EMPA)

(Bernardo and Gorrieri 1998).

In MTIPP, every activity is a pair consisting of the action name (including the symbol

τ for the internal, invisible action) and the parameter of exponential distribution of

the activity duration (the rate). The operations are prefix, choice, parallel composition

including synchronization on the specified action set and recursion. It is possible to

specify processes by recursive equations as well. The interleaving semantics is defined on

the basis of Markovian (i.e. extended with the specification of rates) labeled transition

systems. Note that we have the interleaving behaviour here because the exponential

Igor V. Tarasyuk 50

probability distribution function is a continuous one, and a simultaneous firing of any two

activities has zero probability according to the properties of continuous distributions. The

continuous time Markov chains (CTMCs) can be derived from the mentioned transition

systems to analyze the performance.

In PEPA, activities are the pairs consisting of action types (including the unknown,

unimportant type τ) and activity rates. The rate is either the parameter of exponential

distribution of the activity duration or it is unspecified, denoted by ⊤. An activity with

unspecified rate is passive by its action type. The set of operations includes prefix, choice,

cooperation, hiding and constants whose meaning is given by the defining equations in-

cluding the recursive ones. The cooperation is accomplished on the set of action types

(the cooperation set) on which the components must synchronize or cooperate. If the

cooperation set is empty, the cooperation operator turns into the parallel combinator.

The semantics is interleaving, it is defined via the extension of labeled transition systems

with a possibility to specify activity rates. Based on the transition systems, the con-

tinuous time Markov processes (CTMPs) are generated which are used for performance

evaluation with the help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be ex-

ternal or internal (denoted by τ) according to types. There are three kinds of actions

according to rates: timed ones with exponentially distributed durations (essentially, the

actions from MTIPP and PEPA), immediate ones with priorities and weights (the ac-

tions analogous to immediate transitions of generalized SPNs, GSPNs) and passive ones

(similar to passive actions of PEPA). Timed actions specify activities that are relevant

for performance analysis. Immediate actions model logical events and the activities that

are irrelevant from the performance viewpoint or much faster than others. Passive ac-

tions model activities waiting for the synchronization with timed or immediate ones,

and express nondeterministic choice. The set of operators consist of prefix, functional

abstraction, functional relabeling, alternative composition and parallel composition ones.

Parallel composition includes synchronization on the set of action types. The syntax also

includes recursive definitions given by means of constants. The semantics is interleaving

and based on the labeled transition systems enriched with the information on action

rates. For the exponentially timed kernel of the algebra (the sublanguage including only

exponentially timed and passive actions), it is possible to construct CTMCs from the

transition systems of the process terms to analyze the performance.

In dtsPBC, every activity is a pair consisting of the multiaction (not just an action,

as in the classical SPAs) and its probability (not the rate, as in the classical SPAs) to be

executed independently. dtsPBC has the sequence operation in contrast to the prefix one

in the classical SPAs. One can combine arbitrary expressions with the sequence operator,

i.e. it is more flexible than the prefix one, where the first argument should be a single

activity. The choice operation in dtsPBC is similar to that in MTIPP, PEPA and to

the alternative composition in EMPA, in the sense that the choice is probabilistic, but

a discrete probability function is used in dtsPBC, unlike continuous ones in the classical

calculi. Concurrency and synchronization in dtsPBC are different operations (this fea-

ture is inherited from PBC) in contrast to the classical SPAs, where parallel composition

(combinator) has a synchronization capability. Relabeling in dtsPBC is analogous to that

Equivalence relations for modular performance evaluation in dtsPBC 51

in EMPA, but it is additionally extended to conjugated actions. The restriction opera-

tion in dtsPBC differs from hiding in PEPA and functional abstraction in EMPA, where

the hidden actions are labeled with a symbol of “silent” action τ . In dtsPBC, restriction

by an action means that, for a given expression, any process behaviour containing the

action or its conjugate is not allowed. The synchronization on an elementary action in

dtsPBC collects all the pairs consisting of this elementary action and its conjugate which

are contained in the multiactions from the synchronized activities. The operation pro-

duces new activities such that the first element of every resulting activity is the union of

the multiactions from which all the mentioned pairs of conjugated actions are removed,

and the second element is the product of the probabilities of the activities involved in

the synchronization. This differs from the way synchronization is applied in the classical

SPAs where it is accomplished over identical action names, and every resulting activity

consists of the same action name and the rate calculated via some expression (including

sums, minimums and products) on the rates of the initial activities, such as the appar-

ent rate in PEPA. dtsPBC has no recursion operation or recursive definitions, but it

includes the iteration operation to specify infinite looping behaviour with the explicit

start and termination. dtsPBC has a discrete time semantics, and residence time in the

states is geometrically distributed, unlike the classical SPAs with continuous time se-

mantics and exponentially distributed activity delays. As a consequence, the semantics

of dtsPBC is the step one in contrast to the interleaving semantics of the classical SPAs.

The performance can be investigated based on the discrete time Markov chain (DTMC)

extracted from the labeled probabilistic transition system associated with each expres-

sion of dtsPBC. In the classical SPAs, continuous time Markov chains (CTMCs) are used

for performance evaluation. In (Bernardo et al. 1998), a denotational semantics of EMPA

based on GSPNs has been defined, from which one can also extract the underlying SMCs

and CTMCs (when both immediate and timed transitions are present) or discrete time

Markov chains (DTMCs) (but when there are only immediate transitions). dtsPBC has

a denotational semantics in terms of LDTSPNs from which the corresponding DTMCs

can be derived as well.

9.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were proposed among non-Markovian ones (Katoen and

D’Argenio 2001). The semantics of all Markovian calculi is interleaving and their action

delays have exponential distribution, which is the only continuous probability distribution

with memoryless (Markovian) property. In (Brinksma et al. 1995), Generalized Stochastic

Process Algebra (GSPA) was introduced. It has a true-concurrent denotational seman-

tics in terms of generalized stochastic event structures (GSESs) with non-Markovian

stochastic delays of events. In that paper, no operational semantics or performance eval-

uation methods for GSPA were presented. Later, in (Katoen et al. 1996), generalized

semi-Markov processes (GSMPs) were extracted from GSESs to analyze performance.

In (Priami 1996), Stochastic π-calculus (Sπ) with general continuous distributions of

activity delays was defined. It has a proved operational semantics with transitions la-

beled by encodings of their deduction trees. No well-established underlying performance

Igor V. Tarasyuk 52

model for this version of Sπ was described. In (Bravetti et al. 1998), Generalized Semi-

Markovian Process Algebra (GSMPA) was developed with ST-operational semantics and

non-Markovian action delays. The performance analysis in GSMPA is accomplished via

GSMPs.

Again, the first fundamental difference between dtsPBC and the calculi GSPA, Sπ and

GSMPA is that dtsPBC is based on PBC, whereas GSPA is an extension of Process Al-

gebra (PA) from (Brinksma et al. 1995), Sπ extends π-calculus (Milner et al. 1992) and

GSMPA is an enrichment of EMPA. Therefore, both GSPA and GSMPA have prefixing,

choice (alternative composition), parallel composition, renaming (relabeling) and hiding

(abstraction) operations, but only GSMPA permits constants. Unlike dtsPBC, GSPA

has neither iteration or recursion, GSMPA allows only recursive definitions, whereas

Sπ additionally has operations to specify mobility. The second significant difference is

that geometrically distributed delays are associated with process states in dtsPBC, un-

like generally distributed delays assigned to events in GSPA or to activities in Sπ and

GSMPA. As a consequence, dtsPBC has a discrete time operational semantics allowing

for concurrent execution of activities in steps. GSPA has no operational semantics while

Sπ and GSMPA have continuous time ones. In continuous time semantics, concurrency

is simulated by interleaving, since simultaneous occurrence of any two events has zero

probability according to the properties of continuous probability distributions. There-

fore, interleaving transitions are often annotated with an additional information to keep

concurrency data. The transition labels in the operational semantics of Sπ encode the

action causality information and allow one to derive the enabling relations and the firing

distributions of concurrent transitions from the transition sequences. At the same time,

abstracting from stochastic delays leads to the classical early interleaving semantics of

π-calculus. ST-operational semantics of GSMPA is based on decorated transition systems

governed by transition rules with rather complex preconditions. There are two types of

transitions: the choice (action beginning) and the termination (action ending) ones. The

choice transitions are labeled by weights of single actions chosen for execution while the

termination transitions have no labels. Only single actions can begin, but several ac-

tions can end in parallel. Thus, the choice transitions are the interleaving ones while the

termination transitions are the step ones. As a result, the decorated interleaving / step

transition systems are obtained. dtsPBC has an SPNs-based denotational semantics. In

comparison with event structures, PNs are more expressive and visually tractable for-

malism capable of finitely specifying an infinite behaviour. Recursion in GSPA produces

infinite GSESs while dtsPBC has iteration operation with a finite SPN semantics. An

identification of infinite GSESs that can be finitely represented in GSPA was left for a

future research.

9.3. Discrete time

In (van der Aalst et al. 2000), a class of compositional DTSPNs with generally distributed

discrete time transition delays was proposed, called dts-nets. The denotational seman-

tics of a stochastic extension (we call it stochastic ACP) of (a subset of) Algebra of

Communicating Processes (ACP) (Bergstra and Klop 1985) can be constructed via dts-

Equivalence relations for modular performance evaluation in dtsPBC 53

nets. There are two types of transitions in dts-nets: immediate (timeless) ones with zero

delays and time ones, whose delays are random values having general discrete distribu-

tions. The top-down synthesis of dts-nets consists in the substitution of their transitions

by blocks (dts-subnets) corresponding to the sequence, choice, parallelism and iteration

operators. It was explained how to calculate the throughput time of dts-nets using the

service time (defined as holding time or delay) of their transitions. For this, the notions

of service distribution for the transitions and throughput distribution for the building

blocks were defined. Since the throughput time of the parallelism block was calculated

as the maximal service time for its two constituting transitions, the analogue of the step

semantics approach was implemented. In (Markovski and de Vink 2008; Markovski and

de Vink 2009), an SPA called Theory of Communicating Processes with discrete stochas-

tic time (TCP dst) was introduced. Its actions have a (deterministic) discrete real time

delays (including zero time delays) or stochastic time delays. The algebra generalizes

real-time processes to discrete stochastic time ones by applying real-time properties to

stochastic time and imposing race condition to real time semantics. TCP dst has an inter-

leaving operational semantics in terms of stochastic transition systems. The performance

is analyzed via discrete time probabilistic reward graphs which are essentially the reward

transition systems with probabilistic states having finite number of outgoing probabilistic

transitions and timed states having a single outgoing timed transition. The mentioned

graphs can be transformed by unfolding or geometrization into discrete time Markov

reward chains (DTMRCs) appropriate for transient or long-run (stationary) analysis.

The first difference between dtsPBC and the algebras stochastic ACP and TCP dst is

that dtsPBC is based on PBC, but stochastic ACP and TCP dst are the extensions of

ACP. Stochastic ACP has taken from ACP only sequence, choice, parallelism and itera-

tion operations, whereas dtsPBC has additionally relabeling, restriction and synchroniza-

tion ones, inherited from PBC. In TCP dst, besides standard action prefixing, alternative,

parallel composition, encapsulation (similar to restriction) and recursive variables, there

are also timed delay prefixing, dependent delays scope and the maximal time progress

operators, which are new both for ACP and dtsPBC. The second difference is that geo-

metrically distributed delays are associated with process states in dtsPBC, unlike zero or

generally distributed discrete time delays of actions in stochastic ACP and deterministic

or generally distributed stochastic delays of actions in TCP dst. Neither formal syntax

nor operational semantics for stochastic ACP are defined and it is not explained how

to derive Markov chains from the algebraic expressions or the corresponding dts-nets to

analyze performance. It is not stated explicitly, which type of semantics (interleaving or

step) is accommodated in stochastic ACP. In spite of the discrete time approach, oper-

ational semantics of TCP dst is still interleaving, unlike that of dtsPBC. In addition, no

denotational semantics was defined for TCP dst.

Table 6 summarizes the SPAs comparison above and that from Section 1, by classifying

the SPAs according to the concept of time and the type of operational semantics. The

names of SPAs, whose denotational semantics is based on SPNs, are printed in bold font.

The underlying stochastic process (if defined) is specified in parentheses near the name

of the corresponding SPA.

Igor V. Tarasyuk 54

Table 6. Classification of stochastic process algebras

Time Interleaving semantics Non-interleaving semantics

Continuous MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ,
EMPA (SMC, CTMC), GSMPA (GSMP)

sPBC (CTMC), gsPBC (SMC)

Discrete TCP dst (DTMRC) stochastic ACP, dtsPBC (DTMC),
dtsiPBC (SMC, DTMC)

10. Discussion

Let us now discuss which advantages has dtsPBC in comparison with the SPAs described

in Section 9.

An important aspect is the analytical tractability of the underlying stochastic pro-

cess, used for performance analysis within SPAs. The underlying CTMCs in MTIPP and

PEPA, as well as SMCs in EMPA, are treated analytically, but these continuous time

SPAs have just an interleaving semantics. GSPA, Sπ and GSMPA are the continuous

time models, for which a non-interleaving semantics is constructed, but for the underly-

ing GSMPs in GSPA and GSMPA, only simulation and numerical methods are applied,

whereas no performance model for Sπ is defined. Stochastic ACP and TCP dst are the dis-

crete time models with the associated analytical methods for the throughput calculation

in stochastic ACP or for the performance evaluation based on the underlying DTMRCs

in TCP dst, but both models have only an interleaving semantics. dtsPBC is a discrete

time model with a non-interleaving semantics, where analytical methods are applied to

the underlying DTMCs. Hence, if an interleaving model is appropriate as a framework

for the analytical solution towards performance evaluation then one has a choice between

the continuous time SPAs MTIPP, PEPA, EMPA and the discrete time ones stochastic

ACP, TCP dst. Otherwise, if one needs a non-interleaving model with the associated an-

alytical methods for performance evaluation and the discrete time approach is feasible

then dtsPBC is the right choice.

From the application viewpoint, one considers what kind of systems are more appropri-

ate to be modeled and analyzed within SPAs. MTIPP and PEPA are well-suited for the

interleaving continuous time systems such that the activity rates or the average sojourn

time in the states are known in advance and exponential distribution approximates well

the activity delay distributions, whereas EMPA can be used to model the mentioned sys-

tems with the activity delays of different duration order or the extended systems, in which

purely probabilistic choices or urgent activities must be implemented. GSPA and GSMPA

fit well for modeling the continuous time systems with a capability to keep the activity

causality information, and with the known activity delay distributions, which cannot be

approximated accurately by exponential distribution, while Sπ can additionally model

mobility in such systems. TCP dst is a good choice for interleaving discrete time systems

with deterministic (fixed) and generalized stochastic delays, whereas stochastic ACP is

capable to model non-interleaving systems as well, but it offers not enough performance

Equivalence relations for modular performance evaluation in dtsPBC 55

analysis methods. dtsPBC is consistent for the step discrete time systems such that the

independent execution probabilities of activities are known and geometrical distribution

approximates well the state residence time distributions.

One can see that the stochastic process calculi proposed in the literature are based

on interleaving, as a rule, and parallelism is simulated by synchronous or asynchronous

execution. As their semantic domain, the interleaving formalism of transition systems

is often used. Therefore, investigation of stochastic extensions for more expressive and

powerful algebraic calculi is an important issue. The development of step or “true con-

currency” (such that parallelism is considered as a causal independence) SPAs is an

interesting and nontrivial problem, which has attracted special attention last years. Nev-

ertheless, not so many formal stochastic models were defined whose underlying stochastic

processes are DTMCs. As mentioned in (Fourneau 2010), such models are more difficult

to analyze, since a lot of events can occur simultaneously in discrete time systems (the

models have a step semantics) and the probability of a set of events can be not easily

related to the probability of the single ones. As observed in (Horváth et al. 2012), even

for stochastic models with generally distributed time delays, some restrictions on the

concurrency degree were imposed to simplify their analysis techniques. In particular, the

enabling restriction requires that no two generally distributed transitions are enabled in

any reachable marking. Hence, their activity periods do not intersect and no two such

transitions can fire simultaneously, this results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following important

advantage in comparison with those having just interleaving semantics. The underlying

Markov chains of parallel stochastic processes have the additional transitions correspond-

ing to the simultaneous execution of concurrent (i.e. non-synchronized) activities. The

transitions of that kind allow one to bypass a lot of intermediate states, which otherwise

should be visited when interleaving semantics is accommodated. When step semantics

is used, the intermediate states can also be visited with some probability (this is an

advantage, since some alternative system’s behaviour may start from these states), but

this probability is not greater than the corresponding one in case of interleaving seman-

tics. While in interleaving semantics, only the empty or singleton (multi)sets of activities

can be executed, in step semantics, generally, the (multi)sets of activities with more

than one element can be executed as well. Hence, in step semantics, there are more

variants of execution from each state than in the interleaving case and the executions

probabilities, whose sum should be equal to 1, are distributed among more possibilities.

Therefore, the systems with parallel stochastic processes usually have smaller average

run-through. In case the underlying Markov chains of the processes are ergodic, they

will take less discrete time units to stabilize the behaviour, since their TPMs will be

denser because of additional non-zero elements outside the main diagonal. Hence, both

the first passage-time performance indices based on the transient probabilities and the

steady-state performance indices based on the stationary probabilities can be computed

quicker, resulting in faster quantitative analysis of the systems. On the other hand, step

semantics, induced by simultaneous firing several transitions at each step, is natural for

Petri nets and allows one to exploit full power of the model.

Thus, the main advantages of dtsPBC are the flexible multiaction labels and the set of

Igor V. Tarasyuk 56

powerful operations, as well as a step operational and a Petri net denotational semantics

allowing for concurrent execution of activities (transitions), together with an ability for

analytical performance evaluation.

11. Conclusion

In this paper, within the context of dtsPBC with iteration, we have defined the stochas-

tic algebraic equivalences having natural net analogues on LDTSPNs. The diagram of

interrelations for the algebraic equivalences has been constructed. We have explained

how one can reduce transition systems and DTMCs as well as expressions and dts-boxes

modulo the stochastic equivalences. We have investigated which of the equivalences we

proposed guarantee identity of the stationary behaviour. We have proved that the weak-

est among the relations we have considered, step stochastic bisimulation equivalence, has

this property. A case study of the dining philosophers system has been presented as an

example of modeling, performance evaluation and performance preserving reduction in

the framework of the calculus.

The advantage of our framework is twofold. First, one can specify in it concurrent

composition and synchronization of (multi)actions, whereas this is not possible in classical

Markov chains. Second, algebraic formulas represent processes in a more compact way

than PNs and allow one to apply syntactic transformations and comparisons. Process

algebras are compositional by definition and their operations naturally correspond to

operators of programming languages. Hence, it is much easier to construct a complex

model in the algebraic setting than in PNs. The complexity of PNs generated for practical

models in the literature demonstrates that it is not straightforward to construct such

PNs directly from the system specifications. dtsPBC is well suited for the discrete time

applications, such as business processes, neural and transportation networks, computer

and communication systems, whose discrete states change with a global time tick, as

well as for those, in which the distributed architecture or the concurrency level should

be preserved while modeling and analysis (remember that, in step semantics, we have

additional transitions due to concurrent executions).

In the future, we plan to provide the stochastic equivalences with a logical charac-

terization via probabilistic modal logics. Abstracting from the silent activities in the

definitions of the equivalences, i.e. from the activities with empty multiaction part, is

the next research direction. The main point here is that we should collect probabilities

during such abstractions from an internal activity. Moreover, we plan to extend dtsPBC

with recursion to enhance the specification power of the calculus.

Appendix A. Proofs

A.1. Proof of Proposition 5.1

Like it has been done for strong equivalence in Proposition 8.2.1 from (Hillston 1996),

we shall prove the following fact about step stochastic bisimulation. Let us have for all

j ∈ J it holds that Rj : G↔ssG
′ for some index set J . Then the transitive closure of

the union of all relations R = (∪j∈JRj)
∗ is also an equivalence and R : G↔ssG

′.

Equivalence relations for modular performance evaluation in dtsPBC 57

Since for all j ∈ J we have that Rj is an equivalence, by definition of R, we get that

R is also an equivalence.

Let j ∈ J , then, by definition of R, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence, for all

Hjk ∈ (DR(G)∪DR(G′))/Rj
there existsH ∈ (DR(G)∪DR(G′))/R such that Hjk ⊆ H.

Moreover, there exists J ′ such that H = ∪k∈J ′Hjk.

We denote R(n) = (∪j∈JRj)
n. Let (s1, s2) ∈ R, then, by definition of R, there exists

n > 0 such that (s1, s2) ∈ R(n). We shall prove that R : G↔ssG
′ by induction on n.

It is clear that for all j ∈ J the fact Rj : G↔ssG
′ implies that for all j ∈ J it holds

that ([G]≈, [G
′]≈) ∈ Rj and we have ([G]≈, [G

′]≈) ∈ R by definition of R.

It remains to prove that (s1, s2) ∈ R implies the following: for all H ∈ (DR(G) ∪

DR(G′))/R and for all A ∈ INL
f we have PMA(s1,H) = PMA(s2,H).

— n = 1

In this case, (s1, s2) ∈ R implies that there exists j ∈ J such that (s1, s2) ∈ Rj .

Since Rj : G↔ssG
′, we get for all H ∈ (DR(G)∪DR(G′))/R and for all A ∈ INL

f we

have

PMA(s1,H) =
∑

k∈J ′

PMA(s1,Hjk) =
∑

k∈J ′

PMA(s2,Hjk) = PMA(s2,H).

— n→ n+ 1

Suppose that for all m ≤ n the fact that (s1, s2) ∈ R(m) implies that for all H ∈

(DR(G)∪DR(G′))/R and for all A ∈ INL
f it holds that PMA(s1,H) = PMA(s2,H).

Then (s1, s2) ∈ R(n+1) implies that there exists j ∈ J such that (s1, s2) ∈ Rj ◦R(n),

i.e. there exists s3 ∈ (DR(G) ∪DR(G′)) such that (s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get PMA(s1,H) = PMA(s3,H). By the induction

hypothesis, PMA(s3,H) = PMA(s2,H). Thus, for all H ∈ (DR(G)∪DR(G′))/R and

for all A ∈ INL
f we have

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G
′) is at least as large as the largest step stochastic bisimulation

between G and G′. It follows from the proved above that Rss(G,G
′) is an equivalence

and Rss(G,G
′) : G↔ssG

′, hence, it is the largest step stochastic bisimulation between

G and G′.

A.2. Proof of Proposition 7.1

It is sufficient to prove the statement of the proposition for transient PMFs only, since

ψ = limk→∞ ψ[k] and ψ′ = limk→∞ ψ′[k]. We proceed by induction on k.

— k = 0

Note that the only nonzero values of the initial PMFs of DTMC(G) and DTMC(G′)

are ψ[0]([G]≈) and ψ[0]([G
′]≈). Let H0 be the equivalence class containing [G]≈ and

[G′]≈. Then
∑

s∈H0∩DR(G) ψ[0](s) = ψ[0]([G]≈) = 1 = ψ′[0]([G′]≈) =∑
s′∈H0∩DR(G′) ψ

′[0](s′).

Igor V. Tarasyuk 58

As for other equivalence classes, for all H ∈ ((DR(G) ∪ DR(G′))/R) \ H0 we have∑
s∈H∩DR(G) ψ[0](s) = 0 =

∑
s′∈H∩DR(G′) ψ

′[0](s′).

— k → k + 1

Let H ∈ (DR(G) ∪ DR(G′))/R and s1, s2 ∈ H. We have for all H̃ ∈ (DR(G) ∪

DR(G′))/R and for all A ∈ INL
f it holds that s1

A
→P H̃ iff s2

A
→P H̃.

Therefore, PM(s1, H̃) =
∑

{Γ|∃s̃1∈H̃ s1
Γ
→s̃1}

PT (Γ, s1) =
∑
A∈INL

f

∑
{Γ|∃s̃1∈H̃ s1

Γ
→s̃1, L(Γ)=A}

PT (Γ, s1) =
∑

A∈INL
f
PMA(s1, H̃) =

∑
A∈INL

f
PMA(s2, H̃) =

∑
A∈INL

f

∑
{Γ|∃s̃2∈H̃ s2

Γ
→s̃2, L(Γ)=A}

PT (Γ, s2) =
∑

{Γ|∃s̃2∈H̃ s2
Γ
→s̃2}

PT (Γ, s2) = PM(s2, H̃). Since we have the previous equality for

all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that

transitions from the states of DR(G) always lead to those from the same set, hence,

∀s ∈ DR(G) PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ[k](s) =
∑
s′∈H∩DR(G′) ψ

′[k](s′). Further,∑
s̃∈H̃∩DR(G) ψ[k + 1](s̃) =

∑
s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G) ψ[k](s)
∑

s̃∈H̃∩DR(G) PM(s, s̃) =∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G)

∑
{Γ|s

Γ
→s̃}

PT (Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
{Γ|∃s̃∈H̃∩DR(G) s

Γ
→s̃}

PT (Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ[k](s)PM(s, H̃) =

∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(H, H̃) =

∑
H PM(H, H̃)

∑
s∈H∩DR(G) ψ[k](s) =

∑
H PM(H, H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H, H̃) =
∑

H

∑
s′∈H′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

{Γ|∃s̃′∈H̃∩DR(G′) s′
Γ
→s̃′}

PT (Γ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′)

∑
{Γ|∃s̃′ s′

Γ
→s̃′}

PT (Γ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑
s′∈DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑
s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′[k](s′)PM(s′, s̃′) =∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′[k](s′)PM(s′, s̃′) =
∑
s̃′∈H̃∩DR(G′) ψ

′[k + 1](s̃′).

A.3. Proof of Theorem 7.1

Let H ∈ (DR(G)∪DR(G′))/R and s, s̄ ∈ H. We have for all H̃ ∈ (DR(G)∪DR(G′))/R

and for all A ∈ INL
f it holds that s

A
→P H̃ iff s̄

A
→P H̃. The previous statement is valid for

all s, s̄ ∈ H, hence, we can rewrite it asH
A
→P H̃ and denote PMA(H, H̃) = PMA(s, H̃) =

PMA(s̄, H̃). Note that transitions from the states of DR(G) always lead to those from

the same set, hence, for all s ∈ DR(G) we have PMA(s, H̃) = PMA(s, H̃ ∩DR(G)). The

same is true for DR(G′).

Let Σ = A1 · · ·An be a derived step trace of G and G′. Then there exist H0, . . . ,Hn ∈

(DR(G) ∪DR(G′))/R such that H0
A1→P1 H1

A2→P2 · · ·
An→Pn

Hn. Now we prove that the

Equivalence relations for modular performance evaluation in dtsPBC 59

sum of probabilities of all the paths starting in every s0 ∈ H0 and going through the

states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑

{Γ1,...,Γn|s0
Γ1→···

Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

PT (Γi, si−1) =

n∏

i=1

PMAi
(Hi−1,Hi).

We prove this equality by induction on the derived step trace length n.

— n = 1∑
{Γ1|s0

Γ1
→s1, L(Γ1)=A1, s1∈H1}

PT (Γ1, s0) = PMA1(s0,H1) = PMA1(H0,H1).

— n→ n+ 1∑
{Γ1,...,Γn,Γn+1|s0

Γ1
→···

Γn→sn
Γn+1
→ sn+1, L(Γi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT (Γi, si−1) =

∑
{Γ1,...,Γn|s0

Γ1
→···

Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∑
{Γn+1|sn

Γn+1
→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

∏n
i=1PT (Γi, si−1)PT (Γn+1, sn)=

∑
{Γ1,...,Γn|s0

Γ1→···
Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

[∏n
i=1 PT (Γi, si−1)

∑
{Γn+1|sn

Γn+1
→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT (Γn+1, sn)

]
=

∑
{Γ1,...,Γn|s0

Γ1→···
Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n

i=1 PT (Γi, si−1)PMAn+1(sn,Hn+1) =∑
{Γ1,...,Γn|s0

Γ1
→···

Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n
i=1 PT (Γi, si−1)PMAn+1(Hn,Hn+1) =

PMAn+1(Hn,Hn+1)
∑

{Γ1,...,Γn|s0
Γ1→···

Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n
i=1 PT (Γi, si−1) =

PMAn+1(Hn,Hn+1)
∏n
i=1 PMAi

(Hi−1,Hi) =
∏n+1
i=1 PMAi

(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have PT (A1 · · ·An, s0) =∑
{Γ1,...,Γn|s0

Γ1→···
Γn→sn, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Γi, si−1) =

∑
H1,...,Hn

∑
{Γ1,...,Γn|s0

Γ1→···
Γn→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Γi, si−1) =

∑
H1,...,Hn

∏n
i=1 PMAi

(Hi−1,Hi) =∑
H1,...,Hn

∑
{Γ1,...,Γn|s̄0

Γ1→···
Γn→s̄n, L(Γi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT (Γi, s̄i−1) =

∑
{Γ1,...,Γn|s̄0

Γ1→···
Γn→s̄n, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Γi, s̄i−1) = PT (A1 · · ·An, s̄0).

Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote

PT (A1 · · ·An,H0) = PT (A1 · · ·An, s0) = PT (A1 · · ·An, s̄0).

By Proposition 7.1,
∑

s∈H∩DR(G) ψ(s) =
∑
s′∈H∩DR(G′) ψ

′(s′). Now we can complete

the proof:
∑

s∈H∩DR(G) ψ(s)PT (Σ, s) =
∑

s∈H∩DR(G) ψ(s)PT (Σ,H) =

PT (Σ,H)
∑
s∈H∩DR(G) ψ(s) = PT (Σ,H)

∑
s′∈H∩DR(G′) ψ

′(s′) =∑
s′∈H∩DR(G′) ψ

′(s′)PT (Σ,H) =
∑

s′∈H∩DR(G′) ψ
′(s′)PT (Σ, s′).

Acknowledgements I would like to thank Eike Best for the encouraging discussions and

valuable advices related to the subject of this paper. I am grateful to Peter Buchholz

Igor V. Tarasyuk 60

and Falko Bause for interest to my work and the qualified consideration. Many thanks

to anonymous referees for their helpful suggestions on improvement of the paper.

References

van der Aalst, W.M.P., van Hee, K.M. and Reijers, H.A. (2000): Analysis of discrete-time

stochastic Petri nets. Statistica Neerlandica 54(2), 237–255, http://tmitwww.tm.tue.nl/staff/

hreijers/H.A. Reijers Bestanden/Statistica.pdf.

Autant, C. and Schnoebelen, Ph. (1992): Place bisimulations in Petri nets. Proc. of 13th ICATPN

1992, Lect. Notes Comp. Sci. 616, 45–61.

Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G. and Haddad, S. (2011): Lumping par-

tially symmetric stochastic models. Performance Evaluation 68, 21–44.

Bergstra, J.A. and Klop, J.W. (1985): Algebra of communicating processes with abstraction.

Theor. Comput. Sci. 37, 77–121.

Bernardo, M. (2007): A survey of Markovian behavioral equivalences. Proc. of 7th SFM 2007,

Lect. Notes Comp. Sci. 4486, 180–219, http://www.sti.uniurb.it/bernardo/documents/

sfm07pe.pdf.

Bernardo, M., Donatiello, L. and Gorrieri, R. (1998): A formal approach to the integration of

performance aspects in the modeling and analysis of concurrent systems. Information and

Computation 144(2), 83–154, http://www.sti.uniurb.it/bernardo/documents/ic144.pdf.

Bernardo, M. and Gorrieri, R. (1998): A tutorial on EMPA: a theory of concurrent processes

with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202, 1–54.

Best, E., Devillers, R. and Hall, J.G. (1992): The box calculus: a new causal algebra with multi-

label communication. Advances in Petri Nets 1992, Lect. Notes Comp. Sci. 609, 21–69.

Best, E., Devillers, R. and Koutny, M. (2001): Petri net algebra. EATCS Monographs on Theor.

Comput. Sci., 378 pages, Springer Verlag.

Best, E. and Koutny, M. (1995): A refined view of the box algebra. Proc. of 16th ICATPN 1995,

Lect. Notes Comp. Sci. 935, 1–20.

Bravetti, M., Bernardo, M. and Gorrieri, R. (2008): Towards performance evaluation with general

distributions in process algebras. Proc. of 9th CONCUR 1998, Lect. Notes Comp. Sci. 1466,

405–422, http://www.cs.unibo.it/˜bravetti/papers/concur98.ps.

Brinksma, E. and Hermanns, H. (2001): Process algebra and Markov chains. Proc. of 1st

EEF/Euro Summer School of Trends in Comp. Sci. 2000, Lect. Notes Comp. Sci. 2090,

183–231.

Brinksma, E., Katoen, J.-P., Langerak, R. and Latella, D. (1995): A stochastic causality-based

process algebra. The Computer Journal 38(7), 552–565, http://eprints.eemcs.utwente.nl/

6387/01/552.pdf.

Buchholz, P. (1995): A notion of equivalence for stochastic Petri nets. Proc. of 16th ICATPN

1995, Lect. Notes Comp. Sci. 935, 161–180.

Buchholz, P. (1998): Iterative decomposition and aggregation of labeled GSPNs. Proc. of 19th

ICATPN 1998, Lect. Notes Comp. Sci. 1420, 226–245.

Buchholz, P. and Tarasyuk, I.V. (2001): Net and algebraic approaches to probabilistic modeling.

Joint Novosibirsk Computing Center and Institute of Informatics Systems Bulletin, Series

Computer Science 15, 31–64, Novosibirsk, http://itar.iis.nsk.su/files/itar/pages/

spnpancc.pdf.

Derisavi, S., Hermanns, H. and Sanders, W.H. (2003): Optimal state-space lumping of Markov

chains. Information Processing Letters 87(6), 309–315.

Equivalence relations for modular performance evaluation in dtsPBC 61

Fourneau, J.M. (2010): Collaboration of discrete-time Markov chains: Tensor and product form.

Performance Evaluation 67, 779–796.

van Glabbeek, R.J., Smolka, S.A. and Steffen, B. (1995): Reactive, generative, and stratified

models of probabilistic processes. Information and Computation 121(1), 59–80,

http://boole.stanford.edu/pub/prob.ps.gz.

Hermanns, H. and Rettelbach, M. (1994): Syntax, semantics, equivalences and axioms for

MTIPP. Proc. of 2nd International Workshop on Process Algebras and Performance Mod-

elling (PAPM) 1994 (Herzog U., Rettelbach M., eds.), Arbeitsberichte des IMMD 27, 71–88,

University of Erlangen, Germany.

Hillston, J. (1994): The nature of synchronisation. Proc. of 2nd International Workshop on

Process Algebras and Performance Modelling (PAPM) 1994 (Herzog U., Rettelbach M., eds.),

Arbeitsberichte des IMMD 27, 51–70, University of Erlangen, Germany,

http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf.

Hillston, J. (1996): A compositional approach to performance modelling. Cambridge University

Press, UK.

Horváth, A., Paolieri, M., Ridi, L. and Vicario, E. (2012): Transient analysis of non-Markovian

models using stochastic state classes. Performance Evaluation 69(7–8), 315–335.

Jou, C.-C. and Smolka, S.A. (1990): Equivalences, congruences and complete axiomatizations

for probabilistic processes. Proc. of 1st CONCUR 1990, Lect. Notes Comp. Sci. 458, 367–383.

Katoen, J.-P., Brinksma, E., Latella, D. and Langerak, R. (1996): Stochastic simulation of

event structures. Proc. of 4th International Workshop on Process Algebra and Performance

Modelling (PAPM) 1996 (M. Ribaudo, ed.), 21–40, CLUT Press, Torino, Italy,

http://eprints.eemcs.utwente.nl/6487/01/263 KLLB96b.pdf.

Katoen, J.-P. and D’Argenio, P.R. (2001): General distributions in process algebra. Proc. of

1st EEF/Euro Summer School of Trends in Comp. Sci. 2000, Lect. Notes Comp. Sci. 2090,

375–429.

Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H. and Jansen, D.N. (2011): The ins and

outs of the probabilistic model checker MRMC. Performance Evaluation 68, 90–104.

Koutny, M. (2000): A compositional model of time Petri nets. Proc. of 21st ICATPN 2000, Lect.

Notes Comp. Sci. 1825, 303–322.

Kulkarni, V.G. (2009): Modeling and analysis of stochastic systems. Texts in Statistical Science,

563 pages, Chapman and Hall / CRC Press.

Kwiatkowska, M.Z., Norman, G.J. and Parker, D. (2006): Symmetry reduction for probabilistic

model checking. Proc. of ICIC 2006, Lect. Notes Comp. Sci. 4144, 234–248.

Larsen, K.G. and Skou, A. (1991): Bisimulation through probabilistic testing. Information and

Computation 94(1), 1–28.

Macià, H., Valero, V., Cazorla, D. and Cuartero, F. (2004): Introducing the iteration in sPBC.

Proc. of 24th FORTE 2004, Lect. Notes Comp. Sci. 3235, 292–308.

Macià, H., Valero, V., Cuartero, F. and Ruiz, M.C. (2008): sPBC: a Markovian extension of

Petri box calculus with immediate multiactions. Fundamenta Informaticae 87(3–4), 367–406,

IOS Press, Amsterdam, The Netherlands.

Macià, H., Valero, V. and de-Frutos, D. (2001): sPBC: a Markovian extension of finite Petri box

calculus. Proc. of 9th IEEE Int. Workshop on Petri Nets and Performance Models (PNPM)

2001, 207–216, Aachen, Germany, IEEE Computer Society Press.

Markovski, J. and de Vink, E.P. (2008): Extending timed process algebra with discrete stochastic

time. Proc. of 12th AMAST 2008, Lect. Notes Comp. Sci. 5140, 268–283.

Markovski, J. and de Vink, E.P. (2009): Performance evaluation of distributed systems based on

Igor V. Tarasyuk 62

a discrete real- and stochastic-time process algebra. Fundamenta Informaticae 95(1), 157–186,

IOS Press, Amsterdam, The Netherlands.

Marroqúın, O. and de-Frutos, D. (2001): Extending the Petri box calculus with time. Proc. of

22nd ICATPN 2001, Lect. Notes Comp. Sci. 2075, 303–322.

Marsan, M.A. (1990): Stochastic Petri nets: an elementary introduction. Advances in Petri Nets

1989, Lect. Notes Comp. Sci. 424, 1–29.

Merlin, P. and Farber, D.J. (1976): Recoverability of communication protocols: implications of

a theoretical study. IEEE Transactions on Communications 24(9), 1036–1043.

Milner, R.A.J. (1989): Communication and concurrency. Prentice-Hall, 260 pages, Upper Saddle

River, NJ, USA.

Milner, R.A.J., Parrow, J. and Walker, D. (1992): A calculus of mobile processes (I and II).

Information and Computation 100(1), 1–77.

Molloy, M.K. (1981): On the integration of the throughput and delay measures in distributed

processing models. Ph. D. thesis, 108 pages, University of California, Los Angeles, USA.

Molloy, M.K. (1985): Discrete time stochastic Petri nets. IEEE Transactions on Software Engi-

neering 11(4), 417–423.

Niaouris, A. (2005): An algebra of Petri nets with arc-based time restrictions. Proc. of 1st ICTAC

2004, Lect. Notes Comp. Sci. 3407, 447–462.

Paige, R. and Tarjan, R.E. (1987): Three partition refinement algorithms. SIAM J. Comput.

16(6), 973–989.

Peterson, J.L. (1981): Petri net theory and modeling of systems. Prentice-Hall.

Priami, C. (1996): Stochastic π-calculus with general distributions. Proc. of 4th International

Workshop on Process Algebra and Performance Modelling (PAPM) 1996 (M. Ribaudo, ed.),

CLUT Press, Torino, Italy, 41–57.

Ramchandani, C. (1973): Perfomance evaluation of asynchronous concurrent systems by timed

Petri nets. Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, USA.

Tarasyuk, I.V. (2005): Discrete time stochastic Petri box calculus. Berichte aus dem Depart-

ment für Informatik 3/05, 25 pages, Carl von Ossietzky Universität Oldenburg, Germany,

http://itar.iis.nsk.su/files/itar/pages/dtspbcib cov.pdf.

Tarasyuk, I.V. (2006): Iteration in discrete time stochastic Petri box calculus. Bulletin of the

Novosibirsk Computing Center, Series Computer Science, IIS Special Issue 24, 129–148, NCC

Publisher, Novosibirsk, http://itar.iis.nsk.su/files/itar/pages/dtsitncc.pdf.

Tarasyuk, I.V. (2007): Stochastic Petri box calculus with discrete time. Fundamenta Informat-

icae 76(1–2), 189–218, IOS Press, Amsterdam, The Netherlands.

Tarasyuk, I.V. (2008): Investigating equivalence relations in dtsPBC. Berichte aus dem Depart-

ment für Informatik 5/08, 57 pages, Carl von Ossietzky Universität Oldenburg, Germany,

http://itar.iis.nsk.su/files/itar/pages/dtspbcit cov.pdf.

Tarasyuk, I.V., Macià, H. and Valero, V. (2010): Discrete time stochastic Petri box calculus

with immediate multiactions. Technical Report DIAB-10-03-1, 25 pages, Department of

Computer Systems, High School of Computer Science Engineering, University of Castilla - La

Mancha, Albacete, Spain, http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf.

Wimmer, R., Derisavi, S. and Hermanns, H. (2010): Symbolic partition refinement with auto-

matic balancing of time and space. Performance Evaluation 67, 816–836.

