
PASM / PDMC 2012

Discrete time stochastic Petri box calculus

with immediate multiactions dtsiPBC

Igor V. Tarasyuka,1,3, Hermenegilda Maciàb,2,4 and

Valent́ın Valerob,2,5

a A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russian Federation

b High School of Computer Science Engineering, UCLM, Albacete, Spain

Abstract

We propose discrete time stochastic Petri box calculus extended with immediate multiactions,
called dtsiPBC. The step operational semantics is constructed via labeled probabilistic transition
systems. The denotational semantics is defined via labeled discrete time stochastic Petri nets with
immediate transitions (LDTSIPNs). A consistency of both semantics is demonstrated. In order
to evaluate performance, the corresponding semi-Markov chains are analyzed. In a case study,
performance of the shared memory system is evaluated.

Keywords: Stochastic process algebra, Petri box calculus, discrete time, immediate multiaction,
probabilistic transition system, LDTSIPN, performance evaluation, shared memory system.

1 Introduction

Algebraic process calculi are a recognized formal model for specification of
computing systems and analysis of their behaviour. Petri Box Calculus
(PBC) [2] is a flexible and expressive process algebra developed as a tool for
specification of Petri nets structure and their interrelations. Its goal was also
to propose a compositional semantics for high level constructs of concurrent
programming languages in terms of elementary Petri nets. PBC has a step

1 Supported by Deutsche Forschungsgemeinschaft (DFG), 436 RUS 113/1002/01.
2 Supported by Spanish government (co-financed by FEDER founds), the project “Model-
ing and analyzing composite Web services using formal methods”, TIN2009-14312-C02-02.
3 Email:itar@iis.nsk.su
4 Email:Hermenegilda.Macia@uclm.es
5 Email:Valentin.Valero@uclm.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:itar@iis.nsk.su
mailto:Hermenegilda.Macia@uclm.es
mailto:Valentin.Valero@uclm.es

Tarasyuk, Macià and Valero

operational semantics in terms of labeled transition systems. Its denotational
semantics was proposed in terms of a subclass of Petri nets (PNs) equipped
with interface and considered up to isomorphism called Petri boxes.

There are timed extensions of PBC considering a deterministic or a non-
deterministic time model: time Petri box calculus (tPBC) [7], in which an
interleaving semantics is considered and actions have a time interval associ-
ated; timed Petri box calculus (TPBC) [11], where a step semantics is consid-
ered and multiactions have time durations associated, and arc time Petri box
calculus (atPBC) [16], in which a step semantics is also considered and time
intervals for the multiaction delays. There are also stochastic extensions of
PBC: stochastic Petri box calculus (sPBC) [8,9], with a continuous time model
and multiaction delays that follow a negative exponential distribution. A dis-
crete time stochastic extension of finite PBC was presented in [17], dtsPBC,
providing a step operational semantics and a denotational semantics based on
dts-boxes, a subclass of labeled discrete time stochastic PNs (LDTSPNs).

In this paper, dtsPBC is extended with the iteration operator and imme-
diate multiactions. This new language, discrete time stochastic and imme-
diate Petri box calculus (dtsiPBC), is a discrete time analog of sPBC. Im-
mediate multiactions increase the specification capability: they can model
instant probabilistic choices and activities with negligible durations. They
are also used to specify urgent activities and the ones, which not relevant
for performance evaluation. In many cases, they result in a more clear sys-
tem representation. We define a step operational semantics by using labeled
probabilistic transition systems, and a corresponding denotational semantics
in terms of a subclass of LDTSPNs with immediate transitions (LDTSIPNs),
called dtsi-boxes. Consistency of both semantics is then demonstrated. The
corresponding stochastic process, semi-Markov chain (SMC), is constructed
and investigated, with the purpose of performance evaluation. At last, a case
study of a system with two processors and a common shared memory explains
how to model and analyze performance of concurrent systems with dtsiPBC.

There are many well-known works related to stochastic extensions of pro-
cess algebras (SPAs). Due to the lack of space we can only mention a few of
them, as MTIPP [4], PEPA [5] and EMPA [1]. The first difference between
dtsiPBC and these classical SPAs comes from PBC, since dtsiPBC is based
on that calculus: all operations and a notion of multiaction are inherited from
PBC. The second difference is discrete conditional probabilities of activities
in dtsiPBC due to its discrete time semantics, whereas the action rates are
used in the standard SPAs with continuous time semantics. Discrete time op-
erational semantics of dtsiPBC allows for concurrent execution of activities in
steps. In continuous time semantics, concurrency is simulated by interleaving,
since simultaneous occurrence of any two events has zero probability according
to the properties of continuous probability distributions. The third difference

2

Tarasyuk, Macià and Valero

are immediate multiactions in dtsiPBC which have the same priority while
immediate actions in EMPA can have different priorities. There exist no im-
mediate actions in MTIPP and PEPA. There is a recent work by Markovski
and de Vink [10], where a SPA with discrete time is defined, providing for it an
interleaving semantics, but in this work immediate actions are not considered.

The paper is organized as follows. In Section 2, the syntax of the extended
calculus dtsiPBC is presented. In Section 3, we construct the operational
semantics of the algebra in terms of labeled probabilistic transition systems.
In Section 4, we propose the denotational semantics based on a subclass of
LDTSIPNs. In Section 5, the corresponding stochastic process is defined and
analyzed. In Section 6, an illustrative example of the shared memory system
is presented and investigated as a case study. Section 7 summarizes the results
obtained and outlines research perspectives.

2 Syntax

We denote the set of all finite multisets over a set X by N
X
f and the set of

all subsets of X by 2X . Let Act = {a, b, . . .} be the set of elementary actions.

Then Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. a 6= â

and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = N
A
f be the

set of all multiactions. Note that ∅ ∈ L, this corresponds to the execution of
a multiaction that contains no visible action names. The alphabet of α ∈ L is
defined as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
conditional probability of the multiaction α. These probabilities are used to
calculate the probabilities of state changes (steps) at discrete time moments.
The probabilities of stochastic multiactions are required not to be equal to 1,
since this value is left for immediate multiactions. On the other hand, notice
that zero probabilities are not allowed for multiactions, since they would never
be performed in this case. Let SL be the set of all stochastic multiactions.

An immediate multiaction is a pair (α, l), where α ∈ L and l ∈ N \ {0}
is the non-zero weight of the multiaction α. These are clearly identifiable
from stochastic multiactions, because of the natural number instead of a real
number in the interval (0; 1). Stochastic and immediate multiactions cannot
be executed together in some concurrent step, i.e. the steps can only consist
either of stochastic or immediate multiactions, the latter having a priority
over stochastic ones. Thus, in a state where both kinds of multiactions can
occur, immediate multiactions always occur before stochastic ones. Let IL be
the set of all immediate multiactions.

Notice that the same multiaction α ∈ L may have different probabilities
and weights in the same specification. An activity is a stochastic or an immedi-
ate multiaction. Let SIL = SL∪IL be the set of all activities. The alphabet

3

Tarasyuk, Macià and Valero

of (α, κ) ∈ SIL is defined as A(α, κ) = A(α). The alphabet of Υ ∈ N
SIL
f is

defined as A(Υ) = ∪(α,κ)∈ΥA(α). For (α, κ) ∈ SIL, we define its multiaction
part as L(α, κ) = α and its probability or weight part as Ω(α, κ) = κ.

Activities are combined into formulas by the following operations: sequen-
tial execution ;, choice [], parallelism ‖, relabeling [f] of actions, restriction
rs over a single action, synchronization sy on an action and its conjugate,
and iteration [∗ ∗] with three arguments: initialization, iteration body and
termination. Sequential execution and choice have the standard interpreta-
tion like in other process algebras, but parallelism does not include synchro-
nization unlike the corresponding operation in the standard process calculi.
Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A, f(x̂) = f̂(x). Relabeling is extended to multiactions: for α ∈ L, we
define f(α) =

∑
x∈α f(x). Relabeling is extended to multisets of activities:

for Υ ∈ N
SIL
f , we define f(Υ) =

∑
(α,κ)∈Υ(f(α), κ). Restriction over an action

a ∈ Act means that any process behaviour containing a or â is not allowed.

Synchronization of multiactions is defined for multiactions belonging to the
same class (stochastic or immediate). Taking into account this requirement,
let α, β ∈ L, and a ∈ Act s.t. a ∈ α and â ∈ β or â ∈ α and a ∈ β.
Synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, if x = a or x = â;

α(x) + β(x), otherwise.

As in PBC, static expressions specify the structure of processes and corre-
spond to unmarked LDTSIPNs.

Definition 2.1 Let (α, κ) ∈ SIL, a ∈ Act. A static expression of dtsiPBC is
E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗E].

StatExpr will denote the set of all static expressions of dtsiPBC.

A restriction must be introduced to avoid inconsistency of the iteration
operator. We do not allow any concurrency at the highest level of the second
argument of iteration. This is not a severe restriction, since we can prefix
parallel expressions by an activity with the empty multiaction. The mentioned
inconsistency can result in non-safe nets [3].

Definition 2.2 Let (α, κ) ∈ SIL, and a ∈ Act . A regular static expression
of dtsiPBC is

E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, κ) | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

RegStatExpr will denote the set of all regular static expressions of dtsiPBC.
Dynamic expressions specify process states, and correspond to LDTSIPNs
(marked by definition). Dynamic expressions are obtained from static ones
which are annotated with upper or lower bars and specify active components
of the system at the current instant. E denotes the initial, E denotes the final
state of the process specified by a static expression E. The underlying static

4

Tarasyuk, Macià and Valero

expression of a dynamic one is obtained by removing all the bars from it.

Definition 2.3 Let E ∈ StatExpr , a ∈ Act . A dynamic expression of
dtsiPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

DynExpr will denote the set of all dynamic expressions of dtsiPBC. If the
underlying static expression of a dynamic one is not regular, the corresponding
LDTSIPN can be non-safe (but it is 2-bounded in the worst case [3]). A
dynamic expression is regular if its underlying static expression is regular.
RegDynExpr denotes the set of all regular dynamic expressions of dtsiPBC.

3 Operational semantics

Inaction Rules. These describe structural transformations for dynamic ex-
pressions, but not changing the states of the specified processes. The goal
of these syntactic transformations is to obtain the well-structured terminal
expressions called operative ones to which no inaction rules can be further
applied. These transformations do not take any time, and their application
to a dynamic expression will not modify the corresponding marking in the
associated LDTSIPN. No transitions are therefore fired in relation with these
transformations. In Table 1, we define the inaction rules for the regular dy-
namic expressions in the form of overlined and underlined static ones, where
E, F,K ∈ RegStatExpr and a ∈ Act . Inaction rules for arbitrary regular dy-
namic expressions are defined in Table 2, where E, F ∈ RegStatExpr , a ∈ Act
and G,H, G̃, H̃ ∈ RegDynExpr .

Table 1
Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f] ⇒ E[f] E[f] ⇒ E[f] E rs a ⇒ E rs a

E rs a ⇒ E rs a E sy a ⇒ E sy a E sy a ⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

A regular dynamic expression G is operative if no inaction rule can be
applied to it. OpRegDynExpr denotes the set of all operative regular dynamic
expressions of dtsiPBC. Note that any dynamic expression can be always
transformed into a (not necessarily unique) operative one by using the inaction
rules. We shall consider regular expressions only and omit the word “regular”.

5

Tarasyuk, Macià and Valero

Table 2
Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃

G⇒G̃

G‖H⇒G̃‖H

H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f]⇒G̃[f]

G⇒G̃, ◦∈{ rs , sy}

G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F]⇒[G̃∗E∗F]

G⇒G̃

[E∗G∗F]⇒[E∗G̃∗F]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 3.1 Let ≈ = (⇒ ∪ ⇐)∗ be the structural equivalence of dynamic
expressions in dtsiPBC. Thus, two dynamic expressions G and G′ are struc-
turally equivalent, denoted by G ≈ G′, if they can be reached from each other
by applying the inaction rules in forward or backward direction.

Action and empty loop rules. With action rules the execution of activi-
ties is captured. The prioritization of immediate multiactions w.r.t. stochastic
ones is also captured by these action rules. We also have the empty loop rule,
which is used to capture a delay of one time unit at any state when no immedi-
ate multiactions are executable. In this case, the empty multiset of activities
is considered to be executed. Action rules with stochastic multiactions de-
fine dynamic expression transformations due to the execution of non-empty
multisets of stochastic multiactions, and are time consuming, they take one
time unit, whereas action rules with immediate multiactions define instanta-
neous dynamic expression transformations due to the execution of non-empty
multisets of immediate multiactions. Action rules with either stochastic or im-
mediate multiactions respectively correspond to stochastic or immediate tran-
sition firings in the corresponding LDTSIPN. The firing of a set of stochastic
transitions is time consuming, one time unit elapses with their firing, whereas
immediate transitions take no time in their firing.

With the empty loop rule G
∅
→ G (rule El in Table 3) we capture the

possibility to stay at a tangible state (only stochastic movements are possible)
without firing any activities. This is defined as an empty movement that takes
one time unit. This rule reflects a non-zero probability to stay at the current
state at the next time moment, which is an essential feature of discrete time
stochastic processes. This is a new rule that has no prototype among inaction

rules of PBC, since it represents a time delay. The PBC rule G
∅
→ G from [3]

in our setting would correspond to a rule G ⇒ G, but notice that our model
is strongly based on the transformation of dynamic expressions into operative
ones by the bars movements, hence, we do not introduce it in dtsiPBC.

Thus, an application of every action rule with stochastic multiactions or the
empty loop rule requires one time unit delay, i.e. the execution of a (possibly
empty) multiset of stochastic multiactions leading to the dynamic expression
transformation described by the rule is accomplished instantaneously after one
time unit. An application of every action rule with immediate multiactions
does not take any time, i.e. the execution of a (non-empty) multiset of imme-

6

Tarasyuk, Macià and Valero

diate multiactions is accomplished instantaneously at the current instant.

Expressions of dtsiPBC can contain identical activities. Thus, to avoid
technical difficulties, such as the proper calculation of the state change proba-
bilities for multiple transitions, we can always enumerate coinciding activities
from left to right in the syntax of expressions. The new activities obtained
from synchronization will be annotated with concatenation of numberings of
the activities they come from, hence, the numbering we use has a tree struc-
ture to reflect the effect of multiple synchronizations. But notice that the new
activities resulting from synchronizations in different orders should be con-
sidered up to permutation of their numbering. In this way, we can recognize
different instances of the same activity.

Due to the lack of space we omit a formalization of the numbering mech-
anism, which is straightforward. From now onwards, we will assume that
the identical activities are enumerated when needed to avoid ambiguity. This
enumeration is considered to be implicit.

Let E ⊆ X2 be an equivalence relation on a set X . The equivalence class
(w.r.t. E) of x ∈ X is [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence E
partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the
equivalence class ofG w.r.t. the structural equivalence. G is an initial dynamic
expression, denoted by init(G), if ∃E ∈ RegStatExpr , G ∈ [E]≈. G is a final
dynamic expression, denoted by final(G), if ∃E ∈ RegStatExpr , G ∈ [E]≈.

Definition 3.2 Let G ∈ OpRegDynExpr . We now define the set of all sets
of activities which can be executed from G, denoted by Can(G). Let (α, κ) ∈
SIL, E, F ∈ RegStatExpr , G,H ∈ OpRegDynExpr and a ∈ Act .

(i) If final(G) then Can(G) = ∅.

(ii) If G = (α, κ) then Can(G) = {{(α, κ)}}.

(iii) If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),
Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

(iv) If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).

(v) If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different, a ∈ α, â ∈ β then
(a) (Υ+{(α⊕a β, κ ·λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1);
(b) (Υ+{(α⊕aβ, κ+λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ N\{0}.

When we synchronize the same set of activities in different orders,
we obtain several activities with the same multiaction and probabil-
ity or weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities
to avoid introducing redundant ones.

7

Tarasyuk, Macià and Valero

By definition of Can(G), Υ ∈ Can(G) implies ∀Ξ ⊆ Υ, Ξ 6= ∅, Ξ ∈
Can(G). The expression G ∈ OpRegDynExpr is tangible, denoted by tang(G),
if Can(G) contains only sets of stochastic multiactions (possibly including the
empty set), i.e. ∀Υ ∈ Can(G), Υ ∈ N

SL
f . Otherwise, G is vanishing, denoted

by vanish(G), meaning that there are immediate multiactions in the sets from
Can(G), hence, according to the note above, there are non-empty sets of
immediate multiactions in Can(G), i.e. ∃Υ ∈ Can(G), Υ ∈ N

IL
f \{∅}. Clearly,

immediate multiactions are only executable from vanishing operative dynamic
expressions. Stochastic multiactions are only executable from tangible ones,
since no stochastic multiactions can be executed from a vanishing operative
dynamic expression G, even if Can(G) contains sets of stochastic multiactions.
The reason is that immediate multiactions have a priority over stochastic ones,
and must be executed first.

In Table 3, we define the action and empty loop rules, where (α, ρ), (β, χ) ∈
SL, (α, l), (β,m) ∈ IL, (α, κ) ∈ SIL. Further, E, F ∈ RegStatExpr , G,H ∈

OpRegDynExpr , G̃, H̃ ∈ RegDynExpr, a ∈ Act . Moreover, Γ,∆ ∈ N
SL
f \{∅},

Γ′ ∈ N
SL
f , I, J ∈ N

IL
f \ {∅}, I ′ ∈ N

IL
f and Υ ∈ N

SIL
f \ {∅}. The names of the

action rules with immediate multiactions have suffix ‘i’.
Table 3

Action and empty loop rules

El
tang(G)

G
∅
→G

B (α, κ)
{(α,κ)}
−→ (α, κ) S G

Υ
→G̃

G;E
Υ
→G̃;E E;G

Υ
→E;G̃

L G
Υ
→G̃

G[f]
f(Υ)
−→ G̃[f]

Rs
G

Υ
→G̃, a,â6∈A(Υ)

G rs a
Υ
→G̃ rs a

C
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(E))

G[]E
Γ
→G̃[]E E[]G

Γ
→E[]G̃

Ci G
I
→G̃

G[]E
I
→G̃[]E E[]G

I
→E[]G̃

P1
G

Γ
→G̃, tang(H)

G‖H
Γ
→G̃‖H H‖G

Γ
→H‖G̃

P1i G
I
→G̃

G‖H
I
→G̃‖H H‖G

I
→H‖G̃

P2
G

Γ
→G̃, H

∆
→H̃, tang(G)∧tang(H)

G‖H
Γ+∆
−→ G̃‖H̃

P2i G
I
→G̃, H

J
→H̃

G‖H
I+J
−→G̃‖H̃

I1 G
Υ
→G̃

[G∗E∗F]
Υ
→[G̃∗E∗F]

I2
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F))

[E∗G∗F]
Γ
→[E∗G̃∗F]

I2i G
I
→G̃

[E∗G∗F]
I
→[E∗G̃∗F]

I3
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F))

[E∗F∗G]
Γ
→[E∗F∗G̃]

I3i G
I
→G̃

[E∗F∗G]
I
→[E∗F∗G̃]

Sy1 G
Υ
→G̃

G sy a
Υ
→G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−→G̃ sy a, a∈α, â∈β, tang(G sy a)

G sy a
Γ′+{(α⊕aβ,ρ·χ)}

−−−−−−−−−−→G̃ sy a

Sy2i G sy a
I′+{(α,l)}+{(β,m)}

−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
I′+{(α⊕aβ,l+m)}

−−−−−−−−−−→G̃ sy a

Rule Sy2 establishes that the synchronization of two stochastic multi-
actions is made by taking the product of their probabilities, since we are
considering that both must occur for the synchronization to happen, so this
corresponds to the probability of the event intersection. In rule Sy2i, we sum

8

Tarasyuk, Macià and Valero

the weights of two synchronized immediate multiactions, since the weights
can be interpreted as the rewards, thus, we collect the rewards. Moreover, we
express that the synchronized execution of immediate multiactions has more
importance than that of every single one. Since execution of immediate mul-
tiactions takes no time, we prefer to execute in a step as many synchronized
immediate multiactions as possible to get more progress in behaviour, this
aspect will be used later, while evaluating performance on the basis of the
embedded discrete time Markov chains. We do not have self-synchronization,
i.e. the synchronization of an activity with itself, since all the (enumerated)
activities executed together are considered to be different. This allows us to
avoid many technical difficulties [3].

Transition systems. Now we construct labeled probabilistic transition sys-
tems of dynamic expressions to define later the operational semantics.

Definition 3.3 The derivation set DR(G) of a dynamic expression G is the

minimal set s.t. [G]≈ ∈ DR(G) or, if [H]≈ ∈ DR(G) and ∃Γ, H
Γ
→ H̃ , then

[H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G). The set of all the sets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s, ∃H̃, H
Υ
→ H̃}.

Note that if Υ ∈ Exec(s), then ∃H ∈ s, Υ ∈ Can(H). The state s is tangible, if
Exec(s) ⊆ N

SL
f . For tangible states we may have Exec(s) = ∅. Otherwise, the

state s is vanishing, and in this case Exec(s) ⊆ N
IL
f \{∅}. The set of all tangible

states from DR(G) is denoted by DRT (G), and the set of all vanishing states
from DR(G) is denoted by DRV (G). Clearly, DR(G) = DRT (G) ⊎ DRV (G),
where ⊎ denotes disjoint union.

Let Υ ∈ Exec(s)\{∅}. The probability of the set of stochastic multiactions
or the weight of the set of immediate multiactions which is ready for execution

in s is PF (Υ, s) =

{∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1 − χ), s ∈ DRT (G);∑

(α,l)∈Υ l, s ∈ DRV (G).

For Υ = ∅ and s ∈ DRT (G), let PF (∅, s) =

{∏
{(β,χ)}∈Exec(s)(1 − χ), Exec(s) 6= ∅;

1, Exec(s) = ∅.

Thus, if s ∈ DRT (G) and Exec(s) 6= ∅, then PF (Υ, s) could be inter-
preted as a joint probability of independent events. Each such an event is
interpreted as readiness or not readiness for execution of a particular stochas-
tic multiaction from Υ. The multiplication in the definition is used because
it reflects the probability of the independent event intersection. When only
the empty set of activities can be executed in s, i.e. Exec(s) = ∅, we take
PF (∅, s) = 1, since we stay in s in this case. Note that for s ∈ DRT (G) we
have PF (∅, s) ∈ (0; 1], hence, we can stay in s at the next time moment with
a certain positive probability.

If s ∈ DRV (G) then PF (Υ, s) could be interpreted as the overall (cumu-

9

Tarasyuk, Macià and Valero

lative) weight of the immediate multiactions from Υ, i.e. the sum of all their
weights. The summation here is used since the weights can be seen as the re-
wards which are collected. In addition, this means that concurrent execution
of the immediate multiactions has more importance than that of every single
one. Since execution of immediate multiactions takes no time, we prefer to
execute in a step as many parallel immediate multiactions as possible to get
more progress in behaviour of the embedded discrete time Markov chains of
expressions while evaluating performance. This reasoning is the same as that
used to define the probability of synchronized immediate multiactions in the
rule Sy2i. The definition of PF (Γ, s) (and those of other probability functions
we shall present) is based on the (implicit) enumeration of activities.

Let Υ ∈ Exec(s). The probability to execute the set of activities Υ in s is

PT (Υ, s) = PF (Υ,s)∑
Ξ∈Exec(s) PF (Ξ,s)

. Thus, PT (Υ, s) is the probability of the set of

stochastic multiactions or the weight of the set of immediate multiactions Υ
which is ready for execution in s normalized by the probabilities or the weights
of all the sets executable in s. The denominator of the fraction is a sum, since
it reflects the probability of the mutually exclusive event union.

If s is tangible, then PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability
to stay at the state s in the next time moment, and the residence time in s is
at least 1 time unit. Observe that ∀s ∈ DR(G),

∑
Υ∈Exec(s) PT (Υ, s) = 1, by

definition of PT (Υ, s); hence, it defines a probability distribution.

The probability to move from s to s̃ by executing any set of activities is
PM (s, s̃) =

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT (Υ, s). Since PM (s, s̃) is the probability

to move from s to s̃ by executing any set of activities, we use summation.

Definition 3.4 Let G be a dynamic expression. The (labeled probabilistic)
transition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ 2SIL × (0; 1];

• the set of transitions is TG = {(s, (Υ,PT (Υ, s)), s̃) | s ∈ DR(G), ∃H ∈ s,

∃H̃ ∈ s̃, H
Υ
→ H̃};

• the initial state is sG = [G]≈.

The definition of TS (G) is correct: for every state, the sum of the probabilities
of all the transitions starting from it is 1. This is guaranteed by the note
after the definition of PT (Υ, s). Thus, we have defined a generative model of
probabilistic processes [18], since the sum of the probabilities of the transitions
with all possible labels should be equal to 1, not only of those with the same
labels (up to enumeration of the activities included) as in the reactive models,
and we do not have a nested probabilistic choice as in the stratified models.

The transition system TS (G) associated with a dynamic expression G

10

Tarasyuk, Macià and Valero

describes all the steps that occur at discrete time moments with some (one-
step) probability and consist of sets of activities. Every step consisting of
stochastic multiactions or the empty step (i.e. that consisting of the empty
set of activities) occurs instantaneously after one discrete time unit delay.
Each step consisting of immediate multiactions occurs instantaneously with-
out any delay. The step can change the current state. The states are the
structural equivalence classes of dynamic expressions obtained by application
of action rules starting from the expressions belonging to [G]≈. A transition

(s, (Υ,P), s̃) ∈ TG is written as s
Υ
→P s̃, interpreted as the probability to

change s to s̃ by executing Υ is P.

For tangible states, Υ can be the empty set, and its execution does not
change the current state (i.e. the equivalence class), since we have a loop

transition s
∅
→P s from a tangible state s to itself. This corresponds to the

application of the empty loop rule to the expressions from the equivalence
class. We have to keep track of such executions, called empty loops, because
they have non-zero probabilities. This follows from the definition of PF (∅, s)
and the fact that multiaction probabilities cannot be equal to 1 as they belong
to the interval (0 ; 1). For vanishing states Υ cannot be the empty set, since we
must execute some immediate multiactions from them at the current instant.

The step probabilities belong to the interval (0; 1], being 1 when we cannot
leave a tangible state s and there only exists one transition from it, the empty

loop one s
∅
→1 s, or there is just one transition from a vanishing state.

We write s
Υ
→ s̃ if ∃P, s

Υ
→P s̃ and s → s̃ if ∃Υ, s

Υ
→ s̃. For E ∈

RegStatExpr , let TS(E) = TS(E).

Example 3.5 The expression Stop = ({g}, 1
2
) rs g specifies a non-terminating

process that is only able to perform empty loops with probability 1.
Let E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop].

We have DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}, where
s1 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]]≈.

In Figure 2 we can see the transition system TS (E) of E.

4 Denotational semantics

Labeled DTSIPNs. We introduce a class of labeled discrete time stochastic
and immediate Petri nets (LDTSIPNs), a subclass of DTSPNs [14] (the tran-
sition probabilities cannot be equal to 1) extended with transition labeling

11

Tarasyuk, Macià and Valero

and immediate transitions. Let us present a formal definition of LDTSIPNs.

Definition 4.1 A labeled discrete time stochastic and immediate Petri net
(LDTSIPN) is a tuple N = (PN , TN ,WN ,ΩN , LN ,MN), where

• PN and TN = TsN ⊎ TiN are sets of places and stochastic and immediate
transitions, s.t. PN ∪TN 6= ∅ and PN ∩TN = ∅. Let M ∈ N

PN

f be markings.

• WN : (PN × TN) ∪ (TN × PN) → N is a function providing the weights of
arcs between places and transitions;

• ΩN : TN → (0; 1) ∪ (N \ {0}) is the probability/weight function associating
stochastic transitions with probabilities and immediate ones with weights;

• LN : TN → L is the labeling function assigning multiactions to transitions;

• MN ∈ N
PN

f is the initial marking.

The graphical representation of LDTSIPNs is like that for standard labeled
PNs, square boxes of normal thickness depict stochastic transitions, and those
with thick borders represent immediate transitions. Let N be an LDTSIPN
and t ∈ TN , U ∈ N

TN

f . The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN(p, t) and (t•)(p) = WN(t, p).
The precondition •U and the postcondition U• of U are the multisets of places
defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. Immediate transitions have a

priority over stochastic ones, thus they fire first if they can. A transition
t ∈ TN is enabled at marking M if •t ⊆ M , and one of the following holds:
t ∈ TiN or ∀u ∈ TN ,

•u ⊆M ⇒ u ∈ TsN . A transition is therefore enabled
at a marking M if there are enough tokens on its precondition places in the
usual sense, but if it is stochastic there cannot be any immediate transition
enabled. Let Ena(M) be the set of all transitions enabled at M . By definition,
it follows that Ena(M) ⊆ TiN or Ena(M) ⊆ TsN . A set of transitions
U ⊆ Ena(M) is enabled at M if •U ⊆ M . Firings of transitions are atomic
operations, and transitions may fire concurrently in steps. We assume that
all transitions participating in a step should differ, hence, only the sets (not
multisets) of transitions may fire. Thus, we do not allow self-concurrency, i.e.
firing of transitions concurrently to themselves. This restriction is introduced
to avoid some technical difficulties while calculating probabilities for multisets
of transitions as we shall see after the following formal definitions. Moreover,
we do not need to consider self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe LDTSIPNs (hence,
no self-concurrency is possible).

A marking M is tangible, denoted by tang(M), if Ena(M) ⊆ TsN or
Ena(M) = ∅. Otherwise, the markingM is vanishing, denoted by vanish(M),
and in this case Ena(M) ⊆ TiN and Ena(M) 6= ∅. If tang(M), then a
stochastic transition t ∈ Ena(M) fires with probability ΩN (t) when no other
stochastic transitions conflicting with it are enabled.

12

Tarasyuk, Macià and Valero

Let U ⊆ Ena(M), U 6= ∅, •U ⊆M . The probability of the set of stochastic
transitions or the weight of the set of immediate transitions U which is ready

for firing at M is PF (U,M) =

{∏
t∈U ΩN (t) ·

∏
u∈Ena(M)\U (1 − ΩN(u)), tang(M);

∑
t∈U ΩN (t), vanish(M).

For U = ∅ and tang(M), let PF (∅,M) =

{∏
u∈Ena(M)(1− ΩN (u)), Ena(M) 6= ∅;

1, Ena(M) = ∅.

Thus, if tang(M) and Ena(M) 6= ∅, then PF (U,M) could be interpreted
as a joint probability of independent events. Each such an event is interpreted
as readiness or not readiness for firing of a particular transition from U . The
multiplication in the definition is used because it reflects the probability of
the independent event intersection. When no transitions are enabled at M ,
i.e. Ena(M) = ∅, we take PF (∅,M) = 1, since we stay in M in this case.
Note that if tang(M) then we have PF (∅,M) ∈ (0; 1], hence, we can stay in
M at the next time moment with a certain positive probability. If vanish(M)
then PF (U,M) could be interpreted as the overall weight of the immediate
transitions from U , i.e. the sum of all their weights.

Let U ⊆ Ena(M), U 6= ∅, •U ⊆ M . The concurrent firing of the tran-

sitions from U changes the marking M to M̃ = M − •U + U•, denoted by

M
U
→P M̃ , where P = PT (U,M) is the probability to fire the set of transitions

U in M defined as PT (U,M) = PF (U,M)∑
{V |•V ⊆M} PF (V,M)

.

For U = ∅, tang(M), we haveM = M̃ and PT (∅,M) = PF (∅,M)∑
{V |•V ⊆M} PF (V,M)

.

Thus, PT (U,M) is the probability of the set of stochastic transitions or
the weight of the set of immediate transitions U which is ready for firing atM
normalized by the probabilities or weights of all the sets enabled at M . The
denominator of the fraction above is a sum, since it reflects the probability of
the mutually exclusive event union.

If tang(M) then PT (∅,M) ∈ (0; 1], hence, there is a non-zero probability
to stay atM in the next moment, and the residence time inM is at least 1 time
unit. The sum of all outgoing probabilities is 1, i.e. ∀M ∈ N

PN

f , PT (∅,M) +∑
{U |•U⊆M} PT (U,M) = 1, hence, it defines a probability distribution.

We write M
U
→ M̃ if ∃P, M

U
→P M̃ and M → M̃ if ∃U, M

U
→ M̃ .

The probability to move from M to M̃ by firing any set of transitions is
PM (M, M̃) =

∑
{U |M

U
→M̃}

PT (U,M). Since PM (M, M̃) is the probability

for any (possibly empty) transition set to change M to M̃ , we use summation.

Definition 4.2 Let N be an LDTSIPN.

• The reachability set RS(N) of N is the minimal set of markings s.t.

MN ∈ RS(N) or, if M ∈ RS(N) and M → M̃ , then M̃ ∈ RS (N).

• The reachability graph RG(N) of N is a directed labeled graph with the

13

Tarasyuk, Macià and Valero

nodes RS (N) and the arcs labeled by (U,P) between M, M̃ iff M
U
→P M̃ .

RST (N) denotes the set of all tangible markings and RSV (N) denotes that of
all vanishing markings from RS (N). Thus, RS (N) = RST (N) ⊎ RSV (N).

Algebra of dtsi-boxes. We now introduce discrete time stochastic and
immediate Petri boxes, and the algebraic operations to define a net represen-
tation of dtsiPBC expressions.

Definition 4.3 A discrete time stochastic and immediate Petri box (dtsi-box)
is a tuple N = (PN , TN ,WN ,ΛN), where

• PN and TN are sets of places and transitions, s.t. PN ∪TN 6= ∅, PN ∩TN = ∅;

• WN : (PN × TN) ∪ (TN × PN) → N is a function providing the weights of
arcs between places and transitions;

• ΛN is the place and transition labeling function s.t.
· ΛN |PN

: PN → {e, i, x} (it specifies entry, internal and exit places);
· ΛN |TN

: TN → {̺ | ̺ ⊆ 2SIL × SIL} (it associates transitions with the
relabeling relations on activities).

Moreover, ∀t ∈ TN ,
•t 6= ∅ 6= t•. Next, for the set of entry places of N , defined

as ◦N = {p ∈ PN | ΛN(p) = e}, and for the set of exit places of N , defined as
N◦ = {p ∈ PN | ΛN(p) = x}, it holds: ◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN ,ΛN(t) ∈ SIL, i.e. ΛN(t) is the constant rela-
beling that will be defined later. In the case of constant relabeling, the short-
hand notation (by an activity) for ΛN(t) will be used. A marked plain dtsi-box
is a pair (N,MN), where N is a plain dtsi-box and MN ∈ N

PN

f is its marking.

We shall use the following notation: N = (N, ◦N) andN = (N,N◦). Note that
a marked plain dtsi-box (PN , TN ,WN ,ΛN ,MN) could be interpreted as the
LDTSIPN (PN , TN ,WN ,ΩN , LN ,MN), where functions ΩN and LN are defined
as follows: ∀t ∈ TN , ΩN(t) = Ω(ΛN(t)) and LN (t) = L(ΛN(t)). The behaviour
of marked dtsi-boxes follows from the firing rule of LDTSIPNs. A plain dtsi-
boxN is n-bounded (n ∈ N) ifN is so, i.e. ∀M ∈ RS(N), ∀p ∈ PN , M(p) ≤ n,
and it is safe if it is 1-bounded. A plain dtsi-box N is clean if ∀M ∈ RS(N),
◦N ⊆ M ⇒ M = ◦N and N◦ ⊆ M ⇒ M = N◦, i.e. if there are tokens in
all its entry (exit) places, then no other places have tokens.

The structure of the plain dtsi-box corresponding to a static expression
is constructed as in PBC [3], i.e. we use simultaneous refinement and rela-
beling meta-operator (net refinement) in addition to the operator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC and featuring transfor-
mational transition relabelings. As we are taking the same structure for the
resulting Petri net as in PBC, the obtained plain dtsi-boxes are safe and clean.

The denotational semantics is obtained considering the same standard con-
structions used for PBC. The relabeling relations ̺ ⊆ 2SIL × SIL are:

14

Tarasyuk, Macià and Valero

(α, ρ)

✍✌✎☞

✍✌✎☞
❄

❄

N(α,ρ)ι

e

x

tι
̺[f]

✍✌✎☞

✍✌✎☞
❄

❄

Θ[f]

e

x

u[f] ̺rs a

✍✌✎☞

✍✌✎☞
❄

❄

Θrs a

e

x

urs a
̺sy a

✍✌✎☞

✍✌✎☞
❄

❄

Θsy a

e

x

usy a ̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ;

e

u1;

̺id

✍✌✎☞
❄

❄
x

u2;

i

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ‖

e

u1‖

x

̺id

✍✌✎☞

✍✌✎☞
❄

❄

e

u2‖

x

̺idu1[]
̺id u2[]

Θ[]

✍✌✎☞

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✞ ☎
✝ ✆

❄

✻

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ[∗∗]

e

u1[∗∗]

̺id

✍✌✎☞
❄

❄
x

u3[∗∗]

i
̺id u2[∗∗]

(α, l)

✍✌✎☞

✍✌✎☞
❄

❄

N(α,l)ι

e

x

tι

Fig. 1. The plain and operator dtsi-boxes

• ̺id = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL} is the identity relabeling;

• ̺(α,κ) = {(∅, (α, κ))} is the constant relabeling identified with (α, κ) ∈ SIL;

• ̺[f] = {({(α, κ)}, (f(α), κ)) | (α, κ) ∈ SIL};

• ̺ rs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL, a, â 6∈ α};

• ̺ sy a is the least relabeling relation containing ̺id s.t. if (Υ, (α, κ)),
(Ξ, (β, λ)) ∈ ̺ sy a, a ∈ α, â ∈ β then
· (Υ + Ξ, (α⊕a β, κ · λ)) ∈ ̺ sy a, if κ, λ ∈ (0; 1);
· (Υ + Ξ, (α⊕a β, κ+ λ)) ∈ ̺ sy a, if κ, λ ∈ N \ {0}.

The plain and operator dtsi-boxes are presented in Figure 1. The label i of
internal places is often omitted. ι denotes the numberings of (α, ρ) and (α, l).

An enumeration function can also be defined in accordance with the activ-
ity numbering. All transitions maintain their numbering when they are pre-
served as result of an operation (assuming they are different from each other),
and those obtained from synchronization are assigned the concatenation of
the parenthesized numberings of the synchronized transitions. The main nov-
elty here is the computation of the probability/weight for the synchroniza-
tion, so let us see how we compute it. Let Box dtsi(E) = (PE, TE ,WE,ΛE),
then Box dtsi(E sy a) = Θ sy a(Box dtsi(E)). Now, ∀v, w ∈ TE , s.t. ΛE(v) =
(α, κ), ΛE(w) = (β, λ) and a ∈ α, â ∈ β, the new transition t resulting
from synchronization of v and w has the label Λ(t) = (α ⊕a β, κ · λ), if t is a
stochastic transition, or Λ(t) = (α⊕a β, κ+ λ), if t is an immediate one.

By definition of ̺ sy a, the synchronization is only possible when all the
transitions in the set are stochastic or when all of them are immediate. If we
synchronize the same set of transitions in different orders, we obtain several
resulting transitions with the same label and probability or weight, but with
the different numberings having the same content. We only consider a single
one from the resulting transitions in the plain dtsi-box to avoid introducing

15

Tarasyuk, Macià and Valero

redundant ones. Let us define the denotational semantics as a homomorphism.

Definition 4.4 Let (α, κ) ∈ SIL, a ∈ Act and E, F,K ∈ RegStatExpr . The
denotational semantics of dtsiPBC is a mapping Box dtsi from RegStatExpr
into the domain of plain dtsi-boxes defined as follows:

(i) Box dtsi((α, κ)ι) = N(α,κ)ι ;

(ii) Box dtsi(E ◦ F) = Θ◦(Box dtsi(E),Box dtsi(F)), ◦ ∈ {; , [], ‖};

(iii) Box dtsi(E[f]) = Θ[f](Box dtsi(E));

(iv) Box dtsi(E ◦ a) = Θ◦a(Box dtsi(E)), ◦ ∈ {rs, sy};

(v) Box dtsi([E ∗ F ∗K]) = Θ[∗ ∗](Box dtsi(E),Boxdtsi(F),Box dtsi(K)).

For E ∈ RegStatExpr , let Box dtsi(E) = Box dtsi(E), Box dtsi(E) = Box dtsi(E).
Let ≃ denote isomorphism between transition systems and reachability graphs
relating their initial states. The names of transitions of the dtsi-box of a static
expression could be identified with the enumerated activities of the latter.

Theorem 4.5 For any static expression E, TS (E) ≃ RG(Box dtsi(E)).

Proof. For the qualitative behaviour, we have the same isomorphism as in
PBC. The quantitative behaviour is the same, since the activities of an ex-
pression have the probability or weight parts coinciding with the probabilities
or weights of the transitions belonging to the corresponding dtsi-box, and we
use analogous probability or weight functions to construct the corresponding
transition systems and reachability graphs. ✷

Example 4.6 Let E be from Example 3.5. In Figure 2, the marked dtsi-box
N = Box dtsi(E) and its reachability graph RG(N) are depicted. It is easy to
see that TS(E) and RG(N) are isomorphic.

5 Performance evaluation

Let us see how Markov chains corresponding to the dynamic expressions can
be constructed and then used for performance evaluation.

For a dynamic expression G, a discrete random variable is associated with
every tangible state fromDR(G). The variable captures a residence time in the
state. One can interpret staying in a state in the next discrete time moment
as a failure and leaving it as a success of some trial series. It is easy to see
that the random variables are geometrically distributed, since the probability
to stay in a tangible state s for k−1 time moments and leave it at the moment
k ≥ 1 is PM (s, s)k−1(1−PM (s, s)) (the residence time is k in this case). The
mean value formula for the geometrical distribution allows us to calculate the
average sojourn time in a tangible state s as 1

1−PM (s,s)
. Obviously, the average

sojourn time in a vanishing state is zero. Thus, the average sojourn time in the

16

Tarasyuk, Macià and Valero

TS(E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ

({b},χ),χ

({c},l),
l

l+m

({e},m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✂ ✁✻
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

RG(N)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000

000100 000010

☛✡ ✟✠
❄

100000

t1,ρ

t2,χ

t3, l
l+m

t4, m
l+m

t5,θ t6,φ

001000

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✂ ✁✻
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

({a},ρ)

✍✌✎☞✉
❄

e

N

({d},θ) ({f},φ)

✍✌✎☞ ✍✌✎☞
❄ ❄

({c},l)

✍✌✎☞x

✍✌✎☞❄

({e},m)

��✠
❩❩⑦

❄ ❄

({b},χ)

✍✌✎☞
❄

❄

✠ ✍

✬

✫

✥

✦

✲ ✛

t1

t2

t3 t4

t5 t6

p1

p2

p3

p4 p5

p6

Fig. 2. The transition system of E, the marked dtsi-box N = Boxdtsi(E) and its reachability graph
for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]

state s is SJ (s) =

1
1−PM (s,s)

, s ∈ DRT (G);

0, s ∈ DRV (G).
The average sojourn time vector

SJ of G has the elements SJ (s), s ∈ DR(G). Analogously, the sojourn time

variance in the state s is VAR(s) =

PM(s,s)
(1−PM(s,s))2

, s ∈ DRT (G);

0, s ∈ DRV (G).
The sojourn

time variance vector VAR of G has the elements VAR(s), s ∈ DR(G).

To evaluate performance of the system specified by a dynamic expression
G, we should investigate the stochastic process associated with it. The process
is the underlying semi-Markov chain (SMC), SMC (G), which can be analyzed
by extracting from it the embedded (absorbing) discrete time Markov chain
(EDTMC) corresponding to G, EDTMC (G). The construction of the latter is
similar to that applied in the context of generalized stochastic PNs (GSPNs) in
[12]. EDTMC (G) only describes the state changes of SMC (G) while ignoring
its time characteristics. Thus, to construct the EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from the sojourn time in
its states. Let G be a dynamic expression and s, s̃ ∈ DR(G).

Let s → s. The probability to stay in s due to k (k ≥ 1) self-loops is
(PM (s, s))k. Let s → s̃ and s 6= s̃. The probability to move from s to s̃ by
executing any set of activities after possible self-loops is

PM ∗(s, s̃) =

{
PM (s, s̃)

∑∞
k=0(PM (s, s))k = PM (s,s̃)

1−PM (s,s) , s→ s;

PM (s, s̃), otherwise;

Notice that PM ∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G),

17

Tarasyuk, Macià and Valero

s.t. s is not a terminal state, we have
∑

{s̃|s→s̃, s 6=s̃} PM
∗(s, s̃) =

1
1−PM (s,s)

∑
{s̃|s→s̃, s 6=s̃} PM (s, s̃) = 1

1−PM (s,s)
(1− PM (s, s)) = 1.

Definition 5.1 Let G be a dynamic expression. The embedded (absorbing)
discrete time Markov chain (EDTMC) of G, EDTMC (G), has the state space
DR(G), the initial state [G]≈ and the transitions s→→P s̃, if s→ s̃ and s 6= s̃,
where P = PM ∗(s, s̃).

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of the transition probability matrix (TPM) P∗ for EDTMC (G) are defined as

P∗
ij =

{
PM ∗(si, sj), si → sj , si 6= sj ;

0, otherwise.

The transient (k-step, k ∈ N) probability mass function (PMF) ψ∗[k] =
(ψ∗[k](s1), . . . , ψ

∗[k](sn)) for EDTMC (G) is a solution of the equation system
ψ∗[k] = ψ∗[0](P∗)k, where ψ∗[0] = (ψ∗[0](s1), . . . , ψ

∗[0](sn)) is the initial PMF

defined as ψ∗[0](si) =

{
1, si = [G]≈;

0, otherwise.
Note that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).

The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ
∗(sn)) for EDTMC (G) is a so-

lution of the equation system

{
ψ∗(P∗ − I) = 0

ψ∗
1
T = 1

, where I is the identity matrix

of size n and 0 is a row vector with n values 0, 1 is that with n values 1.
When EDTMC (G) has a single steady state, we have ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF for the underlying semi-Markov chain SMC (G) is
calculated via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average
sojourn time SJ (si) in the state si, after which we normalize the resulting
values. Remember that for a vanishing state s ∈ DRV (G) we have SJ (s) = 0.
Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC (G) is

ϕ(si) =

{
ψ∗(si)SJ (si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Example 5.2 Let E be from Example 3.5. In Figure 3, the underlying SMC
SMC (E) is presented. The average sojourn time in the states of the underlying
SMC is written next to them in bold font.

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). Stan-
dard performance indices (measures) can be calculated based on ϕ [6, 15]:

• The average recurrence (return) time in the state s (the number of discrete
time units required for this) is 1

ϕ(s)
.

• The fraction of residence time in the state s is ϕ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the proba-
bility of the event determined by a condition that is true for all states from

18

Tarasyuk, Macià and Valero

SMC (E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
1

1

l
l+m

m
l+m

1 1

s3

1

ρ

1

χ

0

1

θ

1

φ

SMC (N)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000

000100 000010

☛✡ ✟✠
❄

100000

1

1

l
l+m

m
l+m

1 1

001000

1

ρ

1

χ

0

1

θ

1

φ

Fig. 3. The underlying SMCs of E and N = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l);
({d}, θ))[](({e}, m); ({f}, φ)))) ∗ Stop]

S is
∑

s∈S ϕ(s).

• The relative fraction of residence time in the set of states S with respect to

that in S̃ is
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃)
.

• The rate of leaving the state s is ϕ(s)
SJ (s)

.

• The steady-state probability to perform a step with an activity (α, κ) is∑
s∈DR(G) ϕ(s)

∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states
is
∑

s∈DR(G) ϕ(s)r(s).

Let N = (PN , TN ,WN ,ΩN , LN ,MN) be a LDTSIPN and M, M̃ ∈ N
PN

f .
Then the average sojourn time SJ (M), the sojourn time variance VAR(M),

the probabilities PM∗(M, M̃), the transition relationM →→P M̃ , the EDTMC
EDTMC (N), the underlying SMC SMC (N) and the steady-state PMF for it
are defined like the corresponding notions for dynamic expressions.

As we have mentioned earlier, every marked plain dtsi-box could be in-
terpreted as the LDTSIPN. Therefore, we can evaluate performance with the
LDTSIPNs corresponding to dtsi-boxes and then transfer the results to the
latter. Let≃ denote isomorphism between SMCs that binds their initial states.

Proposition 5.3 For any static expression E

SMC (E) ≃ SMC (Boxdtsi(E)).

Proof. By Theorem 4.5, definitions of underlying SMCs for dynamic expres-
sions and LDTSIPNs, and the following. For the associated SMCs, the average
sojourn time in the states is the same since it is defined via the analogous prob-
ability functions. The transition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reachability graphs. ✷

Example 5.4 Let E be from Example 3.5. In Figure 3, the underlying SMC
SMC (N) is presented. Clearly, SMC (E) and SMC (N) are isomorphic. Thus,
both the transient and steady-state PMFs for SMC (N) and SMC (E) coincide.

19

Tarasyuk, Macià and Valero

✲

✛

✛

✲

Processor 1 Processor 2Memory

Fig. 4. The diagram of the shared memory system

6 Shared memory system

We now demonstrate how steady-state probability mass function (PMF) is
used for performance evaluation, with the shared memory system case study.
This illustrative example demonstrates our modeling and analysis technique.
More complex systems can be easily constructed with the flexible and powerful
operations of dtsiPBC, taking advantage of the algebraic compositionality.

Consider a model of two processors accessing a common shared memory
in the continuous time setting on GSPNs [13]. We shall analyze this shared
memory system in the discrete time stochastic setting of dtsiPBC, where con-
current execution of activities is possible. The model works as follows. After
activation of the system (turning the computer on), two processors are active,
and the common memory is available. Each processor can request an access
to the memory after which the instantaneous decision is made. When the de-
cision is made in favour of one processor, it starts acquisition of memory, the
other processor must therefore wait until the first one terminates its memory
operations, the system then returning to a state in which memory is available
and both processors are active. The diagram of the system is in Figure 4.

Let us explain the meaning of actions from the dtsiPBC expressions speci-
fying the system modules. Action a corresponds to system activation. Actions
ri (1 ≤ i ≤ 2) represent the common memory request of processor i. Instan-
taneous actions di correspond to the decision on the memory allocation in
favour of processor i. Actions mi represent the common memory access of
processor i. The other actions are used for communication purposes only via
synchronization, so we will abstract from them by using the restriction.

The static expression of the first processor is
E1 = [({x1},

1
2
) ∗ (({r1},

1
2
); ({d1, y1}, 1); ({m1, z1},

1
2
)) ∗ Stop].

The static expression of the second processor is
E2 = [({x2},

1
2
) ∗ (({r2},

1
2
); ({d2, y2}, 1); ({m2, z2},

1
2
)) ∗ Stop].

The static expression of the shared memory is
E3 = [({a, x̂1, x̂2},

1
2
) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2
))[](({ŷ2}, 1); ({ẑ2},

1
2
))) ∗ Stop].

The static expression of the shared memory system with two processors is

20

Tarasyuk, Macià and Valero

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

TS(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

({a}, 1
8
), 1

8

({r1}, 1
2
), 1

4
({r2}, 1

2
), 1

4

{({r1}, 1
2
),({r2}, 1

2
)}, 1

4

({d1},2),1 ({d2},2),1

({r2}, 1
2
), 3

8
({r1}, 1

2
), 3

8

{({r1},
1
2
),

({m2}, 1
4
)}, 1

8

{({r2}, 1
2
),

({m1}, 1
4
)}, 1

8

({m1}, 1
4
), 1

8
({m2}, 1

4
), 1

8

({d1},2), 1
2

({d2},2), 1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

({m1}, 1
4
), 1

4
({m2}, 1

4
), 1

4

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐
s3 s4

s6

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

✝ ✆✻∅, 3
8

∅, 3
4

∅, 3
8

∅, 3
4

∅, 7
8

∅, 1
4

Fig. 5. The transition system of the shared memory system

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

Let us illustrate an effect of synchronization. The result of synchronization
of immediate multiactions ({di, yi}, 1) and ({ŷi}, 1) is ({di}, 2) (1 ≤ i ≤ 2).
The synchronization of stochastic multiactions ({mi, zi},

1
2
) and ({ẑi},

1
2
) pro-

duces ({mi},
1
4
) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2},

1
2
)

with ({x1},
1
2
) is ({a, x̂2},

1
4
), and that of ({a, x̂1, x̂2},

1
2
) with ({x2},

1
2
) is

({a, x̂1},
1
4
). After applying synchronization to ({a, x̂2},

1
4
) and ({x2},

1
2
), as

well as to ({a, x̂1},
1
4
) and ({x1},

1
2
), we obtain the same activity ({a}, 1

8
).

DR(E) consists of 9 equivalence classes s1, . . . , s9, interpreted as follows: s1
is the initial state, s2: the system is activated and the memory is not requested,
s3: the memory is requested by the first processor, s4: the memory is requested
by the second processor, s5: the memory is allocated to the first processor,
s6: the memory is requested by two processors, s7: the memory is allocated
to the second processor, s8: the memory is allocated to the first processor and
the memory is requested by the second processor, s9: the memory is allocated
to the second processor and the memory is requested by the first processor.
We have DRT (E) = {s1, s2, s5, s7, s8, s9} and DRV (E) = {s3, s4, s6}.

In Figure 5, the transition system TS(E) is presented. In Figure 6, the
underlying SMC SMC (E) is depicted.

The average sojourn time vector of E is SJ =
(
8, 4

3
, 0, 0, 8

5
, 0, 8

5
, 4, 4

)
.

The sojourn time variance vector of E is VAR =
(
56, 4

9
, 0, 0, 24

25
, 0, 24

25
, 12, 12

)
.

The TPM for EDTMC (E) is P∗ =

0 1 0 0 0 0 0 0 0

0 0 1
3

1
3

0 1
3

0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1
5

0 1
5

0 0 0 3
5

0

0 0 0 0 0 0 0 1
2

1
2

0 1
5

1
5

0 0 0 0 0 3
5

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

.

21

Tarasyuk, Macià and Valero

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

SMC (E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

1

1
3

1
3

1
3

1 1

3
5

3
5

1
5

1
5

1
5

1
5

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐
s3 s4

s6

0

8

5

4

0

8

5

4

8

4

3

0

Fig. 6. The underlying SMC of the shared memory system

Table 4
Transient and steady-state probabilities for the EDTMC of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0 0.1333 0 0.0933 0.0978 0.0187 0.0969 0.0754 0.0682

ψ∗
3 [k] 0 0 0.3333 0 0.2333 0.2444 0.0467 0.2422 0.1886 0.0982 0.2316 0.1705

ψ∗
5 [k] 0 0 0 0.3333 0 0.2333 0.2444 0.0467 0.2422 0.1886 0.0982 0.1705

ψ∗
6 [k] 0 0 0.3333 0 0 0.0444 0 0.0311 0.0326 0.0062 0.0323 0.0227

ψ∗
8 [k] 0 0 0 0.1667 0.2000 0 0.1622 0.1467 0.0436 0.1616 0.1163 0.1136

In Table 4, the transient and the steady-state probabilities ψ∗
i [k] (i ∈

{1, 2, 3, 5, 6, 8}) for the EDTMC of the shared memory system at the time
moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 7, the
evolution in time for the transient probabilities is depicted. It is sufficient
to consider the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the
corresponding values coincide for s3, s4, as well as for s5, s7, and for s8, s9.

The steady-state PMF for EDTMC (E) is ψ∗ =
(
0, 3

44
, 15
88
, 15
88
, 15
88
, 1
44
, 15
88
, 5
44
, 5
44

)
.

The steady-state PMF ψ∗ weighted by SJ is
(
0, 1

11
, 0, 0, 3

11
, 0, 3

11
, 5
11
, 5
11

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum
of its components ψ∗SJ T = 17

11
. Thus, the steady-state PMF for SMC (E) is

ϕ =
(
0, 1

17
, 0, 0, 3

17
, 0, 3

17
, 5
17
, 5
17

)
. We now calculate some performance indices.

• The average recurrence time in the state s2, where no processor requests
the memory, called the average system run-through, is 1

ϕ2
= 17.

• The common memory is available only in the states s2, s3, s4, s6. The steady-
state probability for the memory to be available is ϕ2 + ϕ3 + ϕ4 + ϕ6 =
1
17
+0+0+0 = 1

17
. The steady-state probability for the memory to be used

22

Tarasyuk, Macià and Valero

æ

æ æ æ æ æ æ æ æ æ æà

à

à à

à

à

à à

à

à
à

ì ì

ì

ì

ì ì

ì

ì

ì

ì

ì

ò ò ò

ò

ò

ò ò

ò

ò

ò

ò

ô ô

ô

ô ô

ô

ô
ô ô

ô
ô

ç ç ç

ç
ç

ç

ç ç

ç

ç

ç

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8
*@kD

ô Ψ6
*@kD

ò Ψ5
*@kD

ì Ψ3
*@kD

à Ψ2
*@kD

æ Ψ1
*@kD

Fig. 7. Transient probabilities alteration diagram for the EDTMC of the shared memory system

(i.e. not to be available), called the shared memory utilization, is 1− 1
17

= 16
17
.

• After activation of the system, we leave the state s1 for ever, and the com-
mon memory is either requested or allocated in every remaining state, with
exception of s2. Thus, the rate of emerging the shared memory necessity
coincides with the rate of leaving s2, calculated as ϕ2

SJ2
= 1

17
· 3
4
= 3

68
.

• The common memory request of the first processor ({r1},
1
2
) is only possible

from the states s2, s7. At both states, the request probability is the sum of
the execution probabilities for all sets of activities containing ({r1},

1
2
). The

steady-state probability of the shared memory request from the first processor
is ϕ2

∑
{Υ|({r1},

1
2)∈Υ}

PT (Υ,s2)+ϕ7
∑

{Υ|({r1},
1
2)∈Υ}

PT (Υ,s7)=
1
17(

1
4
+ 1

4)+
3
17(

3
8
+ 1

8)=
2
17
.

In Figure 8, the marked dtsi-boxes corresponding to the dynamic expres-
sions of two processors, shared memory and the shared memory system are
presented, i.e. Ni = Boxdtsi(Ei) (1 ≤ i ≤ 3) and N = Boxdtsi(E).

7 Conclusions

We have proposed a discrete time stochastic extension dtsiPBC of a finite part
of PBC enriched with iteration and immediate multiactions. The calculus is
equipped with a step operational semantics based on labeled probabilistic
transition systems and a denotational semantics in terms of a subclass of
LDTSIPNs. A method of performance evaluation in the framework of the
calculus has been presented applied to the shared memory system case study.

23

Tarasyuk, Macià and Valero

({m2,z2},
1
2)

({d2,y2},1)

✍

✍✌✎☞✉ e

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x

✍✌✎☞

✜

✢

✛

({m1,z1},
1
2)

✍✌✎☞
({d1,y1},1)

✍✌✎☞x

({r1},
1
2)

✍✌✎☞
❄

❄

✠

✍✌✎☞✉ e

✍✌✎☞

❄

✛

✚

✲

({x1},
1
2)

❄

❄

❄

❄

❄

❄

({x2},
1
2)

❄

❄

N1 N2

({a,x̂1,x̂2},
1
2)

({ẑ1},
1
2) ({ẑ2},

1
2)

({ŷ1},1) ({ŷ2},1)

✍✌✎☞❄
��✠ ❅❅❘

✠✍✕✖

✻✻

N3

✍✌✎☞x

✍✌✎☞✉
❄

e

✍✌✎☞❄
❄
✍✌✎☞❄
❄

({a}, 18)

✍✌✎☞✉
❄

e

N

({m1},
1
4) ({m2},

1
4)

✍✌✎☞ ✍✌✎☞
({d1},2)

✍✌✎☞x

({d2},2)

({r1},
1
2)

✍✌✎☞
❄

❄

✠ ✍

✍✌✎☞✉ e✍✌✎☞✉ e
❅❅❘ ��✠

✍✌✎☞

❄

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚
✚❂

❩
❩⑦

��✠ ❅❅❘

✠✍

✛

✚

✜

✢

✲ ✛

✕✖

✻✻

Fig. 8. The marked dtsi-boxes of two processors, shared memory and the shared memory system

The advantage of our framework is twofold. First, one can specify in it
concurrent composition and synchronization of (multi)actions, whereas this is
not possible in classical Markov chains. Second, algebraic formulas represent
processes in a more compact way than PNs and allow one to apply syntac-
tic transformations and comparisons. Process algebras are compositional by
definition and their operations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a complex model in
the algebraic setting than in PNs. The complexity of PNs generated for prac-
tical models in the literature demonstrates that it is not straightforward to
construct such PNs directly from the system specifications. Strong points of
dtsiPBC are the multiaction labels, immediate multiactions, powerful opera-
tions, a step operational and a Petri net denotational semantics allowing for
concurrent execution of activities (transitions), as well as analytical perfor-
mance evaluation. dtsiPBC is well suited for the discrete time applications,
such as business processes, neural and transportation networks, computer and
communication systems, whose discrete states change with a global time tick,
as well as for those, in which the distributed architecture or the concurrency
level should be preserved while modeling and analysis (remember that, in step
semantics, we have additional transitions due to concurrent executions).

Our future work will consist in constructing a congruence for dtsiPBC, i.e.
the equivalence withstanding application of all operations of the algebra. The
first candidate is a stronger version of step stochastic bisimulation equivalence
defined via transition systems equipped with two extra transitions skip and
redo, like in [3]. We also plan to extend the calculus with deterministically
timed multiactions having a fixed time delay (including the zero one which is

24

Tarasyuk, Macià and Valero

the case of immediate multiactions) to enhance expressiveness of the calculus
and to extend the application area of the associated analysis techniques. Fur-
ther, recursion may be added to dtsiPBC to increase its specification power.

References

[1] Bernardo, M. and R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with
nondeterminism, priorities, probabilities and time, Theor. Comput. Sci. 202 (1998), pp. 1–54.

[2] Best, E., R. Devillers and J. G. Hall, The box calculus: a new causal algebra with multi-label
communication, Lect. Notes Comp. Sci. 609 (1992), pp. 21–69.

[3] Best, E., R. Devillers and M. Koutny, “Petri net algebra,” EATCS Monographs on Theor.
Comput. Sci., Springer Verlag, 2001.

[4] Hermanns, H. and M. Rettelbach, Syntax, semantics, equivalences and axioms for MTIPP, in:
Proc. of 2nd Workshop on PAPM, number 27 in Arbeitsberichte des IMMD (1994), pp. 71–88.

[5] Hillston, J., “A compositional approach to performance modelling,” Cambridge University
Press, Great Britain, 1996.

[6] Katoen, J.-P., Quantinative and qualitative extensions of event structures, CTIT Ph. D.-thesis
series 96-09, CTIT, University of Twente, Enschede, The Netherlands (1996).

[7] Koutny, M., A compositional model of time Petri nets, Lect. Notes Comp. Sci. 1825 (2000),
pp. 303–322.

[8] Macià, H., V. Valero, F. Cuartero and M. C. Ruiz, sPBC: a Markovian extension of Petri box
calculus with immediate multiactions, Fundamenta Informaticae 87 (2008), pp. 367–406.

[9] Macià, H., V. Valero and D. de-Frutos, sPBC: a Markovian extension of finite Petri box

calculus, in: Proc. of 9th IEEE International Workshop on PNPM (2001), pp. 207–216.

[10] Markovski, J. and E. P. de Vink, Performance evaluation of distributed systems based on a
discrete real- and stochastic-time process algebra, Fundamenta Informaticae 95 (2009), pp. 157–
186.

[11] Marroqúın, O. and D. de-Frutos, Extending the Petri box calculus with time, Lect. Notes Comp.
Sci. 2075 (2001), pp. 303–322.

[12] Marsan, M. A., Stochastic Petri nets: an elementary introduction, Lect. Notes Comp. Sci. 424
(1990), pp. 1–29.

[13] Marsan, M. A., G. Balbo, G. Conte, S. Donatelli and G. Franceschinis, “Modelling with
generalized stochastic Petri nets,” John Wiley and Sons, 1995.

[14] Molloy, M. K., Discrete time stochastic Petri nets, IEEE Transactions on Software Engineering
11 (1985), pp. 417–423.

[15] Mudge, T. N. and H. B. Al-Sadoun, A semi-Markov model for the performance of multiple-bus
systems, IEEE Transactions on Computers C-34 (1985), pp. 934–942.

[16] Niaouris, A., An algebra of Petri nets with arc-based time restrictions, Lect. Notes Comp. Sci.
3407 (2005), pp. 447–462.

[17] Tarasyuk, I. V., Stochastic Petri box calculus with discrete time, Fundamenta Informaticae 76

(2007), pp. 189–218.

[18] van Glabbeek, R. J., S. A. Smolka and B. Steffen, Reactive, generative, and stratified models
of probabilistic processes, Information and Computation 121 (1995), pp. 59–80.

25

	Introduction
	Syntax
	Operational semantics
	Denotational semantics
	Performance evaluation
	Shared memory system
	Conclusions
	References

