
S e©MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ

МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Том 12, стр. 513–551 (2015) УДК 004.423.4, 519.217.2, 519.681.2, 519.681.3

MSC 60J10, 60K15, 68Q85

STOCHASTIC PROCESS REDUCTION

FOR PERFORMANCE EVALUATION IN DTSIPBC

I.V. TARASYUK, H. MACIÀ, V. VALERO

Abstract. Petri box calculus (PBC) is a well-known algebra of concur-
rent processes with a Petri net semantics. In the paper, we consider an
extension of PBC with discrete stochastic time and immediate multiacti-
ons, which is referred to as discrete time stochastic and immediate PBC
(dtsiPBC). Performance analysis methods for concurrent and distributed
systems with random time delays are investigated in the framework of the
new stochastic process algebra. It is demonstrated that the performance
evaluation is possible not only via the underlying semi-Markov chains
of the algebraic process expressions but also by exploring the reduced
discrete time Markov chains, obtained from the semi-Markov chains by
eliminating their states with zero residence time (called vanishing states).
The latter approach simplifies performance analysis of large systems due
to abstraction from many instantaneous activities, such as those used to
specify logical conditions, probabilistic branching, as well as urgent or
internal (unobservable) work.

Keywords: stochastic process algebras, stochastic Petri nets, Petri box
calculus, discrete time, immediate multiactions, operational semantics,
transition systems, performance analysis, Markov chains, vanishing sta-
tes, reduction.

Tarasyuk I.V., Macià H., Valero V., Stochastic process reduction for perfor-

mance evaluation in dtsiPBC.
c© 2015 Tarasyuk I.V., Macià H., Valero V.

This work was supported in part by Spanish government, project “Modeling and formal analysis

of contracts and Web services with distributed resources”, project no. TIN2012-36812-C02-02.
I.V. Tarasyuk was also supported in part by Deutsche Forschungsgemeinschaft (DFG), grant BE
1267/14-1, and Russian Foundation for Basic Research (RFBR), grant 14-01-91334.

Received January, 29, 2015, published September, 14, 2015.

513

514 I.V. TARASYUK, H. MACIÀ, V. VALERO

1. Introduction

Algebraic process calculi are a well-known formal model for the specification of
computing systems and analysis of their behaviour. In such process algebras (PAs),
systems and processes are specified by formulas, and verification of their properties
is accomplished at a syntactic level via equivalences, axioms, and inference rules.
In the last decades, stochastic extensions of PAs were proposed and widely used.
Stochastic process algebras (SPAs) do not just specify actions that can occur
(qualitative features), like ordinary process algebras, but they associate with actions
some quantitative parameters (quantitative characteristics), such as rates or proba-
bilities, related to the distributions of the random action delays. Some well-known
SPAs are MTIPP [10], PEPA [11] and EMPA [3].

Petri box calculus (PBC) [4, 6, 5] is a flexible and expressive process algebra,
based on the CCS calculus [20], and developed as a tool for specification of structure
of Petri nets (PNs) and their interrelations. Its goal was also to propose a compositi-
onal semantics for high level constructs of concurrent programming languages in
terms of elementary PNs. Formulas of PBC are combined not from single (visible
or invisible) actions and variables, like in CCS, but from multisets of elementary
actions and their conjugates, called multiactions. The empty multiset of actions is
interpreted as the silent multiaction specifying some invisible activity. PBC has a
step operational semantics in terms of labeled transition systems, constructed from
the rules of the classical structural operational semantics (SOS). The denotational
semantics of PBC was defined via a subclass of PNs, equipped with an interface
and considered up to isomorphism, called Petri boxes.

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [16]. In sPBC, delays of stochastic multiactions follow negative
exponential distribution. Each multiaction is equipped with a rate that is a parame-
ter of the corresponding exponential distribution. The instantaneous execution of
a stochastic multiaction is possible only after the corresponding stochastic time
delay. Just a finite part of PBC was initially used for the stochastic enrichment: in
its former version, sPBC had neither refinement nor recursion nor iteration. The
calculus has an interleaving operational semantics in terms of transition systems,
labeled with multiactions and their rates. Its denotational semantics was defined in
terms of a subclass of labeled continuous time stochastic PNs (LCTSPNs), based
on CTSPNs [18] and called stochastic Petri boxes (s-boxes). In [14], the iteration
operation was added to sPBC. In sPBC, performance is evaluated by analyzing the
underlying stochastic process, which is a continuous time Markov chain (CTMC).

In [15], sPBC with iteration was enriched with immediate multiactions, having a
deterministic zero time delay. We call the resulting calculus generalized stochastic
PBC (gsPBC). gsPBC has an interleaving operational semantics via transition
systems, labeled with stochastic or immediate multiactions, together with their
rates or probabilities, respectively. The denotational semantics of gsPBC was defined
via a subclass of labeled generalized stochastic PNs (LGSPNs), based on GSPNs
[19, 1] and called generalized stochastic Petri boxes (gs-boxes). The performance
analysis in gsPBC is accomplished via the underlying semi-Markov chains (SMCs).
Note that in the continuous time semantics, used in sPBC and gsPBC, parallelism is
modeled by interleaving, since the probability that any two events occur simultaneo-
usly is equal to zero by the properties of continuous probability distributions.

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 515

In [24, 26], a discrete time stochastic extension dtsPBC of finite PBC was presen-
ted. In dtsPBC, the residence time in the process states is geometrically distributed.
A step operational semantics of dtsPBC was constructed via labeled probabilistic
transition systems. Its denotational semantics was defined in terms of a subclass
of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs [21] and
called discrete time stochastic Petri boxes (dts-boxes). In [25, 27], dtsPBC was
enriched with the iteration operator with the goal of specifying infinite processes.
The underlying stochastic process, which is a discrete time Markov chain (DTMC),
was constructed and investigated to analyze performance in dtsPBC.

In this paper, we investigate performance evaluation methods for computing
systems in the algebra discrete time stochastic and immediate PBC (dtsiPBC),
initially introduced in [28]. dtsiPBC is an extension of dtsPBC with iteration by
immediate multiactions, having zero delay. Immediate multiactions improve capabi-
lities of specification: they can model instantaneous probabilistic choices, as well as
activities whose duration is insignificant compared to those of others. This allows
us to get a simpler and clearer representation of systems being specified. Thus,
dtsiPBC possess concurrent discrete time semantics with geometrically distributed
(like in dtsPBC) or zero sojourn time in the states of algebraic processes. The
syntax of the algebra dtsiPBC is presented. Then, its step operational semantics,
based on labeled probabilistic transition systems, is constructed. Here we do not
consider the denotational semantics of the calculus, defined via a subclass of labeled
discrete time stochastic and immediate PNs (LDTSPNs with immediate transitions,
LDTSIPNs), called dtsi-boxes, since it was extensively described in our previous
publications [28, 29, 30]. In those papers, a consistency of the operational and
denotational semantics of dtsiPBC was proved, hence, all the results obtained for
the former can be easily transferred to the latter.

To evaluate performance in dtsiPBC, we study the underlying stochastic process
of its algebraic process expressions, which is an SMC. In addition, the alternative
solution methods are developed, based on the underlying discrete time Markov
chain (DTMC) and its reduction (RDTMC) by eliminating vanishing states (i.e.
those with zero residence time). The method based on the RDTMC is the main
contribution of the present paper. With a running illustrative example of the
generalized shared memory system, we demonstrate how to apply the developed
specification and analysis techniques to realistic concurrent systems. The case study
also shows that the novel approach exploiting RDTMCs of the process expressions
simplifies performance analysis of the specified systems due to abstracting from
their activities with zero or negligible durations, while preserving the steady-state
behaviour and the corresponding performance measures.

Comparing with our previous works about dtsiPBC [29, 30], the present paper
proposes a novel original performance analysis method, based on RDTMCs of the
process expressions, while in [29, 30], just SMCs and DTMCs were taken for that
purpose. Further, here we consider a case study of the generalized shared memory
system, which is an extension of the standard shared memory system, described in
[29], allowing multiactions in the system specification to have arbitrary probabilities
and weights, whereas in [30], no application example was considered at all. These
generalized probabilities and weights can be seen as variable parameters to be
adjusted later for optimization of the system performance.

516 I.V. TARASYUK, H. MACIÀ, V. VALERO

The paper is organized as follows. In Section 2, the syntax of algebra dtsiPBC is
presented. In Section 3, we construct its operational semantics via labeled probabi-
listic transition systems. The conventional (SMC-based) and alternative (DTMC-
and RDTMC-based) methods of performance evaluation are described in Section 4.
Section 5 summarizes the results obtained and outlines the research perspectives.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, we recall a definition of
multiset that is an extension of the set notion by allowing several identical elements.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X → N such that |{x ∈ X |M(x) > 0}| <∞, i.e. M has a finite support.

We denote the set of all finite multisets over a set X by NXfin. Let M,M ′ ∈ NXfin.

The cardinality of M is defined as |M | =
∑

x∈XM(x). We write x ∈M if M(x) > 0
and M ⊆M ′ if ∀x ∈ X, M(x) ≤M ′(x). We define (M +M ′)(x) =M(x) +M ′(x)
and (M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can be
interpreted as a proper set and denoted by M ⊆ X . The set of all subsets of X is
denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .}

is the set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let

A = Act∪ Âct be the set of all actions, and L = NA
fin be the set of all multiactions.

Note that ∅ ∈ L, this corresponds to an internal move, i.e. the execution of a
multiaction that contains no visible action names. The alphabet of α ∈ L is defined
as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probabilities of stochastic
multiactions are required not to be equal to 1 to avoid extra model complexity due
to assigning with them weights needed to make a choice when several stochastic
multiactions with probability 1 can be executed from a state. In this case, some
problems appear with conflicts resolving. See [21] for the discussion on DTSPNs.
This decision also allows us to avoid technical difficulties related to conditioning
events with probability 0. Another reason is that not allowing probability 1 for
stochastic multiactions excludes a source of potential periodicity (hence, non-ergodi-
city) in the underlying SMCs of the algebraic expressions. On the other hand, there
is no sense to allow zero probabilities of multiactions, since they would never be
performed in this case. Let SL be the set of all stochastic multiactions.

An immediate multiaction is a pair (α, l), where α ∈ L and l ∈ N≥1 = {1, 2, . . .}
is the non-zero weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution of
the immediate multiaction at the current discrete time moment. Such weights
are used to calculate the probabilities to execute sets of immediate multiactions
instantly. Immediate multiactions have a priority over stochastic ones. One can
assume that all immediate multiactions have priority 1, whereas all stochastic
ones have priority 0. This means that in a state where both kinds of multiactions
can occur, immediate multiactions always occur before stochastic ones. Stochastic

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 517

and immediate multiactions cannot participate together in some step (concurrent
execution), i.e. the steps consisting only of immediate multiactions or those inclu-
ding only stochastic multiactions are allowed. Let IL be the set of all immediate
multiactions.

Let us note that the same multiaction α ∈ L may have different probabilities and
weights in the same specification. It is easy to differentiate between probabilities and
weights, hence, between stochastic and immediate multiactions, since the probabili-
ties of stochastic multiactions belong to the interval (0; 1), and the weights of
immediate multiactions are non-zero (positive) natural numbers from N≥1. An
activity is a stochastic or an immediate multiaction. Let SIL = SL ∪ IL be
the set of all activities. The alphabet of an activity (α, κ) ∈ SIL is defined as
A(α, κ) = A(α). The alphabet of a multiset of activities Υ ∈ NSIL

fin is defined as

A(Υ) = ∪(α,κ)∈ΥA(α).
Activities are combined into formulas (process expressions) by the operations:

; : sequential execution,
[] : choice,
‖ : parallelism,
[f] : relabeling of actions,
rs : restriction over a single action,
sy : synchronization on an action and its conjugate,
[∗ ∗] : iteration with three arguments: initialization, body and termination.

Sequential execution and choice have a standard interpretation, like in other
process algebras, but parallelism does not include synchronization, unlike the corres-
ponding operation in CCS [20].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈

A, f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way: for α ∈ L
we define f(α) =

∑
x∈α f(x). Relabeling is extended to activities: for (α, κ) ∈ SIL,

we define f(α, κ) = (f(α), κ). Relabeling is extended to the multisets of activities
as follows: for Υ ∈ NSIL

fin we define f(Υ) =
∑

(α,κ)∈Υ(f(α), κ). Remember that

sums are considered with the multiplicity when applied to multisets: for example,
f(α) =

∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Restriction over an elementary action a ∈ Act means that, for a given process
expression, any behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act
we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α and β
by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α⊕aβ = α+β−{a, â}, i.e. we remove one exemplar
of a and one exemplar of â from the multiset sum α+ β, since the synchronization
of a and â produces ∅. Activities are synchronized with the use of their multiaction
parts, i.e. the synchronization by a of two activities, whose multiaction parts α
and β possess the properties mentioned above, results in the activity with the
multiaction part α⊕aβ. We may synchronize activities of the same type only: either
both stochastic multiactions or both immediate ones, since immediate multiactions
have a priority over stochastic ones, hence, stochastic and immediate multiactions

518 I.V. TARASYUK, H. MACIÀ, V. VALERO

cannot be executed together (note also that the execution of immediate multiactions
takes no time, unlike that of stochastic ones). Synchronization by a means that, for
a given expression with a process behaviour containing two concurrent activities
that can be synchronized by a, there exists also the process behaviour that differs
from the former only in that the two activities are replaced by the result of their
synchronization.

In the iteration, the initialization subprocess is executed first, then the body is
performed zero or more times, and, finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expres-
sions correspond to unmarked LDTSIPNs (note that LDTSIPNs are marked by
definition). Remember that a marking is the allocation of tokens in the places of
a PN and markings are used to describe dynamic behaviour of PNs in terms of
transition firings.

Definition 2. Let (α, κ) ∈ SIL and a ∈ Act. A static expression of dtsiPBC is
defined as

E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsiPBC.
To make the grammar above unambiguous, one can add parentheses in the

productions with binary operations: (E;E), (E[]E), (E‖E). However, here and
further we prefer the PBC approach and add them to resolve ambiguities only.

To avoid technical difficulties with the iteration operator, we should not allow
any concurrency at the highest level of the second argument of iteration. This is not
a severe restriction, since we can always prefix parallel expressions by an activity
with the empty multiaction part. Alternatively, we can use a different, safe, version
of the iteration operator, but its net translation has six arguments. See also [5] for
discussion on this subject. Remember that a PN is n-bounded (n ∈ N) if for all its
reachable (from the initial marking by the sequences of transition firings) markings
there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

Definition 3. Let (α, κ) ∈ SIL and a ∈ Act. A regular static expression of
dtsiPBC is defined as

E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, κ) | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsiPBC.
Dynamic expressions specify the states of processes. As we shall see, the expressi-

ons correspond to LDTSIPNs (which are marked by default). Dynamic expressions
are obtained from static ones, by annotating them with upper or lower bars which
specify the active components of the system at the current moment of time. The
dynamic expression with upper bar (the overlined one) E denotes the initial, and
that with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E. The underlying static expression of a dynamic
one is obtained by removing all upper and lower bars from it.

Definition 4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsiPBC
is defined as

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 519

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsiPBC.
Note that if the underlying static expression of a dynamic one is not regular, the

corresponding LDTSIPN can be non-safe (it is 2-bounded in the worst case [5]).

Definition 5. A dynamic expression is regular if its underlying static expression
is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsiPBC.

3. Operational semantics

In this section, we define the step operational semantics in terms of labeled
transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe their

structural transformations in the form of G⇒ G̃ which do not change the states of
the specified processes. The goal of these syntactic transformations is to obtain the
well-structured resulting expressions, called operative ones, to which no inaction
rules can be further applied. However, inaction rules do not bring associated either
time elapsing or activities execution, thus, the corresponding marking in the associa-
ted LDTSIPN remains unchanged by their application.

Thus, the application of inaction rules does not take any discrete time delay,
i.e. the dynamic expression transformation described by the rule is accomplished
instantly.

In Table 1, we define inaction rules for regular dynamic expressions in the form
of overlined and underlined static ones. In this table, E,F,K ∈ RegStatExpr and
a ∈ Act.

Table 1. Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f] ⇒ E[f] E[f] ⇒ E[f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the

arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr
and a ∈ Act.

Definition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

520 I.V. TARASYUK, H. MACIÀ, V. VALERO

Table 2. Inaction rules for arbitrary regular dynamic expressions

G⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E

G⇒ G̃, ◦ ∈ {; , []}

E ◦G⇒ E ◦ G̃

G⇒ G̃

G‖H ⇒ G̃‖H

H ⇒ H̃

G‖H ⇒ G‖H̃

G⇒ G̃

G[f] ⇒ G̃[f]

G⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a⇒ G̃ ◦ a

G⇒ G̃

[G ∗ E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Let OpRegDynExpr denote the set of all operative regular dynamic expressions
of dtsiPBC.

Note that any dynamic expression can be always transformed into a (not necessa-
rily unique) operative one by using the inaction rules. In the following, we consider
regular expressions only and omit the word “regular”.

Definition 7. Let ≈ = (⇒ ∪ ⇐)∗ be a structural equivalence of dynamic expressi-
ons in dtsiPBC. Thus, two dynamic expressions G and G′ are structurally equiva-
lent, denoted by G ≈ G′, if they can be reached from each other by applying the
inaction rules in a forward or backward direction.

3.2. Action and empty loop rules. The action rules are applied when some
activities are executed. With these rules we capture the prioritization of immediate
multiactions with respect to stochastic ones. We also have the empty loop rule
which is used to capture a delay of one discrete time unit in the same state when no
immediate multiactions are executable. In this case, the empty multiset of activities
is executed. The action and empty loop rules will be used later to determine all
multisets of activities which can be executed from the structural equivalence class
of every dynamic expression (i.e. from the state of the corresponding process). This
information together with that about probabilities or weights of the activities to be
executed from the current process state will be used to calculate the probabilities
of such executions.

The action rules with stochastic (or immediate, otherwise) multiactions describe

dynamic expression transformations in the form of G
Γ
→ G̃ (or G

I
→ G̃) due to

execution of non-empty multisets Γ of stochastic (or I of immediate) multiactions.
The rules represent possible state changes of the specified processes when some non-
empty multisets of stochastic (or immediate) multiactions are executed. As we shall
see, the application of an action rule with stochastic (or immediate) multiactions
to a dynamic expression leads in the corresponding LDTSIPN to a discrete time
tick at which some stochastic transitions fire (or to the instantaneous firing of some
immediate transitions) and possible change of the current marking. The current
marking remains unchanged only if there is a self-loop produced by the iterative
execution of a non-empty multiset, which must be one-element, i.e. the single
stochastic (or immediate) multiaction. The reason is the regularity requirement
that allows no concurrency at the highest level of the second argument of iteration.

The empty loop rule describes dynamic expression transformations in the form

of G
∅
→ G due to execution of the empty multiset of activities at a discrete time

tick. The rule reflects a non-zero probability to stay in the current state at the next
moment, which is a feature of discrete time stochastic processes. As we shall see, the

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 521

application of the empty loop rule to a dynamic expression leads to a discrete time
tick in the corresponding LDTSIPN at which no transitions fire and the current
marking is not changed. This is a new rule that has no prototype among inaction
rules of PBC, since it represents a time delay, but no notion of time exists in PBC.

The PBC rule G
∅
→ G from [6, 5] in our setting would correspond to the rule

G⇒ G describing the stay in the current state when no time elapses. Since we do
not need the latter rule to transform dynamic expressions into operative ones and
it can destroy the definition of operative expressions, we do not have it.

Thus, the application of action rules with stochastic multiactions or the empty
loop rule takes one discrete time unit delay, i.e. the execution of a (possibly empty)
multiset of stochastic multiactions leading to the dynamic expression transformation
described by the rule is accomplished instantly after one time unit. An application
of every action rule with immediate multiactions does not take any time, i.e. the
execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment of time.

Note that expressions of dtsiPBC can contain identical activities. To avoid tech-
nical difficulties, such as the proper calculation of the state change probabilities for
multiple transitions, we can always enumerate coinciding activities from left to right
in the syntax of expressions. The new activities resulted from synchronization will
be annotated with concatenation of numberings of the activities they come from,
hence, the numbering should have a tree structure to reflect the effect of multiple
synchronizations. Now we define the numbering which encodes a binary tree with
the leaves labeled by natural numbers.

Definition 8. The numbering of expressions is defined as ι ::= n | (ι)(ι), n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should be

considered up to permutation of their numbering. In this way, we shall recognize
different instances of the same activity. If we compare the contents of different
numberings, i.e. the sets of natural numbers in them, we shall be able to identify
the mentioned instances.

The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions will be-
come the proper sets. We shall suppose that the identical activities are enumerated
when needed to avoid ambiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆ X2

be an equivalence relation on X . Then the equivalence class (with respect to E) of
an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence E
partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence. G is an initial dynamic
expression, denoted by init(G), if ∃E ∈ RegStatExpr, G ∈ [E]≈. G is a final
dynamic expression, denoted by final(G), if ∃E ∈ RegStatExpr, G ∈ [E]≈.

522 I.V. TARASYUK, H. MACIÀ, V. VALERO

Definition 9. Let G ∈ OpRegDynExpr. We now define the set of all non-empty
multisets of activities which can be potentially executed fromG, denoted by Can(G).
Let (α, κ) ∈ SIL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

(1) If final(G) then Can(G) = ∅.

(2) If G = (α, κ) then Can(G) = {{(α, κ)}}.
(3) If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

(4) If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G‖H).
(5) If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such that

a ∈ α, â ∈ β, then
(a) (Υ+ {(α⊕a β, κ ·λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1);
(b) (Υ+ {(α⊕a β, κ+λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ N≥1.

When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability
or weight parts, but with different numberings having the same content.
Then we only consider a single one of the resulting activities to avoid
introducing redundant ones.
For example, the synchronization of stochastic multiactions (α, ρ)1 and
(β, χ)2 in different orders generates the activities (α ⊕a β, ρ · χ)(1)(2)
and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization of immedi-
ate multiactions (α, l)1 and (β,m)2 in different orders generates the
activities (α⊕aβ, l+m)(1)(2) and (β⊕aα,m+l)(2)(1). Since Cont((1)(2))
= {1, 2} = Cont((2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchronization will ap-
pear in a multiset from Can(G sy a).

If Υ ∈ Can(G) then by definition of Can(G) ∀Ξ ⊆ Υ, Ξ 6= ∅ we have Ξ ∈ Can(G).
Let G ∈ OpRegDynExpr. Obviously, if there are only stochastic (or only imme-

diate) multiactions in the multisets from Can(G) then these stochastic (or immedi-
ate) multiactions can be executed from G. Otherwise, besides stochastic ones, there
are also immediate multiactions in the multisets from Can(G). By the note above,
there are non-empty multisets of immediate multiactions in Can(G) as well, i.e.
∃Υ ∈ Can(G), Υ ∈ NIL

fin \ {∅}. In this case, no stochastic multiactions can

be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since immediate multiactions have a priority over stochastic ones,
and should be executed first.

Definition 10. Let G ∈ OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Now(G) =

{
Can(G), (Can(G) ⊆ NSL

fin \ {∅}) ∨ (Can(G) ⊆ NIL
fin \ {∅});

Can(G) ∩ NIL
fin, otherwise.

An expression G ∈ OpRegDynExpr is tangible, denoted by tang(G), if Now(G) ⊆
NSL
fin \ {∅}. Otherwise, the expression G is vanishing, denoted by vanish(G), and

in this case Now(G) ⊆ NIL
fin \ {∅}.

In Table 3, we define the action and empty loop rules. In this table, (α, ρ), (β, χ) ∈
SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL. Further, E,F ∈ RegStatExpr, G,H ∈

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 523

OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act. Moreover, Γ,∆ ∈ NSL
fin \

{∅}, Γ′ ∈ NSL
fin, I, J ∈ NIL

fin \ {∅}, I ′ ∈ NIL
fin and Υ ∈ NSIL

fin \ {∅}. The first rule in
the table is the empty loop rule El. The other rules are the action rules, describing
transformations of dynamic expressions, which are built using particular algebraic
operations. If we cannot merge a rule with stochastic multiactions and a rule with
immediate multiactions for some operation then we get the coupled action rules.
Then the names of the action rules with immediate multiactions have a suffix ‘i’.

Table 3. Action and empty loop rules

El
tang(G)

G
∅
→ G

B (α, κ)
{(α,κ)}
−→ (α, κ) S

G
Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

C
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(E))

G[]E
Γ
→ G̃[]E, E[]G

Γ
→ E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]E, E[]G

I
→ E[]G̃

P1
G

Γ
→ G̃, tang(H)

G‖H
Γ
→ G̃‖H, H‖G

Γ
→ H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P2
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

Rs
G

Υ
→ G̃, a, â 6∈ A(Υ)

G rs a
Υ
→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃ ∗ F]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃ ∗ F]

I3
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗ F ∗G]
Γ
→ [E ∗ F ∗ G̃]

I3i
G

I
→ G̃

[E ∗ F ∗G]
I
→ [E ∗ F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,l)}+{(β,m)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,l+m)}
−−−−−−−−−−−−→ G̃ sy a

Almost all the rules in Table 3 (excepting El, P2, P2i, Sy2 and Sy2i) resemble
those of gsPBC [15], but the former correspond to execution of multisets of activities,
not of single activities, as in the latter, and our rules have simpler preconditions
(if any), since all immediate multiactions in dtsiPBC have the same priority level,
unlike those of gsPBC. The preconditions in rules El, C, P1, I2 and I3 are needed
to ensure that (possibly empty) multisets of stochastic multiactions are executed
only from tangible operative dynamic expressions, such that all operative dynamic
expressions structurally equivalent to them are tangible as well. For example, if

524 I.V. TARASYUK, H. MACIÀ, V. VALERO

init(G) in rule C then G ≈ F for some static expression F and G[]E ≈ F []E ≈

F []E ≈ F []E. Hence, it should be guaranteed that tang(F []E), which holds iff
tang(E). The case E[]G is treated similarly. Further, in rule P1, assuming that
tang(G), it should be guaranteed that tang(G‖H) and tang(H‖G), which holds iff
tang(H). The preconditions in rules I2 and I3 are analogous to that in rule C.

Rule El corresponds to one discrete time unit delay while executing no activities
and therefore it has no analogues among the rules of gsPBC that adopts the
continuous time model. Rules P2 and P2i have no similar rules in gsPBC, since
interleaving semantics of the algebra allows no simultaneous execution of activities.
Rules P2 and P2i have in PBC the analogous rule PAR that is used to construct
step semantics of the calculus, but the former two rules correspond to execution of
multisets of activities, unlike that of multisets of multiactions in the latter rule.

Rules Sy2 and Sy2i differ from the corresponding synchronization rules in
gsPBC, since the probability or the weight of synchronization in the former rules
and the rate or the weight of synchronization in the latter rules are calculated in
two distinct ways. Rule Sy2 establishes that the synchronization of two stochastic
multiactions is made by taking the product of their probabilities, since we are
considering that both must occur for the synchronization to happen, so this corres-
ponds to the probability of the independent event intersection, but the real situation
is more complex, since these stochastic multiactions can also be executed in parallel.
Nevertheless, when scoping (the combined operation consisting of synchronization
followed by restriction over the same action [5]) is applied over a parallel execution,
we get as final result just the simple product of the probabilities, since no normaliza-
tion is needed there. In rule Sy2i, we sum the weights of two synchronized immedi-
ate multiactions, since the weights can be interpreted as the rewards [23], thus,
we collect the rewards. Moreover, we express that the synchronized execution of
immediate multiactions has more importance than that of every single one. The
weights of immediate multiactions can also be seen as bonus rewards of transitions
[2]. The rewards are summed during synchronized execution of immediate multiacti-
ons, since in this case all the synchronized activities can be seen as “operated”. We
prefer to collect more rewards, thus, the transitions providing greater rewards will
have a preference and they will be executed with a greater probability.

Observe also that we do not have self-synchronization, i.e. synchronization of
an activity with itself, since all the (enumerated) activities executed together are
considered to be different. This allows us to avoid rather cumbersome and unexpec-
ted behaviour, as well as many technical difficulties [5].

3.3. Transition systems. Now we construct labeled probabilistic transition sys-
tems associated with dynamic expressions. The transition systems are used to define
the operational semantics of dynamic expressions.

Definition 11. The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Υ, H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).
The set of all multisets of activities executable in s is defined as Exec(s) = {Υ |

∃H ∈ s, ∃H̃, H
Υ
→ H̃}.

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 525

It can be proved by induction on the structure of expressions that Υ ∈ Exec(s)\
{∅} implies ∃H ∈ s, Υ ∈ Now(H). The reverse statement does not hold in general.

The state s is tangible, if Exec(s) ⊆ NSL
fin. For tangible states we may have

Exec(s) = {∅}. Otherwise, the state s is vanishing, and in this case Exec(s) ⊆
NIL
fin \ {∅}. The set of all tangible states from DR(G) is denoted by DRT (G), and

the set of all vanishing states from DR(G) is denoted by DRV (G). Obviously,
DR(G) = DRT (G) ⊎DRV (G), where ⊎ denotes disjoint union.

Note that if Υ ∈ Exec(s) then by rules P2, P2i, Sy2, Sy2i and definition of
Exec(s) ∀Ξ ⊆ Υ, Ξ 6= ∅ we have Ξ ∈ Exec(s).

Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiactions
Υ is ready for execution in s or the weight of the multiset of immediate multiactions
Υ which is ready for execution in s is

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1− χ), s ∈ DRT (G);∑

(α,l)∈Υ l, s ∈ DRV (G).

In the case Υ = ∅ and s ∈ DRT (G) we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Note that the definition of PF (Υ, s) (as well as the definitions of other probability
functions which we shall present) is based on the enumeration of activities which
is considered implicit.

Let Υ ∈ Exec(s). Besides Υ, some other multisets of activities may be ready for
execution in s, hence, some conditioning or normalization is needed to calculate the
execution probability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

Note that the sum of outgoing probabilities for the expressions belonging to the
derivations of G is equal to 1. More formally, ∀s ∈ DR(G),

∑
Υ∈Exec(s) PT (Υ, s) =

1. This, obviously, follows from the definition of PT (Υ, s), and guarantees that it
defines a probability distribution.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s, ∃H̃∈s̃, H
Υ
→H̃}

PT (Υ, s).

Since PM(s, s̃) is the probability for any multiset of activities (including the empty
one) to change s to s̃, we use summation in the definition. Note that ∀s ∈ DR(G),∑

{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H
Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H
Υ
→H̃}∑

{Υ|∃H∈s, ∃H̃∈s̃, H
Υ
→H̃}

PT (Υ, s) =
∑

Υ∈Exec(s) PT (Υ, s) = 1.

Definition 12. Let G be a dynamic expression. The (labeled probabilistic) transiti-
on system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);
• the set of labels is LG = NSIL

fin × (0; 1];

526 I.V. TARASYUK, H. MACIÀ, V. VALERO

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s,

∃H̃ ∈ s̃, H
Υ
→ H̃};

• the initial state is sG = [G]≈.

The transition system TS(G) associated with a dynamic expression G describes
all the steps (concurrent executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic multiactions or the empty step (i.e. that consisting of the empty multiset
of activities) occurs instantly after one discrete time unit delay. Each step consisting
of immediate multiactions occurs instantly without any delay. The step can change
the current state to another one. The states are the structural equivalence classes
of dynamic expressions obtained by application of action rules starting from the
expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as

s
Υ
→P s̃. It is interpreted as follows: the probability to change the state s to s̃ as a

result of executing Υ is P .
Note that for tangible states Υ can be the empty multiset, and its execution

does not change the current state (i.e. the equivalence class), since we have a

loop transition s
∅
→P s from a tangible state s to itself. This corresponds to the

application of the empty loop rule to the expressions from the equivalence class.
We have to keep track of such executions, called empty loops, because they have
non-zero probabilities. This follows from the definition of PF (∅, s) and the fact that
multiaction probabilities cannot be equal to 1 as they belong to the interval (0; 1).
For vanishing states Υ cannot be the empty multiset, since we must execute some
immediate multiactions from them at the current time moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we
cannot leave a tangible state s and the only transition leaving it is the empty loop

one, s
∅
→1 s, or if there is just a single transition from a vanishing state to any

other one.
We write s

Υ
→ s̃ if ∃P , s

Υ
→P s̃ and s→ s̃ if ∃Υ, s

Υ
→ s̃.

Isomorphism of transition systems is a coincidence up to renaming their states.

Definition 13. Let G,G′ be dynamic expressions and TS(G) = (SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′) be their transition systems. A mapping β : SG → SG′

is an isomorphism between TS(G) and TS(G′), written β : TS(G) ≃ TS(G′), if

(1) β is a bijection such that β(sG) = sG′ ;

(2) ∀s, s̃ ∈ SG, ∀Υ, s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G) ≃
TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 14. Let G be a dynamic expression. The operational semantics of
dtsiPBC is a mapping TSdtsi from OpRegDynExpr into the domain of isomorphism
classes (i.e. equivalence classes w.r.t. ≃) of labeled probabilistic transition systems,
defined as follows: TSdtsi(G) = [TS(G)]≃.

Let E be a static expression. The operational semantics of dtsiPBC is extended
to RegStatExpr as follows: TSdtsi(E) = [TS(E)]≃.

Example 1. Consider a model of two processors accessing a common shared memo-
ry described in [19, 1] in the continuous time setting on GSPNs. We shall analyze
this shared memory system in the discrete time stochastic setting of dtsiPBC, where

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 527

✲

✛

✛

✲

Processor 1 Processor 2Memory

Fig. 1. The diagram of the shared memory system

concurrent execution of activities is possible, while no two transitions of a GSPN
may fire simultaneously (in parallel). Our model parameterizes that from [29]. The
model behaves as follows. After activation of the system (turning the computer on),
two processors are active, and the common memory is available. Each processor can
request an access to the memory after which the instantaneous decision is made.
When the decision is made in favour of a processor, it starts acquisition of the
memory and the other processor should wait until the former one ends its memory
operations, and the system returns to the state with both active processors and
available common memory. The diagram of the system is depicted in Fig. 1.

The meaning of actions from the syntax of dtsiPBC expressions which will specify
the system modules is as follows. The action a corresponds to the system activation.
The actions ri (1 ≤ i ≤ 2) represent the common memory request of processor i.
The actions di correspond to the instantaneous decision on the memory allocation
in favour of the processor i. The actions mi represent the common memory access
of processor i. The other actions are used for communication purposes only via
synchronization, and we abstract from them later using restriction. The expression
Stop = ({g}, 12) rs g specifies a non-terminating process that performs only empty
loops with probability 1, since its behaviour cannot contain g or ĝ by definition of
the restriction operator. We take general values for all multiaction probabilities and
weights in the specification. Let all stochastic multiactions have the same generalized
probability ρ ∈ (0; 1), and all immediate ones have the same generalized weight
l ∈ N≥1. The specification K of the generalized shared memory system is as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system is

K = (K1‖K2‖K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

As a result of the synchronization of immediate multiactions ({di, yi}, l) and
({ŷi}, l) we get ({di}, 2l) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions

528 I.V. TARASYUK, H. MACIÀ, V. VALERO

({mi, zi}, ρ) and ({ẑi}, ρ) produces ({mi}, ρ2) (1 ≤ i ≤ 2). The result of synchroniza-
tion of ({a, x̂1, x̂2}, ρ) with ({x1}, ρ) is ({a, x̂2}, ρ2), and that of synchronization of
({a, x̂1, x̂2}, ρ) with ({x2}, ρ) is ({a, x̂1}, ρ2). After synchronizing ({a, x̂2}, ρ2) and
({x2}, ρ), as well as ({a, x̂1}, ρ2) and ({x1}, ρ), we get the same activity ({a}, ρ3).
DR(K) consists of the equivalence classes

s̃1 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃2 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃3 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, 1); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, 1); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃4 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, 1); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, 1); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃5 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃6 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, 1); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, 1); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, 1); ({ẑ1}, ρ))[](({ŷ2}, 1); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃7 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s̃8 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 529

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃5

✛
✚

✘
✙s̃8

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃9

❄

❄

❄

❄

❄

❄

TS(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

({a},ρ3),ρ3

({r1},ρ),

ρ(1−ρ)

({r2},ρ),

ρ(1−ρ)

{({r1},ρ),({r2},ρ)},ρ2

({d1},2l),1 ({d2},2l),1

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

{({r1},ρ),

({m2},ρ2)},ρ3

{({r2},ρ),

({m1},ρ2)},ρ3

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

({d1},2l), 1
2

({d2},2l), 1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

✝ ✆✻
∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(1−ρ)2

Fig. 2. The transition system of the generalized shared memory system

s̃9 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop])
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.

We have DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.
The interpretation of the states is: s̃1 is the initial state, s̃2: the system is activated
and the memory is not requested, s̃3: the memory is requested by the first processor,
s̃4: the memory is requested by the second processor, s̃5: the memory is allocated to
the first processor, s̃6: the memory is requested by two processors, s̃7: the memory is
allocated to the second processor, s̃8: the memory is allocated to the first processor
and the memory is requested by the second processor, s̃9: the memory is allocated
to the second processor and the memory is requested by the first processor.

In Fig. 2, the transition system TS(K) is presented. The tangible states are
depicted in ovals, the vanishing ones are depicted in boxes. To simplify the graphical
representation, the singleton multisets of activities are written without braces. Note
that, in step semantics, we may execute the following activities in parallel: ({r1}, ρ),
({r2}, ρ), as well as ({r1}, ρ), ({m2}, ρ

2), and ({r2}, ρ), ({m1}, ρ
2).

4. Performance evaluation

In this section we demonstrate how Markov chains corresponding to the process
expressions can be constructed and then be used for performance evaluation.

We are interested in the expressions specifying the processes with infinite behavi-
our, i.e. in those with the iteration operator, since this is a unique source of
infiniteness within dtsiPBC. Note that the presence of iteration does not guarantee
infiniteness of behaviour, since there may exist a deadlock within the body (second
argument) of iteration when the corresponding subprocess does not reach its final
state by some reason. In particular, if the body of iteration contains the Stop

530 I.V. TARASYUK, H. MACIÀ, V. VALERO

expression, then iteration will be “broken”. On the other hand, the iteration body
can be left after a finite number of its repeated executions and then the iteration
termination is started. To avoid executing any activities after the iteration body,
we take Stop as the termination argument of iteration.

In the framework of Markov chains, the most common systems for performance
analysis are ergodic (irreducible, positive recurrent and aperiodic) ones. For ergodic
Markov chains, the steady-state probabilities exist and can be determined. Here
we consider only the process expressions such that their underlying Markov chains
contain exactly one closed communication class of states, and this class should also
be ergodic to ensure uniqueness of the stationary distribution. Remember that a
communication class of states is their equivalence class w.r.t. communication, i.e. a
maximal subset of communicating states. If a Markov chain contains several closed
communication classes that are all ergodic then several stationary distributions may
exist, which depend on the initial probability mass function (PMF). There is an
analytical method to determine stationary probabilities for Markov chains of this
kind as well [13]. We shall see that the underlying Markov chain of every process
expression will have only one initial PMF (that at the time moment 0), hence, the
stationary distribution will be unique in this case too. The general steady-state
probabilities are then calculated as the sum of the stationary probabilities of all
the ergodic classes of states, weighted by the probabilities to enter these classes,
starting from the initial state and passing through some transient states.

4.1. Analysis of the underlying SMC. For a dynamic expression G, a discrete
random variable is associated with every tangible state s ∈ DRT (G). The variable
captures the residence time in the state. One can interpret staying in a state at
the next discrete time moment as a failure and leaving it as a success in some
trial series. It is easy to see that the random variables are geometrically distributed
with the parameter 1− PM(s, s), since the probability to stay in s for k − 1 time
moments and leave it at the moment k ≥ 1 is (PM(s, s))k−1(1 − PM(s, s)) (the
residence time is k in this case, and this formula defines the PMF of residence time
in s). Hence, the probability distribution function (PDF) of residence time in s is
1− (PM(s, s))k−1 (k ≥ 1) (the probability that the residence time in s is less than
k). The mean value formula for the geometrical distribution allows us to calculate
the average sojourn time in s as 1

1−PM(s,s) . Obviously, the average sojourn time in

a vanishing state is zero. Let s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s),
s ∈ DR(G).

The sojourn time variance in the state s is

VAR(s) =

{
PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by VAR, has the elements VAR(s),
s ∈ DR(G).

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 531

To evaluate performance of the system specified by a dynamic expression G,
we should investigate the stochastic process associated with it. The process is the
underlying semi-Markov chain (SMC) [23, 13], denoted by SMC (G), which can be
analyzed by extracting from it the embedded (absorbing) discrete time Markov
chain (EDTMC) corresponding to G, denoted by EDTMC (G). The construction
of the latter is analogous to that applied in the context of generalized stochastic
PNs (GSPNs) in [19, 1]. EDTMC (G) only describes the state changes of SMC (G)
while ignoring its time characteristics. Thus, to construct the EDTMC, we should
abstract from all time aspects of behaviour of the SMC, i.e. from the sojourn time
in its states. The (local) sojourn time in every state of the EDTMC is deterministic
and it is equal to one discrete time unit. It is well-known that every SMC is fully
described by the EDTMC and the state sojourn time distributions (the latter can
be specified by the vector of PDFs of the residence time in the states) [9].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS(G)
can have self-loops going from a state to itself which have a non-zero probability.
Obviously, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

(PM(s, s))k.

Let s → s̃ and s 6= s̃. The probability to move from s to s̃ by executing any
multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0(PM(s, s))k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
=

SL(s)PM(s, s̃), where SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise.

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops abstracti-
on vector ofG, denoted by SL, has the elements SL(s), s ∈ DR(G). The value k = 0
in the summation above corresponds to the case when no self-loops occur. Note that
∀s ∈ DRT (G), SL(s) =

1
1−PM(s,s) = SJ(s), hence, ∀s ∈ DRT (G), PM

∗(s, s̃) =

SJ(s)PM(s, s̃), since we always have the empty loop (which is a self-loop) s
∅
→ s

from every tangible state s. Empty loops are not possible from vanishing states,

hence, ∀s ∈ DRV (G), PM
∗(s, s̃) = PM(s,s̃)

1−PM(s,s) , when there are non-empty self-

loops (produced by iteration) from s, or PM∗(s, s̃) = PM(s, s̃), when there are no
self-loops from s.

Note that PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such
that s is not a terminal state, i.e. there are transitions to different states after
possible self-loops from it, we have

∑
{s̃|s→s̃, s6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1 − PM(s, s)) = 1.

Definition 15. Let G be a dynamic expression. The embedded (absorbing) discrete
time Markov chain (EDTMC) of G, denoted by EDTMC (G), has the state space
DR(G), the initial state [G]≈ and the transitions s ։P s̃, if s → s̃ and s 6= s̃,
where P = PM∗(s, s̃).

The underlying SMC of G, denoted by SMC (G), has the EDTMC EDTMC (G)
and the sojourn time in every s ∈ DRT (G) is geometrically distributed with the
parameter 1− PM(s, s) while the sojourn time in every s ∈ DRV (G) is zero.

532 I.V. TARASYUK, H. MACIÀ, V. VALERO

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of the

(one-step) transition probability matrix (TPM) P∗ for EDTMC (G) are defined as

P∗
ij =

{
PM∗(si, sj), si → sj , si 6= sj ;
0, otherwise.

The transient (k-step, k ∈ N) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC (G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF, defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC (G) is a solution
of the equation system

{
ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is
that of n values 1.

If EDTMC (G) has a single steady-state distribution then ψ∗ = limk→∞ ψ∗[k].
The steady-state PMF for the underlying semi-Markov chain SMC (G) is calcula-

ted via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si)
in the state si, after which we normalize the resulting values. Remember that for a
vanishing state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC (G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops to get P∗ and then
ψ∗, followed by weighting by SJ and normalization. EDTMC (G) has no self-loops,
unlike SMC (G), hence, the behaviour of EDTMC (G) stabilizes quicker than that
of SMC (G) (if each of them has a single steady-state distribution), since P∗ has
only zero elements at the main diagonal.

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following
standard performance indices (measures) can be calculated, based on the steady-
state PMF ϕ for SMC (G) and the average sojourn time vector SJ of G [22, 8, 12].

• The average recurrence (return) time in the state s (i.e. the number of
discrete time units or steps required for this) is 1

ϕ(s) .

• The fraction of residence time in the state s is ϕ(s).
• The fraction of residence time in the set of states S or the probability of

the event determined by a condition that is true for all states from S is∑
s∈S ϕ(s).

• The relative fraction of residence time in the set of states S with respect to

that in S̃ is
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

• The rate of leaving the state s is ϕ(s)
SJ(s) .

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 533

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃5

✛
✚

✘
✙s̃8

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃9

❄

❄

❄

❄

❄

❄

SMC (K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

1
1−ρ
2−ρ

1−ρ
2−ρ

ρ
2−ρ

1 1

1−ρ2

1+ρ−ρ2
1−ρ2

1+ρ−ρ2

ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

0

1
ρ(1+ρ−ρ2)

1
ρ2

0

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

Fig. 3. The underlying SMC of the generalized shared memory system

• The steady-state probability to perform a step with an activity (α, κ) is∑
s∈DR(G) ϕ(s)

∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states
is
∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Example 2. Let K be from Example 1. In Fig. 3, the underlying SMC SMC (K) is
depicted. The average sojourn time in the states of the underlying SMC is written
next to them in bold font.

The average sojourn time vector of K is

S̃J =

(
1

ρ3
,

1

ρ(2− ρ)
, 0, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K is

ṼAR =
(

1−ρ3

ρ6
, (1−ρ)2

ρ2(2−ρ)2 , 0, 0,
(1−ρ)2(1+ρ)
ρ2(1+ρ−ρ2)2 , 0,

(1−ρ)2(1+ρ)
ρ2(1+ρ−ρ2)2 ,

1−ρ2

ρ4
, 1−ρ

2

ρ4

)
.

The TPM for EDTMC (K) is

P̃∗ =

0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

.

The steady-state PMF for EDTMC (K) is

534 I.V. TARASYUK, H. MACIÀ, V. VALERO

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2− 3ρ− ρ2), 2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3,

2 + ρ− 3ρ2 + ρ3, 2ρ2(1 − ρ), 2 + ρ− 3ρ2 + ρ3, 2− ρ− ρ2, 2− ρ− ρ2).

The steady-state PMF ψ̃∗ weighted by S̃J is

1

2ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, 2ρ2(1−ρ), 0, 0, ρ(2−ρ), 0, ρ(2−ρ), 2−ρ−ρ2, 2−ρ−ρ2).

We normalize the steady-state weighted PMF, dividing it by the sum of its com-
ponents

ψ̃∗S̃J
T
=

2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

The steady-state PMF for SMC (K) is

ϕ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1−ρ), 0, 0, ρ(2−ρ), 0, ρ(2−ρ), 2−ρ−ρ2, 2−ρ−ρ2).

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor requests the

memory, called the average system run-through, is 1
ϕ̃2

= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6. The steady-
state probability that the memory is available is ϕ̃2 + ϕ̃3 + ϕ̃4 + ϕ̃6 =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 + 0 + 0 + 0 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 . The steady-state probability that the

memory is used (i.e. not available), called the shared memory utilization,

is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state s̃1 for ever, and the
common memory is either requested or allocated in every remaining state,
with exception of s̃2. Thus, the rate with which the necessity of shared

memory emerges coincides with the rate of leaving s̃2,
ϕ̃2

S̃J2
= ρ2(1−ρ)

2+ρ−ρ2−ρ3 ·

ρ(2−ρ)
1 = ρ3(1−ρ)(2−ρ)

2+ρ−ρ2−ρ3 .

• The common memory request of the first processor ({r1}, ρ) is only possible
from the states s̃2, s̃7. In each of the states, the request probability is the sum
of the execution probabilities for all sets of activities containing ({r1}, ρ).
The steady-state probability of the shared memory request from the first
processor is ϕ̃2

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃2)+ϕ̃7

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1 − ρ) + ρ2) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) = ρ2(2+ρ−2ρ2)
2(2+ρ−ρ2−ρ3) .

Example 3. Let us take ρ = 1
2 and l = 1 in the specification K from Example

1. The resulting specification E describes a special case of the latter, which we
call the standard shared memory system. In Table 4, the transient and the steady-
state probabilities ψ∗

i [k] (i ∈ {1, 2, 3, 5, 6, 8}) for the EDTMC of the standard shared
memory system at the time moments k ∈ {0, 10, 20, 30, 40, 50} and k = ∞ are
presented, and in Fig. 4, the alteration diagram (evolution in time) for the transient
probabilities is depicted. It is sufficient to consider the probabilities only for the

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 535

Table 4. Transient and steady-state probabilities for the EDTMC
of the standard shared memory system

k 0 10 20 30 40 50 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0
ψ∗
2 [k] 0 0.0754 0.0677 0.0680 0.0683 0.0681 0.0682
ψ∗
3 [k] 0 0.2316 0.1554 0.1741 0.1696 0.1707 0.1705
ψ∗
5 [k] 0 0.0982 0.1859 0.1672 0.1711 0.1703 0.1705
ψ∗
6 [k] 0 0.0323 0.0202 0.0234 0.0226 0.0228 0.0227
ψ∗
8 [k] 0 0.1163 0.1147 0.1130 0.1139 0.1136 0.1136

æ

ææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ìì

ì

ì

ì

ì

ì

ì
ì

ì

ìì

ì

ì
ì
ì
ì
ììì

ììììììììììììììììììììììììììì

òòò

ò

ò

òò

ò

ò

ò

ò

ò

ò
ò

ò

òò

ò

ò
ò
ò
ò
òòò

òòòòòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç
ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

çç
ç
çç
ç
ççççççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8
*@kD

ô Ψ6
*@kD

ò Ψ5
*@kD

ì Ψ3
*@kD

à Ψ2
*@kD

æ Ψ1
*@kD

Fig. 4. Transient probabilities alteration diagram for the EDTMC
of the standard shared memory system

states s1, s2, s3, s5, s6, s8 of the standard shared memory system, since the correspon-
ding values coincide for s3, s4, as well as for s5, s7, and for s8, s9.

The steady-state PMF for EDTMC (E) is

ψ∗ =

(
0,

3

44
,
15

88
,
15

88
,
15

88
,
1

44
,
15

88
,
5

44
,
5

44

)
.

4.2. Analysis of the DTMC. Consider an alternative solution method that ex-
plores the DTMCs of expressions based on the state change probabilities PM(s, s̃).

Definition 16. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC (G), has the state space DR(G), the initial state
[G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DTMC (G) are defined as

536 I.V. TARASYUK, H. MACIÀ, V. VALERO

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.

The steady-state PMF ψ for DTMC (G) is defined like the corresponding notion
ψ∗ for EDTMC (G).

Let us determine a relationship between steady-state PMFs for DTMC (G) and
EDTMC (G). The following proposition describes the equation that relates the
mentioned steady-state PMFs.

We introduce a helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a
diagonal matrix of order n with the elements Diagij(v) (1 ≤ i, j ≤ n), defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

Proposition 1. Let G be a dynamic expression and SL be its self-loops abstraction
vector. Then the steady-state PMFs ψ for DTMC (G) and ψ∗ for EDTMC (G) are
related as follows: ∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

Proof. Let PSL be a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P−Diag(PSL)). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(SL)(P−Diag(PSL)) we obtain

ψ∗Diag(SL)(P−Diag(PSL)) = ψ∗ and
ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I).

Note that ∀s ∈ DR(G), we have SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then for v = ψ∗Diag(SL) we have

vP = v and v(P− I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its
elements by their sum, since we should have ψ1T = 1 as a result:

ψ =
1

v1T
v =

1

ψ∗Diag(SL)1T
ψ∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G),

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 537

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is a solution of the equation system

{
ψ(P− I) = 0

ψ1T = 1
,

hence, it is indeed the steady-state PMF for DTMC (G). �

The next proposition relates the steady-state PMFs for SMC (G) and DTMC (G).

Proposition 2. Let G be a dynamic expression, ϕ be the steady-state PMF for
SMC (G) and ψ be the steady-state PMF for DTMC (G). Then ∀s ∈ DR(G),

ϕ(s) =

{
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
, s ∈ DRT (G);

0, s ∈ DRV (G).

Proof. Let s ∈ DRT (G). Remember that ∀s ∈ DRT (G), SL(s) = SJ(s) and
∀s ∈ DRV (G), SJ(s) = 0. Then, by Proposition 1, we have

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)

∑
s̃∈DRT (G)

(
ψ∗(s̃)SL(s̃)∑

s̆∈DR(G) ψ
∗(s̆)SL(s̆)

) =

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)
·

∑
s̆∈DR(G) ψ

∗(s̆)SL(s̆)
∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃)

=
ψ∗(s)SL(s)∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃)

=

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃)
=

ψ∗(s)SJ(s)∑
s̃∈DR(G) ψ

∗(s̃)SJ(s̃)
= ϕ(s).

�

Thus, to calculate ϕ, one can only apply normalization to some elements of ψ
(corresponding to the tangible states), instead of abstracting from self-loops to get
P∗ and then ψ∗, followed by weighting by SJ and normalization. Hence, using
DTMC (G) instead of EDTMC (G) allows one to avoid multistage analysis, but
the payment for it is more time-consuming numerical and more complex analytical
calculation of ψ with respect to ψ∗. The reason is that DTMC (G) has self-loops,
unlike EDTMC (G), hence, the behaviour of DTMC (G) stabilizes slower than that
of EDTMC (G) (if each of them has a single steady-state distribution) and P is
more dense matrix than P∗, since P may additionally have non-zero elements at the
main diagonal. Nevertheless, Proposition 2 is very important, since the relationship
between ϕ and ψ it discovers will be used in Proposition 3 to relate the steady-state
PMFs for SMC (G) and the reduced DTMC (G).

Example 4. Let K be from Example 1. In Fig. 5, the DTMC RDTMC (K) is
presented.

The TPM for DTMC (K) is

538 I.V. TARASYUK, H. MACIÀ, V. VALERO

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃5

✛
✚

✘
✙s̃8

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃9

❄

❄

❄

❄

❄

❄

DTMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

ρ3

ρ(1−ρ) ρ(1−ρ)

ρ2

1 1

ρ(1−ρ2) ρ(1−ρ2)

ρ3 ρ3

ρ2(1−ρ) ρ2(1−ρ)

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

ρ2 ρ2

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

✝ ✆✻(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

1−ρ3

(1−ρ)2

Fig. 5. The DTMC of the generalized shared memory system

P̃ =

1 − ρ3 ρ3 0 0 0 0 0 0 0

0 (1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) 0 ρ2 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

0 ρ2(1 − ρ) 0 ρ3 (1 − ρ)(1 − ρ2) 0 0 ρ(1 − ρ2) 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ2(1 − ρ) ρ3 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 0 0 ρ2 0 0 0 1 − ρ2 0

0 0 ρ2 0 0 0 0 0 1 − ρ2

.

The steady-state PMF for DTMC (K) is

ψ̃ = 1
2(2+ρ+ρ2−2ρ4) (0, 2ρ

2(1 − ρ), ρ2(2 + ρ− 3ρ2 + ρ3), ρ2(2 + ρ− 3ρ2 + ρ3),

ρ(2− ρ), 2ρ4(1 − ρ), ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

Remember that DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}. Hence,

∑

s̃∈DRT (K)

ψ̃(s̃) = ψ̃(s̃1)+ ψ̃(s̃2)+ ψ̃(s̃5)+ ψ̃(s̃7)+ ψ̃(s̃8)+ ψ̃(s̃9) =
2 + ρ− ρ2 − ρ3

2 + ρ+ ρ2 − 2ρ4
.

By Proposition 2, we have

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 539

Table 5. Transient and steady-state probabilities for the DTMC
of the standard shared memory system

k 0 10 20 30 40 50 ∞

ψ1[k] 1 0.2631 0.0692 0.0182 0.0048 0.0013 0
ψ2[k] 0 0.0829 0.0569 0.0501 0.0483 0.0478 0.0476
ψ3[k] 0 0.0677 0.0836 0.0878 0.0889 0.0892 0.0893
ψ5[k] 0 0.0996 0.1315 0.1399 0.1421 0.1427 0.1429
ψ6[k] 0 0.0220 0.0146 0.0126 0.0121 0.0120 0.0119
ψ8[k] 0 0.1487 0.2146 0.2319 0.2365 0.2377 0.2381

ϕ̃(s̃1) = 0 · 2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 0,

ϕ̃(s̃2) =
ρ2(1−ρ)

2+ρ+ρ2−2ρ4 · 2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 ,

ϕ̃(s̃3) = 0,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) =
ρ(2−ρ)

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ(2−ρ)
2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃6) = 0,

ϕ̃(s̃7) =
ρ(2−ρ)

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ(2−ρ)
2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃8) =
2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃9) =
2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3) .

Thus, the steady-state PMF for SMC (K) is

ϕ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1−ρ), 0, 0, ρ(2−ρ), 0, ρ(2−ρ), 2−ρ−ρ2, 2−ρ−ρ2).

This coincides with the result obtained in Example 2 with the use of ψ̃∗ and S̃J .

Example 5. Let E be from Example 3. In Table 5, the transient and the steady-
state probabilities ψi[k] (i ∈ {1, 2, 3, 5, 6, 8}) for the DTMC of the standard shared
memory system at the time moments k ∈ {0, 5, 10, . . . , 50} and k = ∞ are presented,
and in Fig. 6, the alteration diagram (evolution in time) for the transient probabiliti-
es is depicted. It is sufficient to consider the probabilities for the states s1, s2, s3, s5,
s6, s8 only, since the corresponding values coincide for s3, s4, as well as for s5, s7,
and for s8, s9.

The steady-state PMF for DTMC (E) is

ψ =

(
0,

1

21
,
5

56
,
5

56
,
1

7
,
1

84
,
1

7
,
5

21
,
5

21

)
.

4.3. Analysis of the reduced DTMC. Let us now consider the method from [8,
19, 1] that eliminates vanishing states from the EMC (EDTMC, in our terminology)
corresponding to the underlying SMC of every GSPN N . The TPM for the resulting
reduced EDTMC (REDTMC) has smaller size than that for the EDTMC. The
method demonstrates that there exists a transformation of the underlying SMC of

540 I.V. TARASYUK, H. MACIÀ, V. VALERO

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì
ììì

ìììì
ìììììììì

ìììììììììììììììììììììììììììììììììì

òòò
ò
òò
òò
òòò

òòòò
òòòòòòòòòò

òòòòòòòòòòòòòòòòòòòòòòòòòò

ôô
ôôôççç
ç
ç
ç
ç
ç
çç
çç
çç
ççç

ççççç
ççççççççççççççç

çççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8@kD

ô Ψ6@kD

ò Ψ5@kD

ì Ψ3@kD

à Ψ2@kD

æ Ψ1@kD

Fig. 6. Transient probabilities alteration diagram for the DTMC
of the standard shared memory system

N into a CTMC, whose states are the tangible markings of N . This CTMC, which
is essentially the reduced underlying SMC (RSMC) of N , is constructed on the
basis of the REDTMC. The CTMC can then be directly solved to get the transient
and steady-state PMFs over the tangible markings of N . In [8], the program and
computational complexities of such an elimination method, based on the REDTMC,
were evaluated and compared with those of the preservation method that does not
eliminate vanishing states and based on the EDTMC. The preservation method
corresponds in dtsiPBC to the analysis of the underlying SMCs of expressions.

The elimination method can be easily transferred to dtsiPBC, hence, for every
dynamic expression G, we can find a DTMC (since the sojourn time in the tangible
states from DR(G) is discrete and geometrically distributed) with the states from
DRT (G), which can be directly solved to find the transient and the steady-state
PMFs over the tangible states. We shall demonstrate that such a reduced DTMC
(RDTMC) of G, denoted by RDTMC (G), can be constructed from DTMC (G),
using the method analogous to that designed in [19, 1] in the framework of GSPNs
to transform EDTMC into REDTMC. Since the sojourn time in the vanishing states
is zero, the state transitions of RDTMC (G) occur in the moments of the global
discrete time associated with SMC (G), unlike those of EDTMC (G), which happen
only when the current state changes to some different one, irrespective of the global
time. Therefore, in our case, we can skip the stages of constructing the REDTMC
of G, denoted by REDTMC (G), from EDTMC (G), and recovering RSMC of G,
denoted by RSMC (G), (which is the sought-for DTMC) from REDTMC (G), since
we shall have RSMC (G) = RDTMC (G). This will be the second alternative solution
method that we propose, namely, exploring the RDTMCs of expressions.

Let G be a dynamic expression and P be the TPM for DTMC (G). We reorder the
states from DR(G) so that the first rows and columns of P will correspond to the

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 541

states from DRV (G) and the last ones will correspond to the states from DRT (G).
Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix can be decomposed as
follows:

P =

(
C D

E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are
the probabilities to move from vanishing to tangible states. The elements of the
m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m × m submatrix F are the probabilities to move from
tangible to tangible states.

The TPM P⋄ for RDTMC (G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing
to vanishing states in any number of state changes, without traversal of tangible
states.

If there are no loops among vanishing states then for any vanishing state there
exists a value l ∈ N such that every sequence of state changes that starts in a
vanishing state and is longer than l should reach a tangible state. Thus, ∃l ∈
N, ∀k > l, Ck = 0 and

∑∞
k=0 C

k =
∑l

k=0 C
k.

If there are loops among vanishing states then all such loops are supposed to be of
“transient” rather than “absorbing” type, since the latter is treated as a specification
error to be corrected, like in [19, 1]. Remember that SMC (G) has a single closed
communication class of states, which is also ergodic. The ergodic class cannot consist
only of vanishing states to avoid “absorbing” loops among them, hence, it contains
tangible states as well. Thus, any sequence of vanishing state changes that starts
in the ergodic class will reach a tangible state at some time moment. All the states
that do not belong to the ergodic class should be transient. Hence, any sequence
of vanishing state changes that starts in a transient vanishing state will some time
reach either a transient tangible state or a state from the ergodic class [13]. In
the latter case, a tangible state will be reached as well, as argued above. Thus,
every sequence of vanishing state changes in SMC (G) that starts in a vanishing
state will exit the set of all vanishing states in the future. This implies that the
probabilities to move from vanishing to vanishing states in k ∈ N state changes,
without traversal of tangible states, will lead to 0 when k tends to ∞. Then we have
limk→∞ Ck = limk→∞(I− (I−C))k = 0, hence, I−C is a non-singular matrix, i.e.
its determinant is not equal to zero. Thus, the inverse matrix of I−C exists and may
be expressed by a Neumann series as

∑∞
k=0(I− (I−C))k =

∑∞
k=0 C

k = (I−C)−1.
Therefore,

G =
∞∑

k=0

Ck =

{ ∑l

k=0 C
k, ∃l ∈ N, ∀k > l, Ck = 0, no vanishing states loops;

(I−C)−1, limk→∞ Ck = 0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,
both of order n−m.

542 I.V. TARASYUK, H. MACIÀ, V. VALERO

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n − m, let Fij be the elements of the matrix
F, Eik be those of E, Gkl be those of G and Dlj be those of D. By definition, the
elements P⋄

ij of the matrix P⋄ are calculated as

P⋄
ij = Fij+

n−m∑

k=1

n−m∑

l=1

EikGklDlj = Fij+
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj = Fij+
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to

the tangible state sj in any number of steps, without traversal of tangible states,
but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s to
s̃ in any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 17. Let G be a dynamic expression and [G]≈ ∈ DRT (G). The reduced
discrete time Markov chain (RDTMC) of G, denoted by RDTMC (G), has the state
space DRT (G), the initial state [G]≈ and the transitions s →֒P s̃, where P =
PM⋄(s, s̃).

Let us now try to define RSMC (G) as a “restriction” of SMC (G) to its tangible
states. Since the sojourn time in the tangible states of SMC (G) is discrete and
geometrically distributed, we can see that RSMC (G) is a DTMC with the state
space DRT (G), the initial state [G]≈ and the transitions whose probabilities collect
all those in SMC (G) to move from the tangible to the tangible states, directly
or indirectly, namely, by going through its vanishing states only. Thus, RSMC (G)
has the transitions s →֒P s̃, where P = PM⋄(s, s̃), hence, we get RSMC (G) =
RDTMC (G).

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step,
k ∈ N) PMF ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC (G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF, defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ N).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC (G) is a solution
of the equation system

{
ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1 is
that of m values 1.

If RDTMC (G) has a single steady-state distribution then ψ⋄ = limk→∞ ψ⋄[k].
The zero sojourn time in the vanishing states guarantees that the state transitions

of RDTMC (G) occur in the moments of the global discrete time associated with
SMC (G), i.e. every such state transition occurs after one time unit delay. Hence,
the sojourn time in the tangible states is the same for RDTMC (G) and SMC (G).

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 543

The state transition probabilities of RDTMC (G) are those to move from tangible
to tangible states in any number of steps, without traversal of the tangible states.
Therefore, RDTMC (G) and SMC (G) have the same transient behaviour over the
tangible states, thus, the transient analysis of SMC (G) is possible to accomplish
using RDTMC (G).
The next proposition relates the steady-state PMFs for SMC (G) and RDTMC (G).
It proves that the stationary probabilities of the tangible states coincide for them.

Proposition 3. Let G be a dynamic expression, ϕ be the steady-state PMF for
SMC (G) and ψ⋄ be the steady-state PMF for RDTMC (G). Then ∀s ∈ DR(G),

ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. To simplify the proof, we use the following unified notation. I denotes the
identity matrices of any size. 0 denotes square matrices and row vectors of any size
and length of values 0. 1 denotes row vectors of any size and length of values 1.

Let P be the reordered TPM for DTMC (G) and ψ be the steady-state PMF for
DTMC (G), i.e. ψ is a solution of the equation system

{
ψ(P− I) = 0

ψ1T = 1
.

Let |DR(G)| = n and |DRT (G)| = m. The decomposed P, P− I and ψ are

P =

(
C D

E F

)
, P− I =

(
C− I D

E F− I

)
and ψ = (ψV , ψT),

where ψV = (ψ1, . . . , ψn−m) is the subvector of ψ with the steady-state probabilities
of vanishing states and ψT = (ψn−m+1, . . . , ψn) is that with the steady-state
probabilities of tangible states.

Then the equation system for ψ is decomposed as follows:

ψV (C− I) + ψTE = 0

ψVD+ ψT (F− I) = 0

ψV 1
T + ψT1

T = 1
.

Let P⋄ be the TPM for RDTMC (G). Then ψ⋄ is a solution of the equation system

{
ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
.

We have

P⋄ = F+EGD,

where the matrix G can have two different forms, depending on whether the loops
among vanishing states exist, hence, we consider the two following cases.

(1) There exist no loops among vanishing states. We have ∃l ∈ N, ∀k > l, Ck =

0 and G =
∑l

k=0 C
k.

Let us right-multiply the first equation of the decomposed equation
system for ψ by G:

ψV (CG−G) + ψTEG = 0.

544 I.V. TARASYUK, H. MACIÀ, V. VALERO

Taking into account that G =
∑l

k=0 C
k, we get

ψV

(
l∑

k=1

Ck +Cl+1 −C0 −
l∑

k=1

Ck

)
+ ψTEG = 0.

Since C0 = I and Cl+1 = 0, we obtain

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decompo-
sed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

(2) There exist loops among vanishing states. We have limk→∞ Ck = 0 and
G = (I−C)−1.

Let us right-multiply the first equation of the decomposed equation
system for ψ by G:

−ψV (I−C)G+ ψTEG = 0.

Taking into account that G = (I−C)−1, we get

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decompo-
sed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

The third equation ψV 1
T +ψT1

T = 1 of the decomposed equation system for ψ
implies that if ψV has nonzero elements then the sum of the elements of ψT is less
than one. We normalize ψT by dividing its elements by their sum:

v =
1

ψT1T
ψT .

It is easy to check that v is a solution of the equation system

{
v(P⋄ − I) = 0

v1T = 1
,

hence, it is the steady-state PMF for RDTMC (G) and we have

ψ⋄ = v =
1

ψT1T
ψT .

Note that ∀s ∈ DRT (G), ψT (s) = ψ(s). Then the elements of ψ⋄ are calculated
as follows: ∀s ∈ DRT (G),

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 545

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT (s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

By Proposition 2, ∀s ∈ DRT (G), ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
.

Therefore, ∀s ∈ DRT (G),

ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

�

Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-
state probabilities of the tangible states, instead of abstracting from self-loops to
get P∗ and then ψ∗, followed by weighting by SJ and normalization. Hence, using
RDTMC (G) instead of EDTMC (G) allows one to avoid such a multistage analysis,
but constructing P⋄ also requires some efforts, including calculating matrix powers
or inverse matrices. Note that RDTMC (G) has self-loops, unlike EDTMC (G),
hence, the behaviour of RDTMC (G) may stabilize slower than that of EDTMC (G)
(if each of them has a single steady-state distribution). On the other hand, P⋄ is
smaller and denser matrix than P∗, since P⋄ has additional non-zero elements not
only at the main diagonal, but also many of them outside it. Therefore, in most
cases, we have less time-consuming numerical calculation of ψ⋄ with respect to ψ∗.
At the same time, the complexity of the analytical calculation of ψ⋄ with respect
to ψ∗ depends on the model structure, such as the number of vanishing states
and loops among them, but usually it is lower, since the matrix size reduction
plays an important role in many cases. Hence, for the system models with many
immediate activities we normally have a significant simplification of the solution.
At the abstraction level of SMCs, the elimination of vanishing states decreases their
impact to the solution complexity while allowing immediate activities to specify a
comprehensible logical structure of systems at the higher level of transition systems.

Example 6. Let K be from Example 1. Remember that DRT (K) = {s̃1, s̃2, s̃5, s̃7,
s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}. We reorder the elements of DR(K), by moving
vanishing states to the first positions: s̃3, s̃4, s̃6, s̃1, s̃2, s̃5, s̃7, s̃8, s̃9. The reordered
TPM for DTMC (K) is

P̃r =

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(1 − ρ) ρ(1 − ρ) ρ2 0 (1 − ρ)2 0 0 0 0

0 ρ3 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 1 − ρ2

.

The result of the decomposing P̃r are the matrices

546 I.V. TARASYUK, H. MACIÀ, V. VALERO

✛
✚

✘
✙s̃1

✛
✚

✘
✙s̃2

✛
✚

✘
✙s̃5

✛
✚

✘
✙s̃8

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃9

❄❄ ❄

RDTMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒�
�

�
�

�
�

�✠✛ ✲

ρ3

ρ(1−ρ) ρ(1−ρ)

ρ(1−ρ2) ρ(1−ρ2)ρ2(1−ρ) ρ2(1−ρ)

ρ2 ρ2

ρ2

2
ρ2

2

❅
❅

❅
❅

❅
❅❅■❅
❅
❅

❅
❅
❅
❅❘

PPPPPPPPPPPPPPPPPPP✐

✲✞✝

✲✞✝

☎✆✛

☎✆✛

✝ ✆✻

✝ ✆✻
1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ3

(1−ρ)2

✓ ✏
❄

✬ ✩
❄ ρ3 ρ3

Fig. 7. The reduced DTMC of the generalized shared memory system

C̃ =

0 0 0
0 0 0
0 0 0

 , D̃ =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

2
1
2

 , Ẽ =

0 0 0
ρ(1− ρ) ρ(1− ρ) ρ2

0 ρ3 0
ρ3 0 0
0 ρ2 0
ρ2 0 0

,

F̃ =

1− ρ3 ρ3 0 0 0 0
0 (1− ρ)2 0 0 0 0
0 ρ2(1 − ρ) (1− ρ)(1 − ρ2) 0 ρ(1− ρ2) 0
0 ρ2(1 − ρ) 0 (1− ρ)(1 − ρ2) 0 ρ(1− ρ2)
0 0 0 0 1− ρ2 0
0 0 0 0 0 1− ρ2

.

Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G̃ =

l∑

k=0

C̃k = C̃0 = I.

Further, the TPM for RDTMC (K) is

P̃⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =

1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

2
ρ2

2
0 ρ2(1− ρ) (1− ρ)(1 − ρ2) ρ3 ρ(1− ρ2) 0
0 ρ2(1− ρ) ρ3 (1 − ρ)(1− ρ2) 0 ρ(1− ρ2)
0 0 0 ρ2 1− ρ2 0
0 0 ρ2 0 0 1− ρ2

.

In Fig. 7, the reduced DTMC RDTMC (K) is presented.
The steady-state PMF for RDTMC (K) is

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 547

Table 6. Transient and steady-state probabilities for the RDTMC
of the standard shared memory system

k 0 10 20 30 40 50 ∞

ψ⋄
1 [k] 1 0.2631 0.0692 0.0182 0.0048 0.0013 0
ψ⋄
2 [k] 0 0.0931 0.0679 0.0612 0.0594 0.0590 0.0588
ψ⋄
3 [k] 0 0.1307 0.1644 0.1733 0.1756 0.1763 0.1765
ψ⋄
5 [k] 0 0.1912 0.2670 0.2870 0.2922 0.2936 0.2941

ψ̃⋄ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1− ρ), ρ(2 − ρ), ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

Note that ψ̃⋄ = (ψ̃⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃5), ψ̃
⋄(s̃7), ψ̃

⋄(s̃8), ψ̃
⋄(s̃9)). By Proposition

3, we have

ϕ̃(s̃1) = 0, ϕ̃(s̃2) =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 , ϕ̃(s̃5) =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3) , ϕ̃(s̃7) =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃8) =
2−ρ−ρ2

2(2+ρ−ρ2−ρ3) , ϕ̃(s̃9) =
2−ρ−ρ2

2(2+ρ−ρ2−ρ3) .

Thus, the steady-state PMF for SMC (K) is

ϕ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1−ρ), 0, 0, ρ(2−ρ), 0, ρ(2−ρ), 2−ρ−ρ2, 2−ρ−ρ2).

This coincides with the result obtained in Example 2 with the use of ψ̃∗ and S̃J .

Example 7. Let E be from Example 3. In Table 6, the transient and the steady-state
probabilities ψ⋄

i [k] (i ∈ {1, 2, 3, 5}) for the RDTMC of the standard shared memory
system at the time moments k ∈ {0, 10, 20, 30, 40, 50} and k = ∞ are presented, and
in Fig. 8, the alteration diagram (evolution in time) for the transient probabilities
is depicted. It is sufficient to consider the probabilities for the states s1, s2, s5, s8
only, since the corresponding values coincide for s5, s7, as well as for s8, s9.

The steady-state PMF for RDTMC (E) is

ψ⋄ =

(
0,

1

17
,
3

17
,
3

17
,
5

17
,
5

17

)
.

Note that our reduction of the underlying SMC by eliminating its vanishing
states, resulting in the reduced DTMC, resembles the reduction from [17] by remo-
ving instantaneous states of stochastically discontinuous Markov reward chains.
The latter are “limits” of continuous time Markov chains with state rewards and
fast transitions when the rates (speeds) of these transitions tend to infinity, making
them immediate. By analogy with this work, we would consider DTMCs extended
with instantaneous states instead of SMCs with geometrically distributed or zero
sojourn time in the states. However, within dtsiPBC, we have decided to take SMCs
as the underlying stochastic process to be able in the perspective to consider not
only geometrically distributed and zero residence time in the states, but arbitrary
fixed time delays as well.

548 I.V. TARASYUK, H. MACIÀ, V. VALERO

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

àà

ìì
ì
ì
ìì
ìì
ììì

ìììì
ììììììììì

ììììììììììììììììììììììììììì

òòò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòòòò

òòòòòòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Ψ5
í@kD

ì Ψ3
í@kD

à Ψ2
í@kD

æ Ψ1
í@kD

Fig. 8. Transient probabilities alteration diagram for the RDTMC
of the standard shared memory system

5. Conclusion

In this paper, we have presented a discrete time stochastic extension dtsiPBC
of a finite part of PBC, enriched with iteration and immediate multiactions. The
calculus has a concurrent step operational semantics, based on labeled probabilistic
transition systems. A novel method of performance evaluation in the framework
of the calculus has been proposed that explores a reduction of the underlying
stochastic process of the algebraic expressions. The method takes into account
specific features of the SMCs corresponding to the expressions, such as zero sojourn
time in the vanishing states. The reduced stochastic process is the RDTMC, which is
the reduction of both the underlying SMC and DTMC, accomplished with elimina-
ting vanishing states. The proposed analysis technique makes it possible to calculate
performance indices in a simpler and more optimal way. This is is very important
in modeling complex and large-scale concurrent systems, the state spaces of which
grow drastically when the number of their components increases. As a running
example, a case study of the generalized shared memory system has been presented
with the goal to demonstrate the specification, modeling and performance analysis
in dtsiPBC. With this real-world example we have demonstrated that the mentioned
new RDTMC-based approach makes easier the performance analysis due to abstrac-
ting from the activities with zero or negligibly small durations, which do not affect
the stationary behaviour and corresponding performance measures.

The advantage of our framework is twofold. First, one can specify in it concurrent
composition and synchronization of (multi)actions, whereas this is not possible in
classical Markov chains. Second, algebraic formulas represent processes in a more
compact way than Petri nets and allow one to apply syntactic transformations and
comparisons. Process algebras are compositional by definition and their operations
naturally correspond to operators of programming languages. Hence, it is much

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 549

easier to construct a complex model in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in the literature demonstrates
that it is not straightforward to construct such PNs directly from the system
specifications. dtsiPBC is well suited for the discrete time applications, such as
business processes, neural and transportation networks, computer and communica-
tion systems, whose discrete states change with a global time tick, as well as for
those, in which the distributed architecture or the concurrency level should be
preserved while modeling and analysis (remember that, in step semantics, we have
additional transitions due to concurrent executions). Strong points of dtsiPBC are
the flexible multiaction labels, immediate multiactions, the powerful operations,
as well as the step operational and Petri net denotational semantics allowing for
concurrent execution of activities (transitions).

One of the directions of our future work is a construction of a bisimulation
equivalence that preserves functionality and performance. This equivalence may be
applied to construct quotients of the transition systems of the algebraic expressions
and thereby decrease the number of the process states at the functional level
(related to transition systems) before applying the vanishing states reduction at
the performance level (related to SMCs). In Example 1, the following states of
TS(K) may be related by such a bisimulation: s̃3, s̃4, as well as s̃5, s̃7, and s̃8, s̃9.
We also plan to extend the calculus with deterministically timed multiactions,
having a fixed time delay (including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calculus and to extend application
area of the associated analysis techniques. The resulting SPA will be a concurrent
discrete time analogue of SM-PEPA [7], whose underlying stochastic model is an
SMC. Moreover, recursion operation could be added to dtsiPBC to extend further
specification power of the algebra towards a wider class of infinite processes with a
discrete stochastic time.

References

[1] Balbo G. Introduction to generalized stochastic Petri nets. Lecture Notes in Computer
Science 4486, p. 83–131, 2007.

[2] Bernardo M., Bravetti M. Reward based congruences: can we aggregate more? Lecture
Notes in Computer Science 2165, p. 136–151, 2001, http://www.cs.unibo.it/~bravetti/
papers/papm01b.ps.

[3] Bernardo M., Gorrieri R. A tutorial on EMPA: a theory of concurrent processes with

nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, p.
1–54, July 1998, http://www.sti.uniurb.it/bernardo/documents/tcs202.pdf.

[4] Best E., Devillers R., Hall J.G. The box calculus: a new causal algebra with multi-label

communication. Lecture Notes in Computer Science 609, p. 21–69, 1992.
[5] Best E., Devillers R., Koutny M. Petri net algebra. EATCS Monographs on Theoretical

Computer Science, 378 p., Springer Verlag, 2001.
[6] Best E., Koutny M. A refined view of the box algebra. Lecture Notes in Computer Science

935, p. 1–20, 1995, http://parsys.informatik.uni-oldenburg.de/~best/publications/
pn95.ps.gz.

[7] Bradley J.T. Semi-Markov PEPA: modelling with generally distributed actions. Internati-
onal Journal of Simulation 6(3–4), p. 43–51, February 2005, http://pubs.doc.ic.ac.uk/

semi-markov-pepa/semi-markov-pepa.pdf.
[8] Ciardo G., Muppala J.K., Trivedi K.S. On the solution of GSPN reward models.

Performance Evaluation 12(4), p. 237–253, July 1991, http://people.ee.duke.edu/~kst/
spn_papers/gspnrew.ps.

550 I.V. TARASYUK, H. MACIÀ, V. VALERO

[9] Haverkort B.R. Markovian models for performance and dependability evaluation. Lecture
Notes in Computer Science 2090, p. 38–83, 2001,
http://www-i2.informatik.rwth-aachen.de/Teaching/Seminar/VOSS2005/have01.pdf.

[10] Hermanns H., Rettelbach M. Syntax, semantics, equivalences and axioms for MTIPP.

Proceedings of 2nd Workshop on Process Algebras and Performance Modelling, Regensberg
/ Erlangen (Herzog U., Rettelbach M., eds.), Arbeitsberichte des IMMD 27, p. 71–88,
University of Erlangen, Germany, 1994, http://ftp.informatik.uni-erlangen.de/local/
inf7/papers/Hermanns/syntax_semantics_equivalences_axioms_for_MTIPP.ps.gz.

[11] Hillston J. A compositional approach to performance modelling. 158 p., Cambridge
University Press, UK, 1996, http://www.dcs.ed.ac.uk/pepa/book.pdf.

[12] Katoen J.-P. Quantinative and qualitative extensions of event structures. Ph. D. thesis,
CTIT Ph. D.-thesis series 96-09, 303 p., Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands, 1996.

[13] Kulkarni V.G. Modeling and analysis of stochastic systems. Texts in Statistical Science,
563 p., Chapman and Hall / CRC Press, 2009.

[14] Macià H., Valero V., Cazorla D., Cuartero F. Introducing the iteration in sPBC.

Lecture Notes in Computer Science 3235, p. 292–308, 2004, http://www.info-ab.uclm.es/
retics/publications/2004/forte04.pdf.

[15] Macià H., Valero V., Cuartero F., Ruiz M.C. sPBC: a Markovian extension of Petri

box calculus with immediate multiactions. Fundamenta Informaticae 87(3–4), p. 367–406,
IOS Press, Amsterdam, The Netherlands, 2008.

[16] Macià H., Valero V., de Frutos D. sPBC: a Markovian extension of finite Petri box

calculus. Proceedings of 9
th IEEE International Workshop PNPM’01, p. 207–216, Aachen,

Germany, IEEE Computer Society Press, 2001, http://www.info-ab.uclm.es/retics/
publications/2001/pnpm01.ps.

[17] Markovski J., Sokolova A., Trčka N., de Vink E.P. Compositionality for Markov

reward chains with fast and silent transitions. Performance Evaluation 66, p. 435–452, 2009.
[18] Marsan M.A. Stochastic Petri nets: an elementary introduction. Lecture Notes in Computer

Science 424, p. 1–29, 1990.
[19] Marsan M.A., Balbo G., Conte G., Donatelli S., Franceschinis G. Modelling with

generalized stochastic Petri nets. Wiley Series in Parallel Computing, John Wiley and Sons,
316 p., 1995, http://www.di.unito.it/~greatspn/GSPN-Wiley.

[20] Milner R.A.J. Communication and concurrency. Prentice-Hall, 260 p., Upper Saddle River,
NJ, USA, 1989.

[21] Molloy M.K. Discrete time stochastic Petri nets. IEEE Transactions on Software Enginee-
ring 11(4), p. 417–423, 1985.

[22] Mudge T.N., Al-Sadoun H.B. A semi-Markov model for the performance of multiple-bus

systems. IEEE Transactions on Computers C-34(10), p. 934–942, October 1985,
http://www.eecs.umich.edu/~tnm/papers/SemiMarkov.pdf.

[23] Ross S.M. Stochastic processes. 2nd edition, John Wiley and Sons, 528 p., New York, USA,
April 1996.

[24] Tarasyuk I.V. Discrete time stochastic Petri box calculus. Berichte aus dem Department
für Informatik 3/05, 25 p., Carl von Ossietzky Universität Oldenburg, Germany, November
2005 (ISSN 1867-9218), http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf.

[25] Tarasyuk I.V. Iteration in discrete time stochastic Petri box calculus. Bulletin of the
Novosibirsk Computing Center, Series Computer Science, IIS Special Issue 24, p. 129–148,
NCC Publisher, Novosibirsk, 2006, http://itar.iis.nsk.su/files/itar/pages/
dtsitncc.pdf.

[26] Tarasyuk I.V. Stochastic Petri box calculus with discrete time. Fundamenta Informaticae
76(1–2), p. 189–218, IOS Press, Amsterdam, The Netherlands, February 2007,
http://itar.iis.nsk.su/files/itar/pages/dtspbcfi.pdf.

[27] Tarasyuk I.V. Equivalence relations for modular performance evaluation in dtsPBC.

Mathematical Structures in Computer Science 24(1), p. 78–154 (e240103), Cambridge
University Press, Cambridge, UK, February 2014, http://itar.iis.nsk.su/files/itar/
pages/dtsdphms.pdf.

[28] Tarasyuk I.V., Macià H., Valero V. Discrete time stochastic Petri box calculus with

immediate multiactions. Technical Report DIAB-10-03-1, 25 p., Department of Computer
Systems, High School of Computer Science Engineering, University of Castilla - La Mancha,

REDUCTION FOR PERFORMANCE EVALUATION IN DTSIPBC 551

Albacete, Spain, March 2010, http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf,
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf.

[29] Tarasyuk I.V., Macià H., Valero V. Discrete time stochastic Petri box calculus with

immediate multiactions dtsiPBC. Proc. 6th International Workshop on Practical Applications
of Stochastic Modelling - 12 (PASM’12) and 11

th International Workshop on Parallel
and Distributed Methods in Verification - 12 (PDMC’12), Electronic Notes in Theoretical
Computer Science 296, p. 229–252, Elsevier, August 2013, http://itar.iis.nsk.su/files/
itar/pages/dtsipbcentcs.pdf.

[30] Tarasyuk I.V., Macià H., Valero V. Performance analysis of concurrent systems

in algebra dtsiPBC. Programming and Computer Software 40(5), p. 229–249, Pleiades
Publishing, Ltd., September 2014.

I.V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,

Siberian Branch of the Russian Academy of Sciences,

6, Acad. Lavrentiev pr.,

630090 Novosibirsk, Russian Federation

E-mail address: itar@iis.nsk.su

H. Macià, V. Valero

High School of Informatics Engineering,

University of Castilla - La Mancha,

Avda. de España s/n,

02071 Albacete, Spain

E-mail address: Hermenegilda.Macia@uclm.es, Valentin.Valero@uclm.es

