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Abstract

We propose an extension with immediate multiactions ofrdtectime stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC iseréte time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Masiayalero and others within a continuous time domain.
The step operational semantics is constructed via labetdghpilistic transition systems. The denotational seman-
tics is defined on the basis of a subclass of labeled disdm&estochastic Petri nets with immediate transitions. A
consistency of the both semantics is demonstrated. In twdemluate performance, the corresponding semi-Markov
chains and (reduced) discrete time Markov chains are asdly?/e define step stochastic bisimulation equivalence
of expressions and prove that it can be applied to reducettaesition systems and underlying semi-Markov chains
while preserving the functionality and performance chemastics. We explain how this equivalence may help to sim-
plify performance analysis of the algebraic processes.ciase study, a method of modeling, performance evaluation
and behaviour preserving reduction of concurrent systeraatlined and applied to the shared memory system.

Keywords: stochastic process algebra, Petri box calculus, disdrnate timmediate multiaction, performance
evaluation, stochastic equivalence
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1. Introduction

Algebraic process calculi like CSP [37], ACP [5] and CCS [a8 a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviousuch process algebras (PAs), systems and processes
are specified by formulas, and verification of their propesris accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochagtnsions of PAs were proposed such as MTIPP [34],
PEPA [36] and EMPA [10, 9, 6]. Stochastic process algebrB&$pdo not just specify actions which can occur as
usual process algebras (qualitative features), but trecéste some quantitative parameters with actions (cpadiaé
characteristics).

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way viesxgmessive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of such mgstnd capture explicit asynchrony in their behaviour.
To combine advantages of both models, a semantics of aigdbranulas in terms of PNs is defined. Petri box
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calculus (PBC) [11, 13, 12] is a flexible and expressive pse@dgebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was algépose a compositional semantics for high level construct
of concurrent programming languages in terms of elemeraly. Formulas of PBC are combined not from single
(visible or invisible) actions and variables, like in CC8t from multisets of elementary actions and their conjugjate
called multiactionslfasic formulag The empty multiset of actions is interpreted as the siteultiaction specifying
some invisible activity. In contrast to CCS, synchroniaatis separated from parallelismancurrent construcjs
Synchronization is a unary multi-way stepwise operatioseblaon communication of actions and their conjugates.
This extends the CCS approach with conjugate matchingdal®ynchronization in PBC is asynchronous, unlike
that in Synchronous CCS (SCCS) [58]. Other operations agjaesee and choices¢quential constructs The
calculus includes also restriction and relabelinggtraction construc)s To specify infinite processes, refinement,
recursion and iteration operations were addadrérchical constructs Thus, unlike CCS, PBC has an additional
iteration construction to specify infiniteness when the @etic interpretation in finite PNs is possible. PBC has a
step operational semantics in terms of labeled transitjstesns. A denotational semantics of PBC was proposed
via a subclass of PNs equipped with an interface and coresidgp to isomorphism, called Petri boxes. For more
detailed comparison of PBC with other process algebrasided P]. In the last years, several extensions of PBC with
a deterministic, a nondeterministic or a stochastic motiéie were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real tipstems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A deterministic time modas considered in timed Petri box calculus (TPBC) [54],
whereas a nondeterministic one was accommodated in timeb@&tcalculus (tPBC) [43] and in arc time Petri box
calculus (atPBC) [63]. In tPBC eaglttionhas a time interval associated (the earliest and the latiegt fime), and a
step operational semantics is defined. The denotationarses is then defined in terms of a subclass of labeled time
PNs (LtPNs), based on tPNs [57], and called time Petri bostelsdxes). In contrast to tPBC, multiactions of TPBC
are notinstantaneous, but have time durations. For thez latbdel a step operational semantics is also considered, an
a denotational semantics, using a subclass of labeled fiNsdLTPNSs), based on TPNs [66], and called timed Petri
boxes (T-boxes). In atPBC multiactions are associated tivith delay intervals, and a step operational semantics is
defined. The denotational semantics is defined on a subdl&sseted arc time PNs (atPNs), where time restrictions
are associated with the arcs, called arc time Petri boxdsofes).

1.3. Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or ntardenistic delays often fliers drastically from that for
the timeless systems, hence, the analysis results for edtdystems may be not valid for the time ones. To solve this
problem, stochastic delays are considered, which are titeora variables with a (discrete or continuous) probability
distribution. If the random variables governing delayséham infinite support then the corresponding SPA can exhibit
all the same behaviour as its underlying untimed PA. A ststibaxtension of PBC, called stochastic Petri box
calculus (sPBC), was proposed in [50]. In sSPBC, multiactioave stochastic delays that follow negative exponential
distribution. Each multiaction is instantaneous and epgg@dpwith a rate that is a parameter of the corresponding
exponential distribution. The execution of a multiactiepossible only after the corresponding stochastic timaydel
Only a finite part of PBC was initially used for the stochastizichment, i.e. in its former version sPBC has neither
refinement nor recursion nor iteration operations. Theutatchas an interleaving operational semantics defined
via transition systems labeled with multiactions and thaies. Its denotational semantics was defined in terms of
a subclass of labeled continuous time stochastic PNs (LBEEMased on CTSPNs [55, 3], and called stochastic
Petri boxes (s-boxes). In [47], the iteration operator wdded to SPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying ooatis time Markov chains (CTMCs). In [48], a number of
new equivalence relations were proposed for regular tefreBBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched furthigh wmmediate multiactions in [49]. A denotational
semantics of such an sPBC extension (we call it generali28Csor gsPBC) was defined via a subclass of labeled
generalized SPNs (LGSPNSs), based on GSPNs [55, 3, 4], aled gdneralized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on the undedgimi-Markov chains (SMCs).

PBC has a step operational semantics, whereas sPBC hdsdnieg one, hence, a stochastic extension of PBC
with a step semantics is needed to keep the concurrencyadefjbehavioural analysis at the same level as in PBC.
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In [70], a discrete time stochastic extension dtsPBC ofdifBC was presented. A step operational semantics of
dtsPBC was constructed via labeled probabilistic tramsitiystems. Its denotational semantics was defined in terms
of a subclass of labeled discrete time stochastic PNs (LINEgased on DTSPNSs [60, 61], and called discrete time
stochastic Petri boxes (dts-boxes). A variety of stocha&stuivalences were proposed to identify stochastic pseses
with similar behaviour which are fierentiated by the semantic equivalence. The interrelatidrall the introduced
equivalences were studied. In [69, 71], we constructed aictenent of dtsPBC with the iteration operator used to
specify infinite processes. The performance evaluationsRBIC with iteration is accomplished via the underlying
discrete time Markov chains (DTMCs) of the algebraic prgess Since dtsPBC has a discrete time semantics and
geometrically distributed delays in the process statd#eigPBC with continuous time semantics and exponentially
distributed delays, the calculi apply twofidirent approaches to the stochastic extension of PBC, ia episome
similarity of their syntax and semantics inherited from PB®e main advantage of dtsPBC is that concurrency
is treated like in PBC having step semantics, whereas in sp&@llelism is simulated by interleaving, obliging
one to collect the information on causal independence dfiies before constructing the semantics. In [72], we
presented the extension dtsiPBC of the latter calculus iwithediate multiactions. Immediate multiactions increase
the specification capability: they can model logical coiedi$, instant probabilistic choices and activities whose
durations are negligible in comparison with those of oth&rey are also used to specify urgent activities and the ones
not relevant for performance evaluation. Thus, immediat#iactions can be considered as a kind of instantaneous
dynamic state adjustment and, in many cases, they resutim@er and more clear system representation.

1.4. Equivalence relations

A notion of equivalence is important in theory of computiygtems. Equivalences are applied both to compare
behaviour of systems and reduce their structure. There igla diversity of behavioural equivalences, and their
interrelations were well explored in the literature. Thestnweell-known and widely used one is bisimulation. Stan-
dardly, the mentioned equivalences take into account amlgtional (qualitative) but not performance (quantitayiv
aspects. Additionally, the equivalences are usually ieé®ing ones, i.e. they interpret concurrency as sequentia
nondeterminism. To respect quantitative features of heba\probabilistic equivalences have additional requieat
on execution probabilities. Two equivalent processes mestble to execute the same sequences of actions, and for
every such sequence, its execution probabilities withith poocesses should coincide. In case of bisimulation equiv
alence, the states from which similar future behaviound st&@ grouped into equivalence classes that form elements
of the aggregated state space. From every two bisimilagsttie same actions can be executed, and the subsequent
states resulting from execution of an action belong to tineesaquivalence class. In addition, for both states, the cu-
mulative probabilities to move to the same equivalencesdigsexecuting the same action coincide. Aefient kind
of quantitative relations are called Markovian equivaksyevhich take rate (the parameter of exponential distahut
that governs time delays) instead of probability. Note thatprobabilistic equivalences can be seen as discrete time
analogues of the Markovian ones, since the latter are dedi@éite continuous time equivalences.

Interleaving probabilistic weak trace equivalence wasoithiced in [22] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation eglence was proposed in [46] on the same model. Interlgavin
Markovian strong bisimulation equivalence was constigtg34] for MTIPP, in [36] for PEPA and in [10, 9, 6] for
EMPA. Interleaving probabilistic equivalences were defifier probabilistic processes in [39, 28]. Some variants
of interleaving Markovian weak bisimulation equivalenceres considered in [18] on Markovian process algebras,
in [19] on labeled CTSPNs and in [20] on GSPNs. In [7], a corigoar of interleaving Markovian trace, test and
bisimulation equivalences was carried out on sequentkancurrent Markovian process calculi. Nevertheless, no
appropriate equivalence notion was defined for concurrBeAsS

1.5. Our contributions

In this paper, we present dtsPBC with iteration extendek iwitnediate multiactions, calletiscrete time stochas-
tic and immediate Petri box calculdtsiPBC), which is a discrete time analog of sSPBC. Thelatdculus has iter-
ation and immediate multiactions within the context of atommous time domain. The step operational semantics is
constructed with the use of labeled probabilistic transiystems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and imneslNs$ (LDTSPNs with immediate transitions, LDTSIPNS),
based on the extension of DTSPNs with transition labelirdjianmediate transitions, called dtsi-boxes. LDTSIPNs
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possess some features of discrete time deterministic antasttic PNs (DTDSPNS) [76] and discrete deterministic
and stochastic PNs (DDSPNs) [75], but in LDTSIPNs simultarsgransition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowed. ohgistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying senmkdfachain (SMC), is constructed and investigated, with
the purpose of performance evaluation, which is the samédtr semantics. In addition, the alternative solution
methods are developed, based on the underlying discrezgeMiankov chain (DTMC) and its reduction (RDTMC) by
eliminating vanishing states. Further, we propose steghsistic bisimulation equivalence allowing one to identify
algebraic processes with similar behaviour that are homdifferentiated by the semantics of the calculus. We exam-
ine the interrelations of the proposed relation with othiprigalences of the algebra. We describe how step stochastic
bisimulation equivalence can be used to reduce transitistemss of expressions and their underlying SMCs while
preserving the qualitative and the quantitative behavidée prove that the mentioned equivalence guarantees iden-
tity of the stationary behaviour and the residence time @riogs. This implies coincidence of performance indices
based on steady-state probabilities of the modeled stbclsgstems. The equivalences possessing the property can
be used to reduce the state space of a system and thus siitgofigrformance evaluation, what is usually a complex
problem due to the state space explosion. We present a eaeddta system with two processors and a common
shared memory explaining how to model concurrent systertistivé calculus and analyze their performance, as well
as in which way to reduce the systems while preserving theiiopmance indices and making simpler the perfor-
mance evaluation. At last, we consideffeiences and similarities between dtsiPBC and other SPAstésrdine the
advantages of our calculus.

The first results on this subject can be found in [72]. Whatceons dfferences from our previous paper about
dtsiPBC [73], the present text is much more detailed and mamyresults have been added. In particular, all the used
notions (such as numbering and enumeration function) aradily defined, enhanced action rules (some precon-
ditions are excluded) are proposed, alternative perfoc@analysis methods (based on the DTMCs and RDTMCs)
are developed, compact illustrative examples (of perfoiceavaluation) are presented, step stochastic bisiranlati
equivalence is introduced and checked for stationary hiebapreservation, reduction of the transition systems and
SMCs by the equivalence and the resulting simplificationesfqrmance evaluation are considered, generalized vari-
ant and reductions of the shared memory system are coresffisttong points of dtsiPBC with respect to other SPAs
are detected.

If we compare dtsiPBC with the classical SPAs MTIPP, PEPAENKPA, the first main dference between them
comes from PBC, since dtsiPBC is based on this calculus:lgdbaaic operations and a notion of multiaction are
inherited from PBC. The second mainférence is discrete probabilities of activities induced lgy discrete time
approach, whereas action rates are used in the standard@RA®ntinuous time. As a consequence, dtsiPBC has a
non-interleaving step operational semantics. This is imrest to the classical SPAs, where concurrency is modeled
by interleaving because of the continuous probabilityritigtions of action delays and the race condition applied
when several actions can be executed in a state. The thind différence is immediate multiactions. The salient
point of dtsiPBC is a combination of immediate multiactipdiscrete stochastic time and step semantics in an SPA.
Thus, the main contributions of the paper are the following.

o Powerful and expressive discrete time SPA with immediatigities dtsiPBC in its final form.

Step operational semantics of dtsiPBC in terms of labelebdatilistic transition systems.

Petri net denotational semantics of dtsiPBC based on désttnee stochastic and immediate Petri nets.

Performance analysis via underlying semi-Markov chairts(a@duced) discrete time Markov chains.

Stochastic equivalence used for behaviour-preservingotexh that simplifies the performance evaluation.

Extended case study illustrating how to apply the obtaihedtetical results in practice.

1.6. Structure of the paper

The paper is organized as follows. In Section 2, the syntak@fextended calculus dtsiPBC is presented. In
Section 3, we construct the operational semantics of thebadgn terms of labeled probabilistic transition systeins.
Section 4, we propose the denotational semantics basedulitkass of LDTSIPNSs. In Section 5, the corresponding
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stochastic process is defined and analyzed. Step stochastiwilation equivalence is defined and investigated in
Section 6. In Section 7, we explain how to reduce transitimiesns and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced edgrivea is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a sharethory system is presented as a case study. Tegelice

between dtsiPBC and other well-known or similar SPAs is wered in Section 10. The advantages of dtsiPBC are
explained in Section 11. Finally, Section 12 summarizesélalts obtained and outlines the research perspectives.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, @malt a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finitenultiset (bag) MoverX is a mappingM : X — N such that{x € X | M(X) >
0}] < o0, i.e. it can contain a finite number of elements only.

We denote theet of all finite multisetsver a seiX by N¥_. Let M, M’ € N¥_. Thecardinality of M is defined
as|M| = Y yex M(X). We writex € M if M(x) > 0 andM € M’ if Yx e X, M(X) < M’(x). We define M1 + M’)(X) =
M(X) + M’(x) and M — M’")(X) = max0, M(x) — M’(x)}. When¥x € X, M(X) < 1, M can be interpreted as a proper
set and denoted byl C X. Theset of all subsetsf X is denoted by 2.

Let Act = {a,b,...} be the set oklementary actio/n\sThenﬂEt = {&b,...} is the set ofconjugated actions
(conjugatessuch thal™+ aanda = a. LetA = ActU Actbe the set ofill actions and£ = Nfi‘n be the set o#ll
multiactions Note thatd € £, this corresponds to an internal move, i.e. the executianrotiltiaction that contains
no visible action names. Thaphabetof @ € £ is defined asA(a) = {x € A | a(X) > 0O}.

A stochastic multiactionis a pair ¢, p), wherea € £ andp € (0;1) is theprobability of the multiactiona.
This probability is interpreted as that of independent akiea of the stochastic multiaction at the next discreteetim
moment. Such probabilities are used to calculate thosestouea (possibly empty) sets of stochastic multiactioreraft
one time unit delay. The probabilities of stochastic matiians are required not to be equal to 1 to avoid extra model
complexity due to assigning with them weights needed to naakkoice when several stochastic multiactions with
probability 1 can be executed from a state. In this case, sgpotdems appear with conflicts resolving. See [60, 61]
for the discussion on SPNs. This decision also allows usaalaechnical dficulties related to conditioning events
with probability 0. Another reason is that not allowing padiity 1 for stochastic multiactions excludes a potential
source of periodicity (hence, non-ergodicity) in the umgilag SMCs of the algebraic expressions. On the other hand,
there is no sense to allow zero probabilities of multiacti@ince they would never be performed in this case S.£t
be the set oéll stochastic multiactions

An immediate multiactions a pair ¢, 1), wherea € £ andl € Ny; = {1,2,...} is the non-zeraveightof the
multiactiona. This weight is interpreted as a measure of importance (urgénterest) or a bonus reward associated
with execution of the immediate multiaction at the currestrkete time moment. Such weights are used to calculate
the probabilities to execute sets of immediate multiactiorstantly. Immediate multiactions have a priority over
stochastic ones. One can assume that all immediate midtiadhave priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of iactiions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate mudtiesctannot be executed together in some step (concurrent
execution), i.e. the steps consisting only of immediatetiactions or those including only stochastic multiactians
allowed. LetZ £ be the set oéll immediate multiactions

Note that the same multiactiene £ may have dierent probabilities and weights in the same specificatios. |
easy to diferentiate between probabilities and weights, hence, letwsmchastic and immediate multiactions, since
the probabilities of stochastic multiactions belong to ithterval (0; 1), and the weights of immediate multiactions
are non-zero (positive) natural numbers frdfp;. An activity is a stochastic or an immediate multiaction. Let
SIL = SL U IL be the set ofill activities The alphabetof a multiset of activitiesr € N7Z< is defined as
A(T) = U erAla). For an activity &, ) € SI.L, we define itanultiaction partas L(«, x) = « and itsprobability
orweight partasQ(a, k) = . Themultiaction partof a multiset of activitie& € N3 £ is defined aZL(T) = ¥ y.0er @-

Activities are combined into formulas (process expressiduy the following operationsequential execution
choice[], parallelism||, relabeling[ f] of actions,restrictionrs over a single actiorsynchronizatiorsy on an action
and its conjugate, aniteration[ = x ] with three arguments: initialization, body and termioati
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Sequential execution and choice have a standard intetipretlike in other process algebras, but parallelism does
not include synchronization, unlike the correspondingrafien in CCS [58].

Relabeling functiond : A — A are bijections preserving conjugates, i¥x € A, f(X) = ﬁf) Relabeling
is extended to multiactions in the usual way: foe £, we definef(a) = X, f(X). Relabeling is extended to the
multisets of activities as follows: for € NI, we definef (1) = 3, ger(f(a), 4.

Restriction over an elementary actiam Actmeans that, for a given expression, any process behaviatainong
aor its conjugates not allowed.

Let,B € L be two multiactions such that for some elementary acienActwe havea € « andda e 8, ord e «
anda € 8. Then, synchronization ef andg by a is defined as @, 8 = y, where

[ e +B(X) -1 x=aorx=4§
() = { a(X) + B(X), otherwise

In other words, we require that®, 8 = a + 8 — {a, &}, i.e. we remove one exemplarafind one exemplar & from
the multiset sumw + B3, since the synchronization afandd produced). Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization &pf two activities, whose multiaction partsandg possess the
properties mentioned above, results in the activity withrtfultiaction partr &, 8. We may synchronize activities of
the same type only: either both stochastic multiactionsoblhh bnmediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and inatesthultiactions cannot be executed together (note aégo th
the execution of immediate multiactions takes no time,kenthat of stochastic ones). Synchronizatiorsayeans
that, for a given expression with a process behaviour coeimgitwo concurrent activities that can be synchronized by
a, there exists also the process behaviour thiétidi from the former only in that the two activities are replhby the
result of their synchronization.

In the iteration, the initialization subprocess is exeddiest, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. éAshall see, the expressions correspond to unmarked
LDTSIPNSs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (o, k) € ST L anda € Act A static expressioof dtsiPBC is defined as
E:= (ao,«) |E;E|E[JE|EIE| E[f] |Ersa| Esya|[E =« E = E].

Let StatExprdenote the set dll static expressionsf dtsiPBC.

To make the grammar above unambiguous, one can add paresihake productions with binary operations:
(E; E), (E[]E), (E|IE). However, we prefer the PBC approach and add them to reaatiéguities only.

To avoid technical diiculties with the iteration operator, we should not allow aoncurrency at the highest
level of the second argument of iteration. This is not a sevestriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction pdrater on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are no¢ safternatively, we can use aftBrent, safe, version of the
iteration operator, but its net translation has six argusie®ee also [12] for discussion on this subject.

Definition 2.3. Let (o, k) € ST L anda € Act A regular static expressioaf dtsiPBC is defined as

E:= (o,«)|E;E|E[JE|E|E|E[f]|Ersa|Esya]|[E«D=E],
whereD ::= (a,x) | D;E | D[ID | D[f] |Drsa|Dsya|[D=D = E].

Let RegS tatE xpdenote the set d@ll regular static expressionsf dtsiPBC.

Dynamic expressions specify the states of processes. Asaliesge, the expressions correspond to LDTSIPNs
(which are marked by default). Dynamic expressions areimddsfrom static ones, by annotating them with upper or
lower bars which specify the active components of the systitime current moment of time. The dynamic expression
with upper bar (the overlined on&) denotes thénitial, and that with lower bar (the underlined origenotes the
final state of the process specified by a static expredSioithe underlying static expressioof a dynamic one is
obtained by removing all upper and lower bars from it.
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Definition 2.4. Let E € StatExpranda € Act A dynamic expressioof dtsiPBC is defined as

G:= E|E|G,E|E;G|G[E|E[IG|G|G|G[f]|Grsa|Gsya|[G*Ex+E]|[E«GxE]|[Ex*E=xG].

Let DynExprdenote the set dadll dynamic expressionsf dtsiPBC.
Note that if the underlying static expression of a dynamie @smot regular, the corresponding LDTSIPN can be
non-safe (though, it is 2-bounded in the worst case [12]).

Definition 2.5. A dynamic expression iegularif its underlying static expression is regular.

Let RegDynExpdenote the set ddll regular dynamic expressiord dtsiPBC.

3. Operational semantics

In this section, we define the step operational semantieyimg of labeled transition systems.

3.1. Inactionrules

The inaction rules for dynamic expressions describe theictiral transformations which do not change the
states of the specified processes. The goal of these syrtactsformations is to obtain the well-structured terrhina
expressions called operative ones to which no inactiorsrcae be further applied. As we shall see, the application
of an inaction rule to a dynamic expression does not lead yodistrete time step or any transition firing in the
corresponding LDTSIPN, hence, its current marking remanthanged.

Thus, an application of every inaction rule does not reqaimg discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished ivtista

First, in Table 1, we define inaction rules for regular dynamipressions in the form of overlined and underlined
static ones. In this tabl&, F, K € RegStatExpanda € Act

Table 1: Inaction rules for overlined and underlined regstatic expressions.

EF=EF E.F>EF EE=EF E[F = E[JF
E[IF = E[IF E[IF = EQIF E[E = ElIF E|F = EIIF

EIF = E|F E[f] = E[f] E[f] = E[f] Ersa=Ersa
Ersa=Ersa Esya=Esya Esya:?sya [ExF«K] = [ExF*K]
[ExF+«K]=[E*FxK] [ExFxK]=[Ex*F K] [E*E*KQE*F*K] [E+F«K]=[ExF K]

Second, in Table 2, we propose inaction rules for regulaatyo expressions in the arbitrary form. In this table,
E,F € RegStatExprG, H,G, H € RegDynExpanda € Act

Table 2: Inaction rules for arbitrary regular dynamic esgiens.

G=G, oe{;.[} G=G, oc{;.[I} G=G H=H G=G
GoE=GoE EocG=EoG G|H = G|H G|H = G|IH G[f] = G[f]

G:G,oe{rs,sy} G=>G G=>G G=>G
Goa=Goa [G+E*F]=[G+E*F] [ExGxF]=>[E+«G*F] [ExF*G]=[E*F*G]




Definition 3.1. A regular dynamic expressida is operativeif no inaction rule can be applied to it.

Let OpRegDynE xpdenote the set ddll operative regular dynamic expressioofdtsiPBC.
Note that any dynamic expression can be always transfornmtedai (not necessarily unique) operative one by
using the inaction rules. In the following, we consider fegexpressions only and omit the word “regular”.

Definition 3.2. The relatiorr = (= U «)* is astructural equivalencef dynamic expressions in dtsiPBC. Thus, two
dynamic expressiorns andG’ arestructurally equivalentdenoted by ~ G/, if they can be reached from each other
by applying the inaction rules in a forward or backward di@t

3.2. Action and empty loop rules

The action rules are applied when some activities are eedcWith these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones.alde have the empty loop rule which is used to capture
a delay of one time unit in the same state when no immediatéauntibns are executable. In this case, the empty
multiset of activities is executed. The action and emptyploales will be used later to determine all multisets of
activities which can be executed from the structural edeivee class of every dynamic expression (i.e. from the state
of the corresponding process). This information togethiér that about probabilities or weights of the activities to
be executed from the process state will be used to calciiaterobabilities of such executions.

The action rules with stochastic (or immediate, otherwisaltiactions describe dynamic expression transforma-
tions due to execution of non-empty multisets of stochdstitmmediate) multiactions. The rules represent possible
state changes of the specified processes when some non+auoipigets of stochastic (or immediate) multiactions are
executed. As we shall see, the application of an action rittestochastic (or immediate) multiactions to a dynamic
expression leads in the corresponding LDTSIPN to a distiratestep at which some stochastic transitions fire (or to
the instantaneous firing of some immediate transitions)cuasge of the current marking, unless there is a self-loop
produced by the iterative execution of a non-empty multiseich must be one-element, i.e. the single stochastic (or
immediate) multiaction, since no concurrency is allowethathighest level of the second argument of iteration.

The empty loop rulé& % Gwitha pre-condition (rul€l in Table 3) describes dynamic expression transforma-
tions due to execution of the empty multiset of activitiea discrete time step. The rule reflects a non-zero probgabilit
to stay in the current state at the next time moment, which isssential feature of discrete time stochastic processes.
As we shall see, the application of the empty loop rule to aadyic expression leads to a discrete time step in the cor-
responding LDTSIPN at which no transitions fire and the autrnearking is not changed. This is a new rule that has
no prototype among inaction rules of PBC, since it represanime delay, but no notion of time exists in PBC. The

PBC ruleG A G from [13, 12] in our setting would correspond to the r@e= G describing the stay in the current
state when no time elapses. Since we do not need the latteaiortransform dynamic expressions into operative ones
and it can even destroy the definition of operative expressiwe do not introduce it in dtsiPBC.

Thus, an application of every action rule with stochastidtiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty)tisat of stochastic multiactions leading to the dynamic
expression transformation described by the rule is acashgd instantly after one time unit. An application of
every action rule with immediate multiactions does not takg time, i.e. the execution of a (non-empty) multiset of
immediate multiactions is accomplished instantly at theent moment of time.

Note that expressions of dtsiPBC can contain identicalitiets. To avoid technical diiculties, such as the proper
calculation of the state change probabilities for multiplnsitions, we can always enumerate coinciding actwitie
from left to right in the syntax of expressions. The new atés resulted from synchronization will be annotated
with concatenation of numberings of the activities they edrom, hence, the numbering should have a tree structure
to reflect the &ect of multiple synchronizations. Now we define the numlzpvithich encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. Thenumberingof expressions is defined as= n| (¢)(c), wheren € N.

Let Numdenote the set all numberingf expressions.



(o) o .y\ (©
1

2 3

Figure 1: The binary trees encoded with the numberingd(2) and (1)((2)(3)).

Example 3.1. The numberindl encodes the binary tree depicted in Figure 1(a) with the fabeled byl. The
numbering(1)(2) corresponds to the binary tree depicted in Figure 1(b) withiaternal nodes and with two leaves
labeled byl and2. The numberind1)((2)(3)) represents the binary tree depicted in Figure 1(c) with amerinal
node, which is the root for the subtré®)(3), and three leaves labeled ly2 and3.

The new activities resulting from synchronizations iffelient orders should be considered up to permutation of
their numbering. In this way, we shall recogniz&elient instances of the same activity. If we compare the ctsite
of different numberings, i.e. the sets of natural numbers in thenshall be able to identify the mentioned instances.

Thecontentof a numbering € Numis

{0, te N;
Conty) = { Conf(i1) U Cont), ¢ = (11)(c2).

After the enumeration, the multisets of activities from éxgressions will become the proper sets. Suppose that
the identical activities are enumerated when needed ta @arobiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian productX by X2. Let& € X? be an equivalence relation ot
Then theequivalence claséwith respect taS) of an elemenk € X is defined by K]lg = {y € X | (x,y) € &}. The
equivalence partitionsX into theset of equivalence classe$g$= {[X]s | X € X}.

Let G be a dynamic expression. TheB]L = {H | G ~ H} is the equivalence class & with respect to the
structural equivalences is aninitial dynamic expression, denoted injt(G), if 3E € RegStatExprG € [E]~. G is
afinal dynamic expression, denoted binal(G), if E € RegStatExprG € [E]-.

Definition 3.4. LetG € OpRegDynE xprWe define thaet of all non-empty sets of activities which can be poténtia
executed from Gdenoted byCan(G). Let (o, «) € STL, E,F € RegStatExprG,H € OpRegDynExpanda € Act

1. If final(G) thenCan(G) = 0.
2. If G = (@, ) thenCan(G) = {{(a, «)}}.
3. If Y e Can(G) thenT e CanGo E), T € CanE o G) (o € {;,[]}), T € CanG||H), T € Can(H||G),
f(T) e Can(G[f]), T € Can(Grs a) (whena,a ¢ A(Y)), T € Can(G sy a), T € Can([G = E * F]),
T e Can[E =G = F]), T € Can(E = F = G]).
4. If T € Can(G) and= € Can(H) thenY + E € Can(G||H).
5. If Y € Can(G sy a) and ¢, «), (8, 1) € T are diferent activities such thate «, & € g, then
(a) (‘Y’ + {(a ®aﬂ7K : /l)}) \ {((I, K)7 (ﬂ» /l)} € Car(G sy a)v if K, A€ (O, 1);
(B) (C+{(@®afB,k+ D)\ {(a, k), (B, )} € CanG sy a), if x, 1 € Nx1.
When we synchronize the same set of activities ifiedent orders, we obtain several activities with the
same multiaction and probability or weight parts, but withietent numberings having the same content.
Then we only consider a single one of the resulting actwitieavoid introducing redundant ones.
For example, the synchronization of stochastic multiaxi@, o)1 and 3, ). in different orders generates
the activities & ®a 8,0 - )2 and B ®a a.x - p)a)- Similarly, the synchronization of immediate
multiactions &, 1)1 and @, m), in different orders generates the activitiesst 8, | + m)1y2) and
(B ®a a,m+ l)2yy. SinceCon{((1)(2)) = {1,2} = Con{(2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchrdiopawill appear in a set fror@an(G sy a).



Note that if Y € Can(G) then by definition ofCan(G), YE C T, E # 0 we haveZ € Can(G).

LetG € OpRegDynExpandCan(G) + 0. Obviously, if there are only stochastic (or only immedjateiltiactions
in the sets fromCan(G) then these stochastic (or immediate) multiactions canxeewged fromG. Otherwise,
besides stochastic ones, there are also immediate midtiadh the sets fronCan(G). By the note above, there
are non-empty sets of immediate multiaction€ian(G) as well, i.e.3T € Can(G) T € N{If \ {0}. In this case, no
stochastic multiactions can be executed fréneven ifCan(G) contains non-empty sets of stochastic multiactions,
since immediate multiactions have a priority over stodhasies, and should be executed first.

Definition 3.5. Let G € OpRegDynE xprTheset of all non-empty sets of activities which can be exeduedGis

CanG), (Can(G) € Npi+\ {0)) v (Can(G) € N{\ {0));
NOV\(G) — Ir k in in
CanG) N Ny;;, otherwise

An expressiorG € OpRegDynExpis tangible denoted bytang(G), if Now(G) € N34\ {0}. Otherwise, the
expressiolG is vanishing denoted byanisHG), and in this cas@ = NowG) c NZ£\ (o).

fin

Example 3.2. Let G = (({a}, 1)[({b}, 2))ll({c}, 2) and G = (({a}, 1)[I({b}, 2))li({c}, 3). Then G~ G’, but Car(G) =
{{(tan D1 (), )1 (@), 1), (fe), )1, Can(G) = {{({bl, 2)1 {({c), 5)) {((b), 2), ({c}, 3)}} and Now@G) = {{({a}, 1)},
Now(G") = {{({b}, 2)}}. Clearly, we have vanig®) and vanisiG’). The executions like that ¢fc}, %)} (and all sets
including it) from H and H must be disabled using preconditions in the action rulag;esimmediate multiactions
have a priority over stochastic ones, hence, the former dways executed first.

Let H = ({a}, 1)[I({b}, 3) and H = ({a}, 1)[]({b},3). Then H~ H’, but Car{H) = Now(H) = {{({a}, 1)}} and
CanH’) = Now(H") = {{({b}, %)}}. We have vanigii), but tandH’). To make the action rules correct under
structural equivalence, the executions like tha(¢if}, 2)} from H must be disabled using preconditions in the action
rules, since immediate multiactions have a priority oveckastic ones, hence, the choices between them are always
resolved in favour of the former.

Now, in Table 3, we define the action and empty loop rules. imtdble, ¢, p), (B, x) € SL, (a,1),(8,m) € IL
and @,«) € SIL. Further,E,F € RegStatExprG,H € OpRegDynExprG,H € RegDynExpranda € Act
Moreover,l, A € NS\ {0}, " € N5, 1,3 € NEEA {0}, I € Nf£ andY € NSZ4\ {0). The first rule in the table
is the empty loop rul€l. The other rules are the action rules, describing transitions of dynamic expressions,
which are built using particular algebraic operations. éf@annot merge a rule with stochastic multiactions and a rule
with immediate multiactions for some operation then we fetdoupled action rules. In such cases, the names of the
action rules with immediate multiactions have &sui'.

Almost all the rules in Table 3 (exceptirtg, P2, P2i, Sy2 and Sy2i) resemble those of gsPBC [49], but the
former correspond to execution of sets of activities, natingle activities, as in the latter, and our rules have sempl
preconditions (if any), since all immediate multiactiomsdtsiPBC have the same priority level, unlike those of
gsPBC. The preconditions in rul&$, C, P1, 12 andI3 are needed to ensure that (possibly empty) sets of stochasti
multiactions are executed only frotangibleoperative dynamic expressions, such that all structuegjlyivalent to
them operative dynamic expressions are tangible as wallesample, ifinit(G) in rule C thenG ~ F for some static
expressiorF andG[E ~ F[JE ~ F[JE ~ F[JE. Hence, it should be guaranteed tkag(F[] E), which holds ff
tang(E). The caseE[]G is treated similarly. Further, in rulel, assuming thatang(G), it should be guaranteed that
tang(G||H) andtang(H||G), which holds ff tang(H). The preconditions in ruld® andI3 are analogous to that in rule
C.

RuleEl corresponds to one discrete time unit delay while executingctivities and therefore it has no analogues
among the rules of gsPBC that adopts the continuous time imode

RulesP2 andP2i have no similar rules in gsPBC, since interleaving semamidhe algebra allows no simul-
taneous execution of activities. On the other haP@landP2i have in PBC the analogous ruRAR that is used to
construct step semantics of the calculus, but the formerties correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule.
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Table 3: Action and empty loop rules.

T ~
g 2ndS) B(@n) 3 (@,x) s——2>2¢ _
G-G G, E—-G,E,EiG—->EG
.G L G, =init(G) v (init(G) A tang(E)) - GLG oy G L G, tangH)
GE & G[IE, E[IG 5 E[IG GIE 5 G[IE, EIG S EJG  GIH 5 G|H, HIG 5 HIG
|~ r ~ A ~ | = ] o~
P1i . ~G =G — pp G2 G H=H Gn:' :’f' ppi &2 G H=H GHJH j~H
GIH 2 GlIH, HIG & H|IG GIH 23 GIA GIH 2 GIA
cLéG Rseié,a,agﬂ('r) 1 cLG
o] 18 6 Grsa—>Grsa [G+E%F] 5 [G+E *F]
G L G, —init(G) v (init(G) A tang(F)) o GLG
[E+GxF] 5 [ExGxF] [E+GxF] - [ExGxF]
3 G L G, —init(G) v (init(G) A tang(F)) " GLG sy1—© LG
[E+F %G] 5 [E«F «G] [E+F %G] 5 [E*F «G] GsyasGsya
U +H(@o)+HBX)) = ~ +H@)+HBm) =< ~
Sstya——eGsya,aea,aeﬁ SZiGsya——»Gsya,aea,aeﬁ
y PH@ebr0l ~ y I H@epl M) ~
Gsya———> Gsya Gsya—— > Gsya

RulesSy2 and Sy?2i difter from the corresponding synchronization rules in gsPB@esthe probability or the
weight of synchronization in the former rules and the ratéher weight of synchronization in the latter rules are
calculated in two distinct ways.

RuleSy2establishes that the synchronization of two stochastitiantions is made by taking the product of their
probabilities, since we are considering that both must ofmuthe synchronization to happen, so this corresponds,
in some sense, to the probability of the independent evéatsiection, but the real situation is more complex, since
these stochastic multiactions can also be executed inlglarblevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction otlee same action [12]) is applied over a parallel executian,
get as final result just the simple product of the probabdsitsince no normalization is needed there. Multiplicaigon
an associative and commutative binary operation that igldligive over addition, i.e. it fulfills all practical coiitibns
imposed on the synchronization operator in [35]. Furthfeppth arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiptinataturally maintains probabilistic compositionalityour
model. Our approach is similar to the multiplication of saté the synchronized actions in MTIPP [34] in the case
when the rates are less than 1. Moreover, for the probasiitindy of two stochastic multiactions to be synchronized
we havep - y < min{p, y}, i.e. multiplication meets the performance requiremestirsg that the probability of the
resulting synchronized stochastic multiaction shoulddss than the probabilities of the two ones to be synchronized
While performance evaluation, it is usually supposed thatexecution of two components together require more
system resources and time than the execution of each singleThis resembles tHmunded capacitassumption
from [35]. Thus, multiplication is easy to handle with andatisfies the algebraic, probabilistic, time and perforcean
requirements. Therefore, we have chosen the product ofrtiteapilities for the synchronization. See also [17, 16]
for a discussion about binary operations producing thesm@tsynchronization in the continuous time setting.

In rule Sy2i, we sum the weights of two synchronized immediate multiasj since the weights can be interpreted
as the rewards [68], thus, we collect the rewards. Next, weess that the synchronized execution of immediate
multiactions has more importance than that of every singke. oThe weights of immediate multiactions can also
be seen as bonus rewards associated with transitions [8]reltards are summed during synchronized execution of
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immediate multiactions, since in this case all the synclzemhactivities can be seen as “operated”. We prefer tocblle
more rewards, thus, the transitions providing greater resvaill have a preference and they will be executed with a
greater probability. Since execution of immediate mutiats takes no time, we prefer to execute in a step as many
synchronized immediate multiactions as possible to geers@nificant progress in behaviour. Under behavioural
progress we understand an advance in executing actiwtieish does not always imply a progress in time, as in
the case when the activities are immediate multiactionss d$pect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chainsT{#0s) of expressions. Since every state change in
EDTMC takes one unit of (local) time, greater advance in apien of the EDTMC allows one to calculate quicker
performance indices.

Example 3.3. In the following cases, the weights of immediate multiangtiare interpreted as bonus rewards to be
summed while synchronous or parallel execution of the inetedhultiactions specifying instant probabilistic cheic

e A customer in a shop considers which products to purchasaviliget a bonus (pay points) k when he decides
({a}, K) to buy the product A and, for the decidifi@}, ) to buy the product B, he will have the bonus |. Thus,
on every decision to buy both products A and B (first A, and tirext B; or first B, then A; or on the decision
{({a}, k), {&}, 1)} to buy A and B together, in one visit to the shop, i.e. in patathr on the decisiorfd, k + 1) to
buy a kit with A and B, which corresponds to their synchrathizemposition), the customer will get a bonus
k + 1, this is a standard and well-accepted practice.

e A cook in a fast-food restaurant plans his everyday work kompa two-component dinner dish of vegetables
and meat), that consists in the decisi@a}, k) to perform work A (boil vegetables), for which he will get a
payment k, and the decisidfa}, ) to perform work B (fry meat), with the payment |. The works A &n
are independent, and they can be even done together, siamedlre several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision téopa both works A and B (first A, then B; or first
B, then A; or on the decisioft{a}, k), {&}, 1)} to perform A and B in parallel; or on the decisigd, k + I) to do
a work including both A and B, for example, to warm up a froz@mlgined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of timehwbiresponds to the synchronized composition
of works A and B), the cook will get a payment k this is logical and fair.

In the both situations above, more successful customerak spends less resources (strength, electricity, watel et
to get his bonus or paymentf. Thus, the preferred and encouraged way of doing (the idehhviour or work) con-
sists in the parallel or the synchronized executing of axgidSince we prefer to collect more bonus rewards, clearly,
the decisions providing more rewards must have a preferandeshould be executed with a greater probability.

The standard approach while system modeling within dtsiBBE split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, andtiime-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to iptet weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabijlgiese probabilities of stochastic multiactions are idieth
to calculate the duration of work.

Observe also that we do not have self-synchronizationsyechronization of an activity with itself, since all the
(enumerated) activities executed together are considered diferent. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many techniiéduliies [12].

In Table 4, inaction rules, action rules (with stochastitnemediate multiactions) and empty loop rule are com-
pared according to the three questions about their apjgitavhether it changes the current state, whether it leads t
a time progress, and whether it results in execution of sartigities. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the nsigrs If both positive and negative answers can be
given to some of the questions irfiirent cases then the plus-minus sign is written. The pratates are considered
up to structural equivalence of the corresponding expmassiand time progress is not regarded as a state change.

3.3. Transition systems

Now we construct labeled probabilistic transition systexasociated with dynamic expressions. The transition
systems are used to define the operational semantics of dypapressions.
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Table 4: Comparison of inaction, action and empty loop rules

| Rules | State change Time progress Activities execution

Inaction rules - - -
Action rules + + +
(stochastic multiactions
Action rules + - +
(immediate multiactions
Empty loop rule - + -

Definition 3.6. Thederivation sebf a dynamic expressioB, denoted byDR(G), is the minimal set such that
¢ [G]. € DR(G);
e if [H]. € DR(G) and3Y, H - H then []. € DR(G).

Let G be a dynamic expression ass € DR(G).

The set ofall sets of activities executable inis defined aExeds) = {Y | 3H € s, 3IH, H % H}. Note that
if T e Exeds) \ {0} thendH € s, T € Now(H). The states is tangible if Exeds) € N7<. For tangible states

we may haveExeds) = {0}. Otherwise, the stateis vanishing and in this cas& xeds) C N{If \ {0}. The set of
all tangible states from D) is denoted byDR;(G), and the set o&ll vanishing states from D) is denoted by
DRy(G). Clearly,DR(G) = DR (G) w DRy(G) (w denotes disjoint union).

Note that if T € Exeds) then by rulesP2, P2i, Sy2, Sy2iand definition ofExeds) Y= C T, E # 0 we have
E € Exeqs).

Let T € Exeds) \ {0}. Theprobability that the set of stochastic multiactioxids ready for execution in er the
weight of the set of immediate multiactionsvhich is ready for execution inis

p- [l  @-x. seDRi@);
PF(Y, ) = (@p)eT  {(Bx))eExe|9)|(B.x)eT)
Z 1, se DRy(G).
(a.Der

In the casér’ = 0 ands € DRr(G) we define

(1-x), Exeqs) # {0}
PF(,9) =1 (B.x)Exedy
1, Execs) = {0}.

If se DRr(G) andExeds) # {0} thenPF(T, s) can be interpreted agj@int probability of independent events (in
a probability sense, i.e. the probability of intersectidriheese events is equal to the product of their probabi)ities
Each such an event consists in the positive or negativeidadis be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides prolsicilly (using its probabilistic part) and independgittom
others), if it wants to be executed & If T is a set of all executable stochastic multiactions whichehdecided to
be executed irs andYT € Exeds) then is ready for execution irs. The multiplication in the definition is used
because it reflects the probability of the independent eméertsection. Alternatively, whelf # 0, PF(, s) can be
interpreted as the probability to execueclusivelythe set of stochastic multiactiofsin s, i.e. the probability of
intersectionof two events calculated using the conditional probabftitynula in the formP(X N'Y) = P(X|Y)P(Y).
The eveniX consists in the execution af in s. The eventy consists in the non-execution gof all the executable
stochastic multiactions not belonging 1o Since the mentioned non-executions are obviously indég@revents,
the probability ofY is a product of the probabilities of the non-executioP&Y) = [1,,)cexeds)is.ner (1 — x)- The
conditioning of X by Y makes the executions of the stochastic multiactions fidmdependent, since all of them
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can be executed in parallel by definition of Exeds). Hence, the probability to execuitunder conditiorthat no
executable stochastic multiactions not belonginy &re executed isis a product of probabilities of these stochastic
multiactions:P(X]Y) = [](, )er 0. Thus, the probability thdl’ is executedndno executable stochastic multiactions
not belonging toY are executed irs is the probability ofX conditioned byY multiplied by the probability ofY:
P(XNY) = P(XIY)P(Y) = [Tper £ - [Ti@aicexeesi@ner (L —x)- WhenY = 0, PF(, s) can be interpreted as the
probability not to execute iis any executable stochastic multiactions, thRB(0, s) = [];s,)cexe¢s (1 — x)- When
only the empty set of activities can be executed,ine. Exeqs) = {0}, we takePF(0, s) = 1, since we stay irsin
this case. Note that fae DRy (G) we havePF(0, s) € (0; 1], hence, we can stay Bat the next time moment with a
certain positive probability.

If se DRy(G) thenPF(T, s) can be interpreted as tlowerall (cumulativeweight of the immediate multiactions
from 7, i.e. the sum of all their weights. The summation here is steck the weights can be seen as the rewards
which are collected [68]. In addition, this means that corent execution of the immediate multiactions has more
importance than that of every single one. The weights of idiate multiactions can also be interpreted as bonus
rewards of transitions [8]. The rewards are summed when et multiactions are executed in parallel, because
all of them “work” thereby. Since execution of immediate tradtions takes no time, we prefer to execute in a step
as many parallel immediate multiactions as possible to geemrogress in behaviour. This aspect will be used later,
while evaluating performance on the basis of the EDTMCs giressions. Note that this reasoning is the same as
that used to define the probability of synchronized immediatiltiactions in the rul&y2i. Another reason is that our
approach is analogous to the definition of the probabilityafflicting immediate transitions in GSPNs [4]. The only
difference is that we have a step semantics and, for every setreddiate multiactions executed in parallel, we use
its cumulative weight. To get the analogy with GSPNs possgsaterleaving semantics, we interpret the weights of
immediate transitions of GSPNs as the cumulative weightseets of immediate multiactions of dtsiPBC.

Note that the definition dPF(, s) (as well as the definitions of other probability functionsieh we shall present)
is based on the enumeration of activities which is consaienplicit.

Let T € Exeds). BesidesY, some other sets of activities may be ready for executios imence, a kind of
conditioning or normalization is needed to calculate theceion probability. Therobability to execute the set of
activitiesY in sis

PF(T, )
PFE, 9

ZcExeds)

PT(Y,s) =

If se DRr(G) thenPT(Y, s) can be interpreted as tltenditionalprobability to execut&” in s calculated using
the conditional probability formula in the forfa(Z|W) = %. The even consists in the exclusive execution
of T in s, henceP(Z) = PF(Y, s). The evenWV consists in the exclusive execution of any set (includirggempty
one)= € Exeds) in s. Thus,W = U;Z;, whereV |, Z; are mutually exclusive events add Z = Z; (in a probability
sense, i.e. intersection of these events is the empty ev&ethaveP(W) = 3, P(Z)) = Yzcexe¢s) PF(E, 9), because
summation reflects the probability of the mutually exclesavent union. SincE N W = Z N (UjZ)) = Z = Z, we

haveP(Z|W) = % = % PF(, s) can also be seen as thetentialprobability to executd’ in s, since
we havePF(T,s) = PT(T, s) only whenall sets (including the empty one) consisting of the executstulehastic
multiactions can be executed é& In this case, all the mentioned stochastic multiactiomshmexecuted in parallel
in sand we havey zcgxe¢s) PF(Z, 5) = 1, since this sum collects the productsatifcombinations of the probability
parts of the stochastic multiactions and the negationsexfetparts. But in general, for example, for two stochastic
multiactions &, p) and 3, y) executable irs, it may happen that they cannot be executesltimgether, in parallel, i.e.
0, {(a, p)}, {(B, x)} € Exeds), but{(a, p), (B, x)} ¢ Exeds). Note that fors € DRy (G) we havePT(0, s) € (0; 1], hence,
there is a non-zero probability to stay in the statd the next time moment, and the residence timgimat least 1
discrete time unit.

If s e DRy(G) thenPT(Y, s) can be interpreted as the weight of the set of immediateiactitbnsY which is
ready for execution irs normalizedy the weights ofll the sets executable &

The advantage of our two-stage approach to definition of tbbagbility to execute a set of activities is that the
resulting probability formuld@T (7, s) is valid both for (sets of) stochastic and immediate matians. It allows one
to unify the notation used later while constructing the atienal semantics and analyzing performance.
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Note that the sum of outgoing probabilities for the expm@ssibelonging to the derivations & is equal to 1.
More formally,Vs € DR(G), X ycexeqs) PT(Y,S) = 1. This, obviously, follows from the definition &#T(, s), and
guarantees that it always defines a probability distritsutio

Theprobability to move from s t8 by executing any set of activitiess

PM(s d = > PT(T, 9.
{T|3Hes, A8 HSA)

SincePM(s, §) is the probability to move frons to § by executing any set of activities (including the empty ome
use summation in the definition. Note théd € DR(G) > PM(s 8 = 3,

2 PT(Y. ) = Zreexeqs PT(T.9) =

(§3Hes FAes 3T, HOSA) (§Hes, IS T, HSA)

(T|3Hes FAE HLA)

Example 3.4. Let E = ({a}, p)[I({a}, x), wherep, x € (0;1). DR(E) consists of the equivalence classes=s[E]-
and s = [E].. We have DR(E) = {s;, $}. The execution probabilities are calculated as followsicBiExe€s;) =
{0.{({a}. p)}. {({a}, Y)}}, we get PR{({a}.p)}.s1) = p(1 - x)., PF({({al.x)}.s1) = x(1 - p) and PHO,s;) = (1 -
P)A = x). ThenYzceveqs) PFE. 1) = p(L—x) +x(1 - p) + (1 - p)(1 - x) = 1 - px. Thus, PT{({a}.p)}. 1) =

200 pT((((a), 1)), 51) = 452 and PT(0, 1) = PM(s1. 51) = S200  Further, Exegs;) = (0}, hence,

Ycexeqs) PF(E. 2) = PF(0,s;) = 1and PT(0, ) = PM(sz, ) = 1 = 1. Atlast, PMsy, ) = PT({({a), p)}, 1) +

PT((({a), ), s1) = 454 + 20 = o,
Let E' = ({a},)[I({a}, m), where Im e Ns;. DR(E’) consists of the equivalence cIass?&s{?]z and g = [E']~.
We have DR(?) ={s,}and DR,(?) ={s}}. The execution probabilities are calculated as followsicBIE xe(s)) =

{{({a} I) {({a}, m}} wegetPI{ a}, N}, s’l)—land PH{({a},m)},s)) = m. ThenzgeExqul)PF(E,s’l)=I+m.Thus,

PT({({a}, )}, s’,l) |+m and PT({({a}, m)}, s)) = = Further, Exe(:s’z) = {0}, hence,
EEM%) PF(H, 5'2) PF((D s,) = land PT(0,s,)) = PM(s,,S,) = 1 = 1 Atlast, PMs;, s)) = PT({({a}, 1)}, s)) +

Definition 3.7. Let G be a dynamic expression. Tiflabeled probabilistic) transition systewof G is a quadruple
TS(G) = (Se, Le, 76, Sc), where

¢ the set ofstatesis Sg = DR(G);

e the set ofabelsis Lg = 257 x (0; 1];

« the set otransitionsis 7 = {(s (T, PT(Y,9)),9 |58 DRG), 3Hes dHe § H LN H};
e theinitial stateis sg = [G]~.

The definition of T S(G) is correct, i.e. for every state, the sum of the probabdgitf all the transitions starting
fromitis 1. This is guaranteed by the note after the definibbPT(r, s). Thus, we have definedgenerativenodel
of probabilistic processes [28]. The reason is that the sthregprobabilities of the transitions with all possible ééb
should be equal to 1, not only of those with the same labeltqmumeration of activities they include) as in the
reactivemodels, and we do not have a nested probabilistic choicethe siratifiedmodels.

The transition syster S(G) associated with a dynamic expressiBriescribes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (oep}gtrobability and consist of sets of activities. Everypste
consisting of stochastic multiactions or the empty step (ihat consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step ctingisf immediate multiactions occurs instantly withouyan
delay. The step can change the current state. The statdseatuctural equivalence classes of dynamic expressions
obtained by application of action rules starting from thpressions belonging t&] .. A transition &, (Y, P), 9 € 7

. . T oL . ~ o
will be written ass —¢ §. It is interpreted as follows: the probability to charg® § as a result of executinyg is P.
Note that for tangible state¥;, can be the empty set, and its execution does not change trentatate (i.e. the

equivalence class), since we have a loop transgieny sfrom a tangible stats to itself. This corresponds to the
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application of the empty loop rule to expressions from th&exjence class. We have to keep track of such executions,
calledempty loopsbecause they have non-zero probabilities. This folloasifthe definition oPF(0, s) and the fact
that multiaction probabilities cannot be equal to 1 as thedgiig to the interval (0; 1). For vanishing statésannot
be the empty set, since we must execute some immediate atigitia from them at the current moment.

The step probabilities belong to the interval (0; 1], beinip the case when we cannot leave a tangible state

and there only exists one transition from it, the empty loap ® —1 s, or if there is just a single transition from a
vanishing state to any other one.

. T L. T - T
We writes — Sif 3P, s —p Sands — Sif AT, s— S
The first equivalence we are going to introduce is isomomhigich is a coincidence of systems up to renaming
of their components or states.

Definition 3.8. Let TS(G) = (Sg, Le, 76, Ss) andT S(G') = (Se', Le» Te, So) be the transition systems of dynamic
expression& andG’, respectively. A mapping : Sg — Sg is anisomorphisnbetweenT S(G) andT S(G’), denoted
byB: TS(G) =~ TS(G), if

1. Bis a bijection such thg(sg) = s
2. Vs, 8€ Sg, VT, Sip 5 o B(9 I@ B(3).
Two transition systems S(G) andT S(G’) areisomorphic denoted byl S(G) ~ T S(G'), if 38 : TS(G) = TS(G).

Transition systems of static expressions can be definedlasfioeE € RegS tatExpriet TS(E) = T S(E).

Definition 3.9. Two dynamic expressions andG’ are equivalent with respect to transition systerdgnoted by
G =G, if TS(G) =~ TS(G).

Example 3.5. Consider the expressidtop = ({g}, %) rs g specifying the special process that is only able to perform
empty loops with probabilityt and never terminates. We could actually use any arbitratyoacfrom A and any
probability belonging to the interv4D; 1)in the definition oStop. Note thatStop is analogous to the one used in the
examples of [48]. Then, far, y,0,¢ € (0; 1)and L m e Ny, let

E = [({a}, p) = (({b}, x); ((({c}, 1); ({d}, ) [(({e}, m); (£}, 4)))) * Stop],

wherep, ,6,¢ € (0;1)and Lm e N;.
DR(E) consists of the equivalence classes

s = [[({a}, p) = (({b} x); (((eh, 1); ({d), O)(({ed, m); (111, ¢))))  Stop]] .
sz = [[({a}, p) = (({b}, x); (e}, 1); ({d}, ) D(({e}, m); (£}, 4)))) = Stop]] ~,
sz = [[(a}, p) = (({b}, x); (((eh, 1); ({d}, O)(({ed, m); (1£1, ¢)))) = Stop]] ~,
sa = [[(fal, ) * (b}, x); (e}, 1); ({d), O)(( &), m); ((£), 9)))) * Stop]] -,
ss = [[({a), {b}, {c}.1); (td}, { {f},

[({a), ) * (({b}, x); ((({eh, ); (), O)D(( (&), m); ((F), 6))

We have DR(E) = {s1, S, S4, S5} and DR/(E) = {s3}

In Figure 2, the transition system TB) is presented. The tangible states are depicted in ovalslamsaadnishing
ones are depicted in boxes. For simplicity of the graphieplresentation, the singleton sets of activities are writte
without braces.

¢)))) * Stop]] ~.

4. Denotational semantics

In this section, we construct the denotational semanti¢srims of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNS), called discrete time sta@ghasd immediate Petri boxes (dtsi-boxes).
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Figure 2: The transition system &ffor E = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, O(({e}, m); ({ T}, ¢)))) * Stop].

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochasticimmediate Petri nets (LDTSIPNS), a subclass of
DTSPNs [60, 61] (we do not allow the transition probabiti® be equal to 1) extended with transition labeling
and immediate transitions. LDTSIPNs resemble in part diectime deterministic and stochastic PNs (DTDSPNSs)
[76], as well as discrete deterministic and stochastic ENBSPNSs) [75]. DTDSPNs and DTSPNs are the extensions
of DTSPNs with deterministic transitions (having fixed dethat can be zero), inhibitor arcs priorites and guards.
In addition, while stochastic transitions of DTDSPNSs, ltkese of DTSPNs, have geometrically distributed delays,
stochastic transitions of DTSPNs have discrete time phiatebdited delays. At the same time, LDTSIPNs are not
subsumed by DTDSPNs or DTSPNSs, since LDTSIPNs have a stepnsiesiwhile DTDSPNs and DDSPNs have
interleaving one. LDTSIPNs are somewhat similar to labeleihjhted DTSPNs (LWDTSPNSs) from [21], but in
LWDTSPNSs there are no immediate transitions, all (stodtjastnsitions have weights, the transition probabiitie
may be equal to 1 and only maximal fireable subsets of the edatansitions are fired.

First, we present a formal definition of LDTSIPNSs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri nBIT&IPN)is a tuple
N = (Pn, Tn, Wi, Qn, Ly, Mn), where

e Py andTy = Tsy W Tiy are finite sets oplacesandstochastic and immediate transitigmespectively, such
thatPy U TN 20 andPy N Ty = 0;

e Wy : (Pn X Tn) U (T X Py) — Nis a function providing theveights of arcdbetween places and transitions;

e Qn : Ty — (0;1)U (Ns1) is thetransition probability and weightunction associating stochastic transitions
with probabilities and immediate ones with weights;

e Ly : Ty — Lis thetransition labelingfunction assigning multiactions to transitions;
e My € prif] is theinitial marking.

The graphical representation of LDTSIPNs is like that fanstard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square bokasrmnal thickness depict stochastic transitions, andehos
with thick borders represent immediate transitions. Indase the probabilities or the weights are not given in the
picture, they are considered to be of no importance in theesponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted thiéim. The names of places and transitions are depicted
near them when needed. If the names are omitted but usedupised that the places and transitions are numbered
from left to right and from top to down.

Now we consider the semantics of LDTSIPNSs.
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LetN be an LDTSIPN ande Ty, U € NfTiT]. Theprecondition"t and thepostconditiont of t are the multisets of
places defined astj(p) = Win(p,t) and ¢*)(p) = Wi(t, p). Theprecondition®U and thepostcondition U of U are
the multisets of places definedds = 3.y *tandU*® = 3., t*. Note that ford = 0 we have’d = 0 = 0°.

LetN be an LDTSIPN and/, M € N

Immediate transitions have a priority over stochastic ptes, immediate transitions always fire first, if they can.
Suppose that all stochastic transitions have priority Oahiuhmediate ones have priority 1. A transitibre Ty is

enabledn M if *t € M and one of the following holds:

1l.teTiyor
2.YueTn, *UCM = ueTx.

In other words, a transition is enabled in a marking if it hasegh tokens in its input places (i.e. in the places from
its precondition) and it is immediate one, otherwise, whdg stochastic one, there exists no immediate transition
with enough tokens in its input places. LEhaM) be the set ofll transitions enabled in M By definition, it
follows thatEna(M) C Tiy or Ena(M) C Tsy. A set of transitiondJ € EnaM) is enabledin a markingM, if
*U ¢ M. Firings of transitions are atomic operations, and tréorstmay fire concurrently in steps. We assume that
all transitions participating in a step shouldfdr, hence, only the sets (not multisets) of transitions nray fihus,
we do not allow self-concurrency, i.e. firing of transitiazencurrently to themselves. This restriction is introdlice
to avoid some technicalfiiculties while calculating probabilities for multisets cdmsitions as we shall see after the
following formal definitions. Moreover, we do not need to simer self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe 8&IPNs (hence, no self-concurrency is possible).

The markingM is tangible denoted byang(M), if Ena(M) C T sy, in particular, ifEnaM) = 0. Otherwise, the
markingM is vanishing denoted byanisi(M), and in this cas&naM) C Tiy andEnaM) # 0. If tang(M) then a
stochastic transitioh € Ena(M) fires with probabilityQy(t) when no other stochastic transitions conflicting with it
are enabled.

LetU ¢ EnaM), U # 0 and*U < M. Theprobability that the set of stochastic transitions U is rgddr firing
in M or theweight of the set of immediate transitions U which is readyifang in M is

[Ton®- [] @-onw) tangm);
_ teU ueEna(M)\U
PFU.M) = Z On(t), vanish(M).

teU
In the casd&J = () andtang(M) we define

{ [T @-onw). Enam) =o;
PF(Q)’ M) =\ ucEnaM)
1, Ena(M) = 0.

LetU € EnaM), U # 0 and*U <€ M or U = ¢ andtang(M). BesidedJ, some other sets of transitions may be
ready for firing inM, hence, a kind of conditioning or normalization is needeckticulate the firing probability. The
concurrent firing of the transitions frol changes the markingl to M = M —*U + U*, denoted byM ip M, where
P = PT(U, M) is theprobability that the set of transitions U fires in defined as
PF(U, M)

PF(V, M)
(VCEnaM)|* VEM)

PT(U,M) =

Note that in the case = 0 andtang(M) we haveM = M.

The advantage of our two-stage approach to definition of tbbability that a set of transitions fires is that the
resulting probability formul@T(U, M) is valid both for (sets of) stochastic and immediate trémiss. It allows one
to unify the notation used later while constructing the dational semantics and analyzing performance.

Note that for all markings of an LDTSIPN, the sum of outgoing probabilities is equal to 1. More foryal
YM e Nf}’;, 2 ucenamyrucvy PT(U, M) = 1. This obviously follows from the definition &?T(U, M) and guarantees

that it defines a probability distribution.
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We writeM = M if 3P, M S, M andM — M if 3U, M 5 M.
Theprobability to move from M td/ by firing any set of transitionis

PM(M,M)= > PT(U,M).
UMM
SincePM(M, M) is the probability forany (including the empty one) transition set to change marhihtp M,
we use summation in the definition. Note thafl < prif], Ziwivo iy PM(M, M) = 2 iIM o ) Z‘U‘Mgm PT(U, M) =
2 ucenamyrucmy PT(U, M) = 1.

Definition 4.2. LetN be an LDTSIPN.
e Thereachability sebf N, denoted byRS(N), is the minimal set of markings such that

— My € R(N);
— if M € RS(N)andM — M thenM € RS(N).

e Thereachability graphof N, denoted byRG(N), is a directed labeled graph with the set of noB&N) and
the arcs labeled with.{, #) between nodesl andM iff M S, M.

The set ofall tangible markings from R@) is denoted byRSr(N), and the set o&ll vanishing markings from
RS(N) is denoted byrRSy(N). Obviously,RS(N) = RSr(N) w RSy(N).

4.2. Algebra of dtsi-boxes

Now we introduce discrete time stochastic and immediate Pexes and the algebraic operations to define a net
representation of dtsiPBC expressions.

Definition 4.3. A discrete time stochastic and immediate Petri box (dtsi}ia tupleN = (Pn, Tn, Wx, An), Where
e Py andTy are finite sets oplacesandtransitions respectively, such th&ty U Ty # 0 andPy N Ty = 0;
e Wy : (Pn X Tn) U (Tn X Py) — Nis a function providing theveights of arcdbetween places and transitions;
e Ay is theplace and transition labelinfunction such that

— Anlp, : Pn — {e,i,x} (it specifiesentry, internalandexit places, respectively);
— Anlty : Tn = {o ] 0 € 257£ x ST.£) (it associates transitions with thelabeling relationson activities).

Moreover,Vt € Ty, °t # 0 # t*. In addition, for the set oéntryplaces ofN, defined asN = {p € Py | An(p) = e},
and for the set oéxit places ofN, defined adN° = {p € Py | An(p) = x}, the following condition holds®N # 0 #
NO, .(ON) — @ — (NO)..

A dtsi-box isplainif Yt € Ty, An(t) € STL, i.e. An(t) is a constant relabeling that will be defined later. In case
of the constant relabeling, the shorthand notation (by dinigg for Ay(t) will be used. Amarked plain dtsi-box
is a pair (\, My), whereN is a plain dtsi-box andMy € Nf’i?1 is its marking. We shall use the following notation:

N = (N,°N) andN = (N, N°). Note that a marked plain dtsi-boRy, Tn, Wy, An, My) could be interpreted as the
LDTSIPN (Pn, Tn, Wi, Qn, L, My), where function€)y andLy are defined as follows(t € Ty, Qn(t) = Q(An(L))
andLy(t) = L(An(t)). Behaviour of the marked dtsi-boxes follows from the firile of LDTSIPNs. A plain dtsi-
box N is n-boundedn € N) if N is so, i.e.YM € RS(N), ¥p € Py, M(p) < n, and it issafeif it is 1-bounded. A
plain dtsi-boxN is cleanif YM € RS(N), °NC M = M =°NandN°c M = M = N°, i.e. if there are tokens in
all its entry (exit) places then no other places have tokens.

The structure of the plain dtsi-box corresponding to a sttipression is constructed like in PBC [13, 12], i.e.
we use simultaneous refinement and relabeling meta-opéregiorefinement) in addition to thaperator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC aatlifing transformational transition relabelings. Operat
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Figure 3: The plain and operator dtsi-boxes.

dtsi-boxes specify-ary functions from plain dtsi-boxes to plain dtsi-boxe®(lave 1< n < 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-baxe safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions useds@r. Bet® denoteoperator boxandu denotetransition
namefrom PBC setting.

The relabeling relations ¢ 257£ x S7.£ are defined as follows:

e oid = {{(a, K)}, (@, k) | (@, k) € ST L} is theidentity relabelingkeeping the interface as it is;

O = (0, (a, x))} is theconstant relabelinghat can be identified witho «) € ST.L itself;
orf] = {({(a, )}, (F(@), ) | (k) € ST L},
osa = {({(e, )}, (. K)) | (@, k) € ST L, a,a ¢ a};

Osy a IS the least relabeling relation containing such that if I, (@, «)), (E, (8, 1)) € 0sy a, a € @, &€ Bthen

- (T+E (@®af. k- ) € 0sy a, if k, A€ (0; 1);
—(Y+E (@®af k+ 1) €0syaif k, 1 € Ny1.

The plain dtsi-boxedl, ), Nen,, wherep € (0;1) andl € N;1, and operator dtsi-boxes are presented in Figure
3. The label of internal places is usually omitted.

In the case of the iteration, a decision that we must takeeisdiection of the operator box that we shall use for it,
since we have two proposals in plain PBC for that purpose [@BE of them provides us with a safe version with six
transitions in the operator box, but there is also a simp@esion, which has only three transitions. In general, in PBC
with the latter version we may generate 2-bounded nets,hwnidy occurs when a parallel behavior appears at the
highest level of the body of the iteration. Neverthelesguncase, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot ocsorthat the net obtained will be always safe.

To construct the semantic function that associates a plairbdx with every static expression of dtsiPBC, we
introduce theenumeratiorfunction Enu: T — Num which associates the numberings with transitions of anplai
dtsi-boxN = (P, T, W, A) in accordance with those of activities. In the case of symgization, the function associates
with the resulting new transition the concatenation of taeepthesized numberings of the transitions it comes from.

Now we define the enumeration functi@mufor every operator of dtsiPBC. L&0Xxsi(E) = (Pe, Te, We, Ag)
be the plain dtsi-box corresponding to a static expressiandEnue : Te — Numbe the enumeration function for
Boxyisi(E). We shall use the analogous notation for static expres$iandK.
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Boxitsi((a, €).) = N0, Since a single transitioly corresponds to the activityr(«), € STL, their numberings
coincide:

Enut,) = .

Boxitsi(E o F) = 0,(Boxisi(E), Boxisi(F)), o € {;,[l.Il}. Since we do not introduce new transitions, we
preserve the initial numbering:

_ | Enwe(t), teTg;
Em(t)_{ Enu=(t), teTg.

Boxisi(E[f]) = Or(Boxisi(E)). Since we only replace the labels of some multiactions ljjection, we
preserve the initial numbering:

Enut) = Enwe(t), t e Te.

Boxytsi(E rs a) = Oys a(Boxtsi(E)). Since we remove all transitions labeled with multiaoti@ontaininga or
4, this does not change the numbering of the remaining tiansit

Enut) = Ene(t), te Te, a,a¢ L(Ae(1)).

Boxitsi(E sy @) = Osy a(Boxitsi(E)). Note thatvv,w € Tg, such thatAg(v) = (@, «), Ae(w) = (8, 1) and
a € a, a e B, the new transitiot resulting from synchronization efandw has the label(t) = (@ &, 8, « - 1),
if tis a stochastic transition, &x(t) = (¢ @3 3, k + 4), if tis an immediate one, and the numbering

Enult) = (Enue(v))(Enue(w)). Thus, the enumeration function is defined as

Enut) = Enus(t), te Tg;
u) = (Enwe(V))(Enue(w)), tresults from synchronization efandw.

According to the definition odsy a, the synchronization is only possible when all the traosgiin the set are
stochastic or when all of them are immediate. If we synclmeitie same set of transitions irfftdrent orders,
we obtain several resulting transitions with the same laipel probability or weight, but with the @erent
numberings having the same content. Then, we only consisi@igée transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions

For example, if the transitionsandu are generated by synchronizimgandw in different orders, we have
A(t) = (@ @4 B, « - 1) = A(u) for stochastic transitions ok(t) = (@ @4 8, « + 1) = A(u) for immediate ones,
but Enut) = (Enue(V))(Enue(w)) # (Enue(W))(Enue(v)) = Enuu), whereasCont{Enut)) = Cont(Enu(v)) U
ContEnuw)) = Cont(Enuu)). Then only one transition(or, symmetricallyu) will appear inBoxsi(E sy a).

o Boxysi([E * F * K]) = Or..](Boxisi(E), Boxtsi(F), Boxisi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t), teTg;
Enut) ={ Enu(t), teTE;
Enu(t), teTk.

Now we can formally define the denotational semantics as ahwrphism.

Definition 4.4. Let (o, «) € SIL, a € ActandE, F, K € RegS tatExprThedenotational semantiosf dtsiPBC is a
mappingBoxyisi from RegS tatE xpnto the domain of plain dtsi-boxes defined as follows:

1. BOthsi((a’, K)[) = N(Q,K)L;
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Boxjisi(E o F) = O.(Boxis(E), Boxusi(F)), o € (i, [I.1I};
Boxitsi(E[f]) = O;11(Boxusi(E));

BoXitsi(E 0 @) = @.a(BoXitsi(E)), o € {rs,sy};

Boxitsi([E * F * K]) = Op...;(Boxisi(E), BoXtsi(F), Boxitsi(K)).

akrwn

The dtsi-boxes of dynamic expressions can be defined askelE € RegS tatExpriet BOthsi(E) = BoX4tsi(E)
andBoxsi(E) = Boxutsi(E).

Note that this definition is compositional in the sense tfat,any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressionsyliarth we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined adogrtb the term structure (by definition &oxys), the
resulting plain box being marked in the places that were ethik the argument nets.

Theorem 4.1. For any static expression,BBoxys(E) is safe and clean.

Proor. The structure of the net is obtained as in PBC, combininp befinement and relabeling. Consequently, the
dtsi-boxes thus obtained will be safe and clean. O

Let ~ denote isomorphism between transition systems and re#ithgbaphs that binds their initial states. Note
that the names of transitions of the dtsi-box correspontiregstatic expression could be identified with the enumer-
ated activities of the latter.

Theorem 4.2. For any static expression E,
TS(E) ~ RG(Boxusi(E))-

Proor. As for the qualitative (functional) behaviour, we have siaene isomorphism as in PBC.

The quantitative behaviour is the same by the following oeas First, the activities of an expression have the
probability or weight parts coinciding with the probabég or weights of the transitions belonging to the correspon
ing dtsi-box. Second, we use analogous probability or wefighctions to construct the corresponding transition
systems and reachability graphs. O

Example 4.1. Let E be from Example 3.5. In Figure 4, the marked dtsi-box Roxysi(E) and its reachability graph
RG(N) are presented. It is easy to see that(Epand RGEN) are isomorphic.

The following example demonstrates that without the sytitaiestriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, 2) * (({b}, D)lI({c}, 3)) = ({d}, 3)]. In Figure 5, the marked dtsi-box N BoXysi(E)

and its reachability graph R@N) are presented. In the markin@, 1, 1, 2, 0, 0) there are2 tokens in the place 4
Symmetrically, in the markin@, 1, 1, 0, 2, 0) there are2 tokens in the placegp Thus, allowing concurrency in the
second argument of iteration in the expressBrcan lead to non-safeness of the corresponding markedodisi-
N, though, it is2-bounded in the worst case [12]. The origin of the problemhigttN has a self-loop with two
subnets which can function independently. Therefore, we Hacided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operawith six arguments in the corresponding dtsi-box, like
that from [12], is rather cumbersome and has too intricatérPReet interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible

5. Performance evaluation

In this section we demonstrate how Markov chains corresipgrtd the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.
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Figure 4: The marked dtsi-bdX = Boxysi(E) for E = [({al, p) * (({b}, x); ((({c}, 1); (d}, 0))0(({e}, m); ({ F}, #)))) * Stop] and its reachability graph.

Figure 5: The marked dtsi-baX = Boxysi(E) for E = [(({a), 2)  (({b}, )lI({c}, 3)) = ({d}, 3)] and its reachability graph.
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5.1. Analysis of the underlying stochastic process

For a dynamic expressid, a discrete random variable is associated with every tégthtes € DR (G). The
variable captures a residence time in the state. One capiiatetaying in a state at the next discrete time moment as
a failure and leaving it as a success of some trial series.dasy to see that the random variables are geometrically
distributed with the parameter-IP M(s, s), since the probability to stay imfor k— 1 time moments and leave it at the
momenk > 1isPM(s, 5)1(1-PM(s 9)) (the residence time Isin this case, and this formula defines the probability
mass function (PMF) of residence timesh Hence, the probability distribution function (PDF) obigence time in
sis 1- PM(s, 91 (k > 1) (the probability that the residence timesiis less thark). The mean value formula for the
geometrical distribution allows us to calculate the aversgjourn time irs as Clearly, the average sojourn
time in a vanishing state is zero. Le€ DR(G).

Theaverage sojourn time in the statéss

1
1-PM(s,9) "

0, Se DRv(G).

Theaverage sojourn time vectarf G, denoted by5J, has the element8Js), s< DR(G).
Thesojourn time variance in the statés

sX9 ={ reuEg: S€ DRr(G);

M9 se DRr(G);
— 1-PM(s9))2
VARS) ‘{ 0. P e DRI(G).

Thesojourn time variance vectaf G, denoted byAR has the element$ARS), s< DR(G).

To evaluate performance of the system specified by a dynatpiessiorG, we should investigate the stochastic
process associated with it. The process is the underlyimg Btarkov chain (SMC) [68], denoted lHMQG), which
can be analyzed by extracting from it the embedded (absgyHiacrete time Markov chain (EDTMC) corresponding
to G, denoted bfEDTMC(G). The construction of the latter is analogous to that agghiehe context of generalized
stochastic PNs (GSPNSs) in [55, 3, 4], and also in the framkwbdiscrete time deterministic and stochastic PNs
(DTDSPNS) in [76], as well as within discrete determinigtitd stochastic PNs (DDSPNs) [73EDTMC(G) only
describes the state changesSMQG) while ignoring its time characteristics. Thus, to constrthe EDTMC, we
should abstract from all time aspects of behaviour of the SMLC from the sojourn time in its states. The (local)
sojourn time in every state of the EDTMC is equal to one disctiene unit. It is well-known that every SMC is fully
described by the EDTMC and the state sojourn time distrimst{the latter can be specified by the vector of PDFs of
residence time in the states) [32].

Let G be a dynamic expression as® € DR(G). The transition systerfi S(G) can have self-loops going from a
state to itself which have a non-zero probability. Obviguie current state remains unchanged in this case.

Let s — s. Theprobability to stay in s due to & > 1) self-loopsis

PM(s, s)¥.

Lets — Sands # & Theprobability to move from s t8 by executing any set of activities after possible self$i®

. PM(s 3 X520 PM(s 9% = oheds, s s
PM*(s. 8 = = 1-PM(s.9) ) = SL(s)PM(s, 8), where
(s9 { PM(s, 3), otherwise; LSPM(s. §)
1 .
e S— §
— 1-PM(s,9)’ !
SUs) { 1, otherwise;

is theself-loops abstraction factoiT heself-loops abstraction vectaf G, denoted bysL, has the elemenBL(s), se
DR(G). The valuek = 0 in the summation above corresponds to the case when ntspl-occur. Note that
Vs € DRr(G), SK(s) = m = SJ9), hence¥Ys € DRy (G), PM*(s, 8 = SIs)PM(s, ), since we always have

the empty loop (which is a self-loop;)g sfrom every tangible state Empty loops are not possible from vanishing
states, henc#/s € DRy(G), PM*(s,8) = %, when there are non-empty self-loops (produced by itemafiom
s, or PM*(s, §) = PM(s, §), when there are no self-loops frasn
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Note that after abstraction from the probabilities of tiiass which do not change the states, the remaining
transition probabilities are normalized. In order to cédbel transition probabilitie®T(Y, s), we had to normalize
PF(T,s). Then, to obtain transition probabilities of the statexaging step$ M*(s, §), we now have to normalize
PM(s, 3). Thus, we have a two-stage normalization as a result.

Notice thatPM*(s, §) defines a probability distribution, sinéts € DR(G), such thatsis not a terminal state, i.e.
there are transitions tofikerent states after possible self-loops from it, we have

Sigs-s 55 PM'(S9) = 1539 Dissos 5 PM(S. ) = 1pyeg(1 - PM(s 9) = 1.

We decided to consider self-loops followed only by a stdtenging step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops state-changing step preceded and followed by self-
loops. In all these three cases our sequence beglasdends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions cdfed since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex descriptioa censider sequences ending with a state-changing step. It
resembles in some sense a construction of branching biioni[27] taking self-loops instead of silent transitions

Definition 5.1. LetG be a dynamic expression. Teenbedded (absorbing) discrete time Markov chain (EDTMIC)
G, denoted bYEDTMC(G), has the state spa@R(G), the initial state 5] and the transitions —¢ §, if s — Sand
s # § whereP = PM*(s, 9).

The underlying SMCof G, denoted bySMJG), has the EDTMCEDTMC(G) and the sojourn time in every
se DRy (G) is geometrically distributed with the parameter PM(s, s) while the sojourn time in everge DRy(G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can beefis well. FOE € RegS tatE xpriet
EDTMC(E) = EDTMCQ(E) andSMQE) = SMQE).

Let G be a dynamic expression. The eleméﬁi‘gs(l <i,j < n=|DR(G)|) of the (one-step) transition probability
matrix (TPM)P* for EDTMC(G) are defined as

P = PM'(s.sj). s —Sj, S#Sj;
o, otherwise
The transient-step.k € N) PMFy[K] = (" [KI(s1), - . .. ¥ [KI(sn)) for EDTMO(G) is calculated as

¢kl = v [0](P"),
wherey*[0] = (¥*[0](s1), - - ., ¥*[0](s)) is the initial PMF defined as

vntren | LS =[Gl
¥101(s) = { 0, otherwise

Note also that*[k + 1] = y*[K]P* (k € N).

The steady-state PMF* = (y*(s1), . . ., ¥*(s)) for EDTMC(G) is a solution of the equation system

w(P-1)=0
l//*lT — 1 s
wherel is the identity matrix of siz& and0 is a row vector oh values Q 1 is that ofn values 1.

WhenEDTMC(G) has a single steady state, we hagve= limy_,., y*[K].

The steady-state PMF for the underlying semi-Markov cl&QG) is calculated via multiplication of every
y*(s) (1 < i < n) by the average sojourn tinte)s) in the states, after which we normalize the resulting values.
Remember that for a vanishing state DRy (G) we haveSJs) = 0.

Thus, the steady-state PMi—= (¢(s1), . . ., ¢(s)) for SMQG) is

V(S$)SAS) g e DR(G);
o(s) =1 D v(s)Sds)
j=1
5, s € DRy(G).
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Thus, to calculate, we apply abstraction from self-loops to g&tand theny*, followed by weighting bySJand
normalization EDTMC(G) has no self-loops, unlikEMJG), hence, the behaviour 8D TMC(G) stabilizes quicker
than that ofSMQG) (if each of them has a single steady state), siithas only zero elements at the main diagonal.

Example 5.1. Let E be from Example 3.5. In Figure 6, the underlying SMC @B)Gs presented. The average
sojourn time in the states of the underlying SMC is writtext t@them in bold font.
The average sojourn time vectorBfis

The sojourn time variance vector Bfis

VAR:(l_'O 1—/\(’0’1—9 1—¢).

P27 ¥ 62 @2
The TPM for EDTMGE) is

010 O 0
0 01 O 0
PP=0 00 L o
010 O 0
010 O 0
The steady-state PMF for EDTME) is
el t o m
L e T e T

The steady-state PMF* weighted by SJ is

0 1 0 I m
"3y’ 73001+ m)” 3p(l+m))
It remains to normalize the steady-state weighted PMF biglittig it by the sum of its components

0ol + m) + y (4l + 6m)
3y0s(l + m)

lﬁ*SJT —

Thus, the steady-state PMF for SNE} is

1
~ 0¢(1 + m) + (ol + 6m)
In the case E m andd = ¢ we have

(0, 8¢(1 + M), O, x|, x6m).

¥

p= m(@ 26,0, x, x).

Let G be a dynamic expression asg € DR(G), S,S ¢ DR(G). The following standargerformance indices
(measuresgan be calculated based on the steady-state PMENSIG) [62, 40].

e Theaverage recurrence (return) time in the statétsee number of discrete time units required for this?}%@.

e Thefraction of residence time in the statéssy(s).

e Thefraction of residence time in the set of state®iSheprobability of the event determined by a condition
that is true for all states from & Y .5 ¢(9).
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Figure 6: The underlying SMC & for E = [({a}, p) * (({b}, x); ((({c}. 1); ({d}, O)I(({e}, m); ({ f}, #)))) * Stop].

e Therelative fraction of residence time in the set of states $ veispect to that irS is g%zg

e Therate of leaving the stateis %.

e Thesteady-state probability to perform a step with an activityx) is 3. spr) $(S) X ri@.xer; PT(Y, S).
e Theprobability of the event determined by a reward function itle statess 3. o.pre) ¢(S)r(9)-

Let N = (Pn, Tn, Wi, @n, Ln, My) be a LDTSIPN andW, M € N". Then the average sojourn ting&(M),

the sojourn time varianc¢ARM), the probabilitiesPM*(M, M), the transition relatiotM —y M, the EDTMC
EDTMC(N), the underlying SMGGMQN) and the steady-state PMF for it are defined like the cormedipg notions
for dynamic expressions.
As we have mentioned earlier, every marked plain dtsi-ba#d:be interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs correspondimigsi-boxes and then transfer the results to the latter.
Let ~ denote isomorphism between SMCs that binds their initakst

Proposition 5.1. For any static expression E,

SMQE) = SMQBOXis{(E)).

Proor. By Theorem 4.2 and definitions of underlying SMCs for dynaexpressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, therage sojourn time in the states is the same, since it is
defined via the analogous probability functions. Seconel tithnsition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reactabiaphs. O

Example 5.2. Let E be from Example 3.5. In Figure 7, the underlying SMC @N)@s presented. Clearly, SME)
and SMEN) are isomorphic. Thus, both the transient and steady-stst€$for SMEN) and SMGE) coincide.

5.2. Alternative solution methods
Let us consider DTMCs of expressions based on the state etpaobabilitieP M(s, §).

Definition 5.2. LetG be a dynamic expression. THiscrete time Markov chain (DTM®@Y G, denoted byp TMC(G),
has the state spa@R(G), the initial state ¢]. and the transitions —¢ §, where = PM(s, §).

DTMCs of static expressions can be defined as well. FFarRegS tatE xpret DTMC(E) = DTMC(E).
Let G be a dynamic expression. The elemefits(1 < i, j < n = [DR(G)|) of (one-step) transition probability
matrix (TPM)P for DTMC(G) are defined as
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Figure 7: The underlying SMC dfl = Boxusi(E) for E = [({al, p) * (({b}, x); ((({c}, 1); ({d}, e))[(({e}, m); ({ T}, 4)))) * Stop].

P _{ PM(s.s)), s —sj;
Y70, otherwise
The steady-state PMFfor DTMC(G) is defined like the corresponding notigi for EDTMC(G).
Let us determine a relationship between steady-state PMIBESTMC(G) andEDTMC(G). The following theorem
proposes the equation that relates the mentioned steatdyPVIFs.
First, we introduce some helpful notation. For a veester (vi, ..., V,), let Diag(v) be a diagonal matrix of size
with the element®iag;;(v) (1 <i, j < n) defined as

Diagij(v) = { 0, otherwise d=ij=n).

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops alistragector. Then the steady-state PMFs
¢ for DTMC(G) andy* for EDTMC(G) are related as followsYs € DR(G),
_V(SUy

D, V(EsU

&DR(G)

U(s) =

Proor. Let PSLbe a vector with the elements

_ [ PM(s 9, s—s
PSl(s) = { 0, otherwise

By definition of PM*(s, §), we haveP* = Diag(SL)(P — Diag(PSL). Further,
Y'(P*=1)=0andy P = y".
After replacement oP* by Diag(SL)(P — Diag(PSL) we obtain
" Diag(SD(P — Diag(PSL) = y* andy"Diag(SOP = ¢*(Diag(SLDiag(PSL + I).
Note thatYs € DR(G), we have

_ _PM(s9 — 1 ;
SUSPM(s.9) + 1= 15y + 1= ThuEg: S—S

SUIPSUs) +1 = { Sl(s)-0+1=1, otherwise;
Hence Diag(SU)Diag(PSLD + | = Diag(SD. Thus,

} = Sl(s).

" Diag(SOP = ¢*Diag(SD.
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Then, forv = y*Diag(SL), we have

vP =vandv(P-1)=0.

In order to calculatey on the basis of, we must normalize it by dividing its elements by their suince we
should havey1" = 1 as a result:

1 1 o
WV: Wlp Diag(SD.

Thus, the elements @f are calculated as followsts € DR(G),
Y (s)SLs)
2sore) ¥ (9SLS)

It is easy to check that is a solution of the equation system

(p:

U(s) =

y(P-1)=0
yl' =1 ’
hence, it is indeed the steady-state PMFDBGMC(G). O

The following proposition relates the steady-state PMESIdQG) andDTMC(G).

Proposition 5.2. Let G be a dynamic expressiop be the steady-state PMF for SNI®) and ¢ be the steady-state
PMF for DTMC(G). ThenVs e DR(G),

— Y9 scDR(G);
o9 = geE;(G) v
0, se DRy(G).

Proor. Lets € DRr(G). Remember tha¥s € DRy (G), SL(s) = SJs) andVs € DRy(G), SJs) = 0. Then, by
U9 T T sOSM . SeongU@SM) | __vs@SW _ _
som Y3 sorr 0 Tomatdem ) = Teore P OSIB  Teom OS5  Tsoro QS
Z;Di(g)iigsxé) - ngoﬁ(é)s?/xsg)sxs) = ¢(9). .

Theorem 5.1, we hav%

Thus, to calculate, one can only apply normalization to some elements @orresponding to the tangible states),
instead of abstracting from self-loops to g&tand theny*, followed by weighting bySJand normalization. Hence,
usingDTMC(G) instead ofEDTMC(G) allows one to avoid multistage analysis, but the paymenit ie more time-
consuming numerical and more complex analytical caloutedif  with respect tay*. The reason is th@TMC(G)
has self-loops, unlikEDTMC(G), hence, the behaviour @TMC(G) stabilizes slower than that #DTMC(G) (if
each of them has a single steady state) Riglmore dense matrix thadei, sinceP may additionally have non-zero
elements at the main diagonal. Nevertheless, Propositiis ¥ery important, since the relationship betweemnd
¥ it discovers will be used in Proposition 5.3 to relate thadtestate PMFs foBMQG) and the reduceBTMC(G),
as well as in Section 8 to prove preservation of the statiphahaviour by a stochastic equivalence.

Example 5.3. Let E be from Example 3.5. The TPM for DTKE} is

1-p p 0 0 0
0 -y v O 0
P=| O o o0 L o
0 0 0 1-9 O
0 ¢ 0O 0 1-¢

The steady-state PMF for DTME) is
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1
T 06(L+ )+ m) + (@l + 6m)
Remember that DRE) = {s1, S, &, S5} and DR/(E) = {ss}. Hence,

0ol + m) + x (ol + 6mM)
(1 + x)(I + m) + x (ol + 6m)°

V4 (0, 8p(I + M), x6g(I + M), ypl, y6m).

DL U = u(s1) + () + Ylsa) + ¥(ss) =

DRy (E)
By Proposition 5.2, we have

_ 0(L+x)(1+m)+x (pl+6m)
¢(s1) = 0 itmmaram = O

_ ¢ (1+m) 0p(1+x)(1+m)+x (gl +6m) _ O¢(1+m)
‘10(52) T 0p(L+x)(I1+m)+x (sl +6m) ’ O (1+m)+x (gl +6m)  0(l+m)+yx (¢l +6m)
¢(s3) =0,

(s) = X9 . 0o (I+m)+x(pl+om) _ X9l
¥ 0 (1+x)(14+m)+y (sl +6m) 0 (1+m)+yx (ol +6m) 0 (1+m)+yx (ol +6m) °

_ xom 0d(L+x)(1+m)+x(pl+6m) _ xom

(p(&,) = 01t ) (+m)x(@l+om) Op(l+m)+y(pl+om) — Op(I+m)+x(pl+6m) *

Thus, the steady-state PMF for SNE} is

1
~ 0¢(1 + m) + (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

%) (0, 8¢(1 + m), O, x|, x6m).

Let us now consider the method from [56, 3, 4] that eliminatasishing states from the EMC (EDTMC, in our
terminology) corresponding to the underlying SMC of evelYRBIN. The TPM for the resultingeducedEDTMC
(REDTMC) has smaller size than that for the EDTMC. The mettechonstrates that there exists a transformation
of the underlying SMC ol into a CTMC, whose states are the tangible markingdlofThis CTMC, which is
essentially theeducedunderlying SMC (RSMC) oN, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and thalgtetate PMFs over the tangible markingd\of

This method can be easily transferred to dtsiPBC, henceviery dynamic expressidg, we can find a DTMC
(since the sojourn time in the tangible states frBfR(G) is discrete and geometrically distributed) with the state
from DR (G), which can be directly solved to find the transient and teady-state PMFs over the tangible states.
We shall demonstrate that sucheelucedDTMC (RDTMC) of G, denoted byRDTMOG), can be constructed from
DTMC(G), using the method analogous to that designed in [56, 3,thEframework of GSPNs to transform EDTMC
into REDTMC. Since the sojourn time in the vanishing stasezeiro, the state transitionsRDTMQG) occur in the
moments of the global discrete time associated 8MQG), unlike those oEDTMC(G), which happen only when
the current state changes to sodiferentone, irrespective of the global time. Therefore, in our cagecan skip the
stages of constructing the REDTMC @f denoted byREDTMQG), from EDTMC(G), and recovering RSMC a3,
denoted byRSM{G), (which is the sought-for DTMC) frorREDTM{G), since we havRSMGG) = RDTMQG).

Let G be a dynamic expression aRde the TPM foDTMC(G). We reorder the states froBR(G) such that the
first rows and columns d® will correspond to the states froBRy(G) and the last ones will correspond to the states
from DRy (G). Let|DR(G)| = nand|DRr(G)| = m. The resulting matrix can be decomposed as follows:

C D
P- ( c D ) |
The elements of then m) x (n—m) submatrixC are the probabilities to move from vanishing to vanishirages,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n — m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m

submatrixF are the probabilities to move from tangible to tangibleestat
The TPMP° for RDTMQG) is them x m matrix, calculated as

P° = F + EGD,
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where the elements of the matare the probabilities to move from vanishing to vanishiragest in any number of
state transitions, without traversal of the tangible statderefore,

G i ck = Sheo C's A eN, vk> 1, Ck=0, noloopsamong vanishing states;
o (1 -0 limeCk=0, loops among vanishing states;

where0Q is the square matrix consisting only of zeros &nglthe identity matrix, both of size — m.
For1<i,j<mand 1<k | <n-m,letF; be the elements of the matrx Sy be those o, Gy be those oz
and®D,; be those oD. By definition, the elemem@fj of the matrixP°® are calculated as

Pﬂ':?‘ij‘*‘

n-mn—-m n-m n-m n-m n-m
SkGuDij = Fij + Z&k GuDij = Fij + Z Dij Z&kah
k=1 =1 k1 1= =1 k=1
i.e. #5 (1 <1i,j <m)is the total probability to move from the tangible statéo the tangible stats; in any number
of steps, without traversal of tangible states, but poggibing through vanishing states.
Let s, 5 € DRr(G) such thats = s, 8 = s;. Theprobability to move from s t& in any number of steps, without
traversal of tangible stateis

PM’(s, §) = #j.

Definition 5.3. Let G be a dynamic expression an@]L € DRr(G). Thereduced discrete time Markov chain
(RDTMC)of G, denoted byRDTMQG), has the state spa8iRr(G), the initial state 5] . and the transitions < §,
whereP = PM°(s, 9).

RDTMCs of static expressions can be defined as well FerRegS tatE xpiet RDTMQE) = RDTMQE).

Let us now try to defin&RSMQG) as a “restriction” ofSMG) to its tangible states. Since the sojourn time in
the tangible states @MJQG) is discrete and geometrically distributed, we can seeR&NQG) is a DTMC with
the state spacBRr(G), the initial state 5] and the transitions whose probabilities collect all thas8MQG) to
move from the tangible to the tangible states, directly dirigctly, namely, by going through its vanishing statesyonl
Thus,RSMCG) has the transitions <4 §, whereP = PM°(s, §), hence, we gRSMCG) = RDTMOG).

Let DRy (G) = {sy, ..., Sm} and [G]~ € DRy (G). Then the transienk{step,k € N) PMF
UIK] = (W°[KI(s1), - - -, ¥°[K](Sm)) for RDTMQG) is calculated as

Y[kl = w°[0](P°),
wherey°[0] = (¥°[0](sy), - . ., ¥°[0](sm)) is the initial PMF defined as

X 1, s=[G];
¢°[01(s) ={ 0, otherwise

Note also that°[k + 1] = ¢°[K]P°® (k € N).
The steady-state PMEF = (¥°(sy1), ..., ¥°(Sm)) for RDTMQG) is a solution of the equation system

(P =1)=0
{ lﬂolT -1 >
wherel is the identity matrix of sizenandO is a row vector oimvalues Q 1is that ofmvalues 1.

WhenRDTMQG) has a single steady state, we hgWe= lim_,., ¢°[K].

The zero sojourn time in the vanishing states guarante¢gttbastate transitions dRDTMQG) occur in the
moments of the global discrete time associated BRhQG), i.e. every such state transition occurs after one time
unit delay. Hence, the sojourn time in the tangible stattseisame foRDTMQG) andSMQG). The state transition
probabilities olRDTM{G) are those to move from tangible to tangible states in anyharmof steps, without traversal
of the tangible states. TherefoRDTMQG) andSMJG) have the same transient behaviour over the tangible states
thus, the transient analysis 8MQG) is possible to accomplish usiRDTMQG).

The following proposition relates the steady-state PMESIQG) andRDTMQG). It proves that the steady-
state probabilities of the tangible states coincide fonthe
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Proposition 5.3. Let G be a dynamic expressiapbe the steady-state PMF for SNI&) andy° be the steady-state
PMF for RDTMQG). ThenVs € DR(G),

_ | v°(9), seDRg(G);
#(9) = { 0, se DR\T,(G).

Proor. To make the proof more clear, we use the following unifiedatioh. | denotes the identity matrices of any
size.0 denotes square matrices and row vectors of any size andhlefigalues 01 denotes square matrices and row

vectors of any size and length of values 1.
Let P be the (reordered) TPM f@TMC(G) andy be the steady-state PMF fBITMC(G), i.e. y is a solution of

the equation system

y(P-1)=0
pll =1 =

Let|DR(G)| = nand|DRy(G)| = m. The decomposed, P — | andy are

E F

whereyy = (Y1, ..., ¥n-m) iS the subvector ofy with the steady-state probabilities of vanishing stated yan =
(Yn-m+1, - - - » ¥n) is that with the steady-state probabilities of tangibégess.
Then the equation system fgris decomposed as follows:

{ w(C-1)+ytE=0

C D cC-1 D
p=( ),P—I:( E F_I)andzﬁ=(lﬁv,lﬁr),

wD+yr(F-1)=0 .
l//vlT +l//T1T =1

Further, letP® be the TPM foRDTMQG). Theny° is a solution of the equation system

pe(P =1)=0

Yyl =1 )
We have

P° = F + EGD,

where the matrixG can have two dferent forms, depending on whether the loops among vanisieétes exist, hence,
we consider the two following cases.

1. There exisho loops among vanishing staté&e havedl € N, Yk > I, CX = 0andG = ¥, _,C".
Let us right-multiply the first equation of the decomposedaipn system fog by G:
Yv(CG - G) +yTEG = 0.
Taking into account tha® = ZL:O C', we get

| |
Yy ZC' +c'+1—c°—2c' +y7EG = 0.
k=1

k=1
SinceC'*! = 0andC? = I, we obtain
—yv +YTEG = 0andyy = ¥TEG.
Let us substitutg with y+EG in the second equation of the decomposed equation system for

YTEGD +y7(F — 1) = O andyr(F + EGD - 1) = 0.
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SinceF + EGD = P°, we have

yr(P=1)=0.

2. There existoops among vanishing staté&/e have lim_,., CKk = 0andG = (I - C)~L.
Let us right-multiply the first equation of the decomposedagipn system fog by G:

—uyv(l - C)G +y1EG = 0.
Taking into account tha® = (I — C)™%, we get
—yv +YTEG = 0andyy = ¥TEG.
Let us substitutg with y+EG in the second equation of the decomposed equation system for
YTEGD + y1(F—1) = 0andy1(F+ EGD - 1) = 0.
SinceF + EGD = P°, we have
yr(P*-1)=0.
The third equationyy1™ + 11" = 1 of the decomposed equation systemgamplies that ifyy has nonzero

elements then the sum of the elementgpis less than one. We normalize by dividing its elements by their sum:

V= WLPT

It is easy to check thatis a solution of the equation system

V(P°—1)=0
viT =1 :

hence, it is the steady-state PMF RDTMQG) and we have

wo =V-= LlﬂT
Y1l

Note thatVs € DRr(G), y¥1(S) = ¥(S). Then the elements @f are calculated as follow&'s € DRy (G),

orey y1(9) _ Y (s)
Ve = Yaprr@ ¥T(®  Xscorre) ¥(D)
By Proposition 5.2¥s € DRy (G), ¢(s) = %.
Thereforeys € DR (G),
9= -y,

~ Ysorie ¥

Thus, to calculate, one can just take all the elements/dfas the steady-state probabilities of the tangible states,
instead of abstracting from self-loops to ¢&tand theny*, followed by weighting bySJand normalization. Hence,
usingRDTMQG) instead ofEDTMC(G) allows one to avoid such a multistage analysis, but cootitryP® also
requires someforts, including calculating matrix powers or inverse nwds. Note thaRDTMQG) has self-loops,
unlike EDTMC(G), hence, the behaviour ®DTMJG) may stabilize slower than that @DTMC(G) (if each of
them has a single steady state). On the other H@hds smaller and denser matrix th&, sinceP° has additional
non-zero elements not only at the main diagonal, but alsoyrothem outside it. Therefore, mostly, we have less
time-consuming numerical calculation @f with respect tay*. At the same time, the complexity of the analytical
calculation ofy° with respect tay* depends on the model structure, such as the number of vagistates and loops
among them, but usually it is lower, since the matrix sizaiotidn plays an important role in many cases.
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RDTMC (E)

1-6 1-¢

Figure 8: The reduced DTMC @& for E = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, 6)[I(({e}, m); ({ ), #)))) * Stop].

Example 5.4. Let E be from Example 3.5. Remember thatr(i:i ={s, S, %, S} and DR/(E) = {s3}. We reorder
the states from DEE), by moving the vanishing states to the first positions, dsvsl s, s1, %, &4, .
The (reordered) TPM for DTM(E) is

|
0 0 O s ©m
0 1-p p 0 0
P=| x 0 1-x 0 0
0O o 6 1-6 O
0 O 1) 0 1-¢
The result of the decomposifgare the matrices
0 1-p »p 0 0
3 3 I m | x 3 0 1-xy O 0
C_O,D_(0,0,—|+m,—+m),E_ 0 , F= 0 o 1-9 0o
0 0 1) 0 1-¢

SinceC! = 0, we haverk > 0, CK = 0, hence, k= 0 and there are no loops among vanishing states. Then

G:ZC'=C°=I.

k=0
Further, the TPM for RDTM(E) is

1-p »p 0 0

_ A xm

P°=F+EGD=F+EID =F+ED = 8 10X g

0 4 0 1-¢
In Figure 8, the reduced DTMC RDTME) is presented.
Then the steady-state PMF for RDTNE]) is
R 1
= (0, 0¢(1 + m), x¢l, xom).

~ 0g(l + m) + y (¢l + 6m)
Note thaty® = (v°(s1), ¥°(S2), ¥°(s4), ¥°(s5)). By Proposition 5.3, we have

¢(s1) =0,
)
@(S2) = F5rmy @

¢(s3) =0,
_ {2
¢(Se) = Gyemye e

om
¢(S5) = G @ream
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Thus, the steady-state PMF for SKE} is

1
~ 0¢(1 + m) + x (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse of/* and SJ.

%) (0, 84(1 + m), O, x|, x6m).

Note that our reduction of the underlying SMC by eliminatitsgvanishing states, resulting in the reduced DTMC,
resembles the reduction from [51] by removing instantasestates of stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Marko\adths with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making themmeédiate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SM@sgeiometrically distributed or zero sojourn time in
the states. However, within dtsiPBC, we have decided to$M€Es as the underlying stochastic process to be able in
the perspective to consider not only geometrically disteéd and zero residence time in the states, but arbitrany fixe
time delays as well.

6. Stochastic equivalences

Consider the expressiolis= ({a}, 3) andE’ = ({a}, $)a[l({a}, 3)2, for whichE # E’, sinceT S(E) has only one
transition from the initial to the final state (with probatyil1) while T S(E’) has two such ones (with probabilitigs.
On the other hand, all the mentioned transitions are laliBtedttivities with the same multiaction pgaj. Moreover,
the overall probabilities of the mentioned transitiond&(E) and T S(E’) coincide:% = %1 + %1. Further,TS(E) (as

well asTS(E’)) has one empty loop transition from the initial state telitsvith probability% and one empty loop
transition from the final state to itself with probability The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilitefsT S(E’), takep = y = % in Example 3.4. Unlike=s, most of

the probabilistic and stochastic equivalences proposttkifiterature do not dierentiate between the processes such
as those specified by andE’.

Since the semantic equivaleneg is too discriminating in many cases, we need weaker equigal@otions.
These equivalences should possess the following necgasmgrties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, whichtererultiaction parts of the activities executed in steps
starting from the initial states of the processes. Secardevery such sequence, its execution probabilities within
both processes must coincide. Third, the desired equivealgimould preserve the branching structure of computations
i.e. the points of choice of an external observer betweesaratgxtensions of a particular computation should be taken
into account. In this section, we define one such notion: stieghastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular poihthoice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisirorias arequivalenceelation that partitions the states of
the union of the transition system§S(G) and T S(G’) of two dynamic expressions andG’ to be compared. For
G andG’ to be bisimulation equivalent, the initial states of thedrsition systems{d]. and [G']~, are to be related
by a bisimulation having the following transfer propertyotstates are related if in each of them the same multisets
of multiactions can occur, and the resulting stadietong to the same equivalence class addition, the sums of
probabilities for all such occurrences should be the samiedth states.

Thus, we follow the approaches of [39, 46, 34, 36, 10, 7], itmplement step semantics instead of interleaving
one considered in these papers. Recall also that we use ttlieeadige probabilistic transition systems, like in [39],
in contrast to the reactive model, treated in [46], and we ta&nsition probabilities instead of transition ratesiro
[34, 36, 10, 7]. Thus, step stochastic bisimulation eqeiveé that we define further is (in the probabilistic sense)
comparable only with interleaving probabilistic bisimtiten one from [39], and our equivalence is obviously strange

In the definition below, we considef(Y) € N for T € N£, i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty as well. In this cag€Y’) contains the elemengs but it is not empty itself.
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Let G be a dynamic expression afid C DR(G). Then, for anys € DR(G) andA € Nﬁn, we write s ip H,
whereP = PMa(s, H) is theoverall probability to move from s into the set of staféwia steps with the multiaction
part Adefined as

PMa(s H) = > PT(Y, 9).
[THEEH, sH8 L(T)=A)

We writes 5 Hif AP, s Ap H. Further, we writes —»p H if A, s A H, where = PM(s,‘H) is theoverall
probability to move from s into the set of stafésvia any stepslefined as

PM(s H) = Z PT(T, 5).
(T3%H, 555
To introduce a stochastic bisimulation between dynamicesgonss andG’, we should consider the “compos-
ite” set of stateDR(G) U DR(G’), since we have to identify the probabilities to come frong two equivalent states
into the same “composite” equivalence class (with respdtid stochastic bisimulation). Note that, @k G’, transi-
tions starting from the states BIR(G) (or DR(G’)) always lead to those from the same set, SDB¢G)NDR(G’) = 0,
and this allows us to “mix” the sets of states in the definitdstochastic bisimulation.

Definition 6.1. Let G andG’ be dynamic expressions. AsguivalencaelationR ¢ (DR(G) U DR(G))? is astep
stochastic bisimulatiobetweerG andG’, denoted byR : G G/, if:

1. ([Gl~,[G']:) € R.

2. (51, %) €R = YH e (DR(G) UDR(G))/, YA€ N%

fin?

A A
Sg_—)pq"{ =4 SQ—)p?‘(

Two dynamic expressiors andG’ arestep stochastic bisimulation equivaledénoted byc & G, if IR : G G'.

The following proposition states that every step stochdsimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.

Proposition 6.1. Let G and G be dynamic expressions aftt G& G'. Then

R ¢ (DRr(G) U DRy (G))? ¥ (DRy(G) U DRy(G"))>.

Proor. By definition of transition systems of expressions, forgtangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing state
Further,R preserves empty loops. To verify this fact, first take 0 in its definition to get/(s1, &) € R,

VH € (DR(G) U DR(G"))/#, S1 gp H e s gp H, and then observe that the empty loop transition from a state
leads only to the same state. O

Let Rs{G,G") = U{R | R : G, G’} be theunion of all step stochastic bisimulatiobetweenG andG’. The
following proposition proves th&ks{G, G') is also arequivalencandRs{G,G’) : G G'.

Proposition 6.2. Let G and G be dynamic expressions and-£ G’. ThenRs{G, G’) is the largest step stochastic
bisimulation between G and’'G

Proor. See Appendix A.1l. O
The algorithm for determining bisimulation of transitiopstems from [64] can be adapted for our framework.

This algorithm has time complexit9(mlogn), wheren is the number of states amdis the number of transitions.
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Figure 9: Dtsi-boxes of the dynamic expressions from edgme examples of Theorem 6.1.

6.2. Interrelations of the stochastic equivalences
Now we compare the discrimination power of the stochastitvedences.

Theorem 6.1. For dynamic expressions G and @e followingstrictimplications hold:

GxG = G=sG = Go G

Proor. Let us check the validity of the implications.

e The implication=is= < is proved as follows. Let : G =;s G'. Then itis easy to see th&t: G G, where

R =1{(s8(9) | s€ DRG)}.
e The implicationr== is valid, since the transition system of a dynamic formuldgfined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. then@ones do not work, by the following counterexamples.

() LetE = ({a}, 3) andE’ = ({a}, 3)1[1({a}, 1)2. ThenEo E’, butE #s E’, sinceT S(E) has only one transition
from the initial to the final state whil& S(E’) has two such ones.

(b) LetE = ({a}, 3): (&), 3) andE’ = (({a}, 2); ({&}, 1)) sy a. ThenE = E’, butE # E’, sinceE andE’ cannot be
reached from each other by applying inaction rules. O

Example 6.1. In Figure 9, the marked dtsi-boxes corresponding to the dyinaxpressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e=NBoxytsi(E) and N' = Boxsi(E’) for each picture (a)—(b).

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduséitarsystems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of grapied models, like transition systems, reachability ggaph
and SMCs, result in those with less states (the graph nodés)goal of the reduction is to decrease the number of
states in the semantic representation of the modeled sysitémpreserving its important qualitative and quantitati
properties. Thus, the reduction allows one to simplify tedviour and performance analysis of systems.

An autobisimulatioris a bisimulation between an expression and itself. For aahoexpressio®s and a step
stochastic autobisimulation ont: G G, let X € DR(G)/x ands, s, € K. We have/K € DR(G)/g, YA€ NE |
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S fw K o S 5@ K. The previous equality is valid for adi, s, € K, hence, we can rewrite it & 5@ 7?, where
P = PMa(K, K) = PMa(s1, K) = PMa(s2, K).

We write K A K if P, K é)p K andK — K if dA, K A K. The similar arguments allow us to write
K —p K, whereP = PM(K, K) = PM(s1, K) = PM(s2, K).

By Proposition 6.1R < (DRy(G))? w (DRy(G))?. Hence YK € DR(G)/x, all states froniK are tangible, when
K € DRy (G)/x, or all of them are vanishing, wheki € DR(G)/«.

Theaverage sojourn time in the equivalence class (with resigeg] of statesk is

1 .
v, K € DRr(G)/x;
— 1-PM(K, %)
The average sojourn time vector for the equivalence classeth (@spect taR) of statesof G, denoted byS Xk,
has the elemenSk(K), K € DR(G)/x.
Thesojourn time variance in the equivalence class (with resfeR) of statesk is

\M%M3={f%%%p K € DRr(G)/x;
O, K e DRv(G)/R

Thesojourn time variance vector for the equivalence classéh (@spect toR) of statesof G, denoted bywARg,
has the elemeniAR(K), K € DR(G)/x.

Let Rs{G) = UIR | R : G G} be theunion of all step stochastic autobisimulatiomsG. By Proposition 6.2,
Rs{G) is the largest step stochastic autobisimulatiorGorBased on the equivalence classes with respeRt (),
the quotient (by- ) transition systems and the quotient (&) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotiesd.sTdte average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotientitran$etween two such composite states represents af step
(having the same multiaction part in case of the transiti@tesn quotient) from the first state to the second one.

Definition 7.1. Let G be a dynamic expression. Theotient (by«~ ) (labeled probabilistic) transition systeof G
isaquadrupld S, (G) = (S, Lo, To,, So,), Where

e So_ = DR(G)/.o);

e Lo, © N x(0;1];

o To, = (5, (A PMAK, %)), K) | K, K € DRG)/uic), K > K;

e s.,_ = [[Cl:]r40)-

The transition 4, (A, P), K) € To., will be written ask Ap K.

The quotient (by~ ) transition systems of static expressions can be definechskor E € RegS tatExpriet
TSo_(E) = TSo_(E).

Thequotient (bye ) average sojourn time vectof G is defined aS1, = Sk.c)-

Thequotient (bye ) sojourn time variance vectaf G is defined a¥ AR, __ = VAR (c)-

Let X — K andk # K. The probability to move fron¥ to K by executing any set of activities after possible
self-loopss

PM(K, K) Zi2o PMK, KO = LB K — K

PM(%, ‘]~(), otherwise

The valuek = 0 in the summation above corresponds to the case when ntospE-occur. Note that’K e
DRr(G)/z4c), PM(K,K) = SL_(K)PM(K, K), since we always have the empty loop (which is a self-loop)

0 . . . .
K — K from every equivalence class of tangible stat&sEmpty loops are not possible from equivalence classes

PM* (%, K) ={
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of vanishing states, hencéX e DRy(G)/z.yc), PM* (K, 7?) = %, when there are non-empty self-loops

(produced by iteration) frork', or PM*(K, 7?) = PM(¥K, 7?), when there are no self-loops fror.

Definition 7.2. Let G be a dynamic expression. Theiotient (by« ) EDTMC of G, denoted b)EDTMC (G)
has the state spatEH?(G)/ngS(G), the initial state [{5].]z.4c) and the transition¥ —» K, if K > K andk # K,
whereP = PM* (%, ‘K). The quotient (by< g underlying SMCof G, denoted bySMG,_(G), has the EDTMC

EDTMC._(G) and the sojourn time in everf( € DRr(G)/r.c) is geometrically distributed with the parameter
1 - PM(%, K) while the sojourn time in ever)K € DRy(G)/x.yc) is equal to zero.

The quotient (by-.) underlying SMCs of static expressions can be defined as Welt E ¢ RegStatExprlet
SMG,_(E) = SMG,, (E)

The steady- -state PMis, forEDTMC,_(G) andy., for SMC,_(G) are defined like the corresponding notions
y* for EDTMC(G) ande for S SMQG) respectlvely

The quotients of both transition systems and underlying Sii@ the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be usaichify analysis of system properties which are preserved
by & since less states should be examined for it. Such reduct&hod resembles that from [2] based on place
bisimulation equivalence for PNs, excepting that the farmethod merges states, while the latter one merges places.

Moreover, the algorithms which can be adapted for our fraonkexist for constructing the quotients of transition
systems by bisimulation [64] and those of (discrete or ear@us time) Markov chains by ordinary lumping [24]. The
algorithms have time complexitp(mlogn) and space complexi®(m+ n) (the case of Markov chains), whemés
the number of states amdis the number of transitions. As mentioned in [74], the althon from [24] can be easily
adjusted to produce quotients of labeled probabilistiedition systems by the probabilistic bisimulation equivele.
In [74], the symbolic partition refinement algorithm on stapace of CTMCs was proposed. The algorithm can be
straightforwardly accommodated to DTMCs, interactive MUsrkov reward models, Markov decision processes,
Kripke structures and labeled probabilistic transitiosteyns. Such a symbolic lumping uses memdfigiently due
to compact representation of the state space partitionsyimbdolic lumping is time &icient, since fast algorithm of
the partition representation and refinement is applied.

Let us also consider quotient (by.) DTMCs of expressions based on the state change probediii (%, ‘]~().

Definition 7.3. Let G be a dynamic expression. Tlyeotient (by< ) DTMC of G, denoted byDTMC,,_(G), has
the state spadBR(G)/x.4c), the initial state [{5]+]z.qc) and the transition& —p %K, wherep = PM(%K, 7~().

The quotient (by=.) DTMCs of static expressions can be defined as well. EFarRegS tatE xpriet
DTMC,,_(E) = DTMC,_(E).

Eliminating equivalence classes (with respecRtg(G)) of vanishing states from the quotient (by,) DTMCs
of expressions results in the reductions of such DTMCs.

Definition 7.4. Thereduced quotient (by> ) DTMC of G, RDTMG,_(G), is defined likeRDTMJG) in Section 5,
butitis constructed fro®TMC,,_(G) instead oDTMC(G).

The reduced quotient (by> ) DTMCs of static expressions can be defined as well. Far RegS tatExprlet
RDTMGC,_(E) = RDTMC,_(E).

The steady -state PME@H for DTMC._(G) andyg, for RDTMC,_(G) are defined like the corresponding
notionsy for DTMC(G) andy® “for RDTMQG) respectlvefy

Obviously, the relationships between the steady-state RMF andzﬁH o Po., andy._, as well asp, _ and
Yo, are the same as those determined between their “non- qtiol&rsmns in Theorem 5. 1, Proposmon 5.2 and
Proposmon 5.3, respectively.

The comprehensive quotient and reduction example will lbsgmted in Section 9.
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8. Stationary behaviour

Let us examine how the proposed equivalences can be usednjpace the behaviour of stochastic processes
in their steady states. We shall consider only formulasifgeg stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that thaiien operator does not guarantee infiniteness of behaviour
since there can exist a deadlock within the body (the secapuaveent) of iteration when the corresponding subprocess
does not reach its final state by some reasons. In partidflae, body of iteration contains th&top expression, then
the iteration will be “breaked”. On the other hand, the itierabody can be left after a finite number of its repeated
executions and then the iteration termination is startedavbid executing any activities after the iteration bodg, w
takeStop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSIPNs the most commontegss for performance analysis aggodic
(recurrent non-null, aperiodic and irreducible) ones. &godic LDTSIPNS, the steady-state marking probabilities
exist and can be determined. In [60, 61], the followindfisient (but not necessary) conditions for ergodicity of
DTSPNs are statedivenesgqfor each transition and any reachable marking there eaisesjuence of markings from
it leading to the marking enabling that transitiobpundednes@he number of tokens in every place is not greater
than some fixed number for any reachable marking)raomttieterminisnithe transition probabilities are strictly less
than 1). Let the dtsi-box of a dynamic expression has no dekslin the body of some iteration operator it contains
andStop is the termination argument of this operator. If all the estavetween the initial and final ones (including
both these states) of such an iteration body are tangitda, ttie three ergodicity conditions are satisfied: the subnet
corresponding to this iteration body is live, safe (1-baesidand nondeterministic (since all markings of the live
subnet are tangible and non-terminal, the probabilitiegasfsitions from them are strictly less than 1). Hence, for
the dtsi-box, its underlying SMC restricted to the statetsvben the initial and final states of this iteration body is
ergodic. The isomorphism between SMCs of expressions aseé tbf the corresponding dtsi-boxes, which is stated by
Proposition 5.1, guarantees that the underlying SMC of @nession with infinite behaviour is ergodic, if restricted
to the states in which such an iteration body is executed:eSime ergodicity condition above is not necessary, there
exist dynamic expressions with vanishing states travesdeleé executing their iteration bodies, which, nevertiss|e
have ergodic underlying SMCs, as Example 5.1 demonstrated.

In this section, we consider the expressions such that tineierlined SMCs contain one ergodic subset of states
to guarantee that a single steady state exists.

8.1. Steady state and equivalences

The following proposition demonstrates that, for two dymaeaxpressions related By _, the steady-state prob-
abilities to come in an equivalence class coincide. One tsmiaterpret the result stating that the mean recurrence
time for an equivalence class is the same for both expression

Proposition 8.1. Let G G’ be dynamic expressions with: Go G’ andy be the steady-state PMF for SNI&), ¢’
be the steady-state PMF for SNI®). ThenVH € (DR(G) U DR(G"))/x,

D= > P

scHNDR(G) seHNDR(G')

Proor. See Appendix A.2. O

Let G be a dynamic expression agdbe the steady-state PMF f&MJG), ¢., be the steady-state PMF for
SMG,_(G). By Proposition 8.1, we havéH € DR(G)/gr.(c), ¥o  (H) = Zsn ¢(S). Thus, for every equivalence
classH e DR(G)/z.c), the value ofp., _corresponding tg+ is the sum of all values @b corresponding to the states
from H. Hence, usingMC,_(G) instead ofSMQG) simplifies the analytical solution, since we have lessestdtut
constructing the TPM foEDTMC (G), denoted byP, , also requires somdferts, including determinin®s«G)
and calculating the probabilities to move from one equmamclass to other. The behaviour BDTMC,,_(G)
stabilizes quicker than that @DTMC(G) (if each of them has a single steady state), sﬂﬁjt_:,e is denser matrix
thanP* (the TPM forEDTMC(G)) due to the fact that the former matrix is smaller and theditions between the
equivalence classes “include” all the transitions betwberstates belonging to these equivalence classes.
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By Proposition 8.1¢>  preserves the quantitative properties of the stationamgdieur (the level of SMCs). Now
we intend to demonstrate that the qualitative propertieke§tationary behaviour based on the multiaction labels ar
preserved as well (the level of transition systems).

Definition 8.1. A derived step tracef a dynamic expressio® is a chain = A;---Ay € (me) whereds €

DR(G), SE S L L sh, L(T5) = A (1 <i < n). Then theprobability to execute the derived step tr&&e sis

PT(Z. 9 = D ﬁ PT(Ti, S-1).

Ty To T ) i=1
[F e Lol S=S0 S5 550, L(T7)=A (L<i<n)}

The following theorem demonstrates that, for two dynamjaregsions related by
ities to come in an equivalence class and start a derivedrstepfrom it coincide.

the steady-state probabil-

ss

Theorem 8.1. Let G, G’ be dynamic expressions with. G G’ andg be the steady-state PMF for SNIE), ¢’ be
the steady-state PMF for SMG’) andX be a derived step trace of G and.GhenVH e (DR(G) U DR(G))/x,

D eIPTE. 9= > J(S)PTES).

seHNDR(G) seHNDR(G')

Proor. See Appendix A.3. O

We now present a result not concerning the steady-statepildles, but revealing very important properties of
residence time in the equivalence classes. The followinggsition demonstrates that, for two dynamic expressions

related by, the sojourn time averages in an equivalence class coirasdeell as the sojourn time variances in it.

Proposition 8.2. Let G, G’ be dynamic expressions with: G- G'. ThenVH € (DR(G) U DR(G"))/x,
Sknore)(H N DR(G)) = Sknpre):(H N DRG)),
VAR or@)2 (H N DR(G)) = VAR prG )2 (H N DR(G)).
Proor. See Appendix A.4. O
Example 8.1. Let
E = [({a}, 3) = (({b}, 3); (({c}, $)20({c}h, 3)2)) = Stop],
E" =[(fa). 3) = (({b}, 3)1: ({c), 2)D0(({b}, 3)z: ({c). 5)2)) * Stop].

We haveEo  E'.
DR(E) consists of the equivalence classes

s = [[(fa), 3) = (1}, 3); ((fc), $)all(fch, 3)2)) * Stop]] -,
s = [[({ah 3) = (b}, 2); (({ch, )a0({ch, 2)2)) * Stop]l~,
ss = [[({a}. 3) = (1), 3); (({c), $)all({ch. 3)2)) * Stop]] -

DR(E’) consists of the equivalence classes

s, = [[(fa}, 3) = (b}, 3)1: (fe, 3)1)O(({BY, 3)2; (fch, 3)2)) = Stop]]-,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY, )2 (fc), 3)2)) * Stop]] ~,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY, )2 (fc), 3)2)) = Stop]] ~,
s, = [[({a}, 3) * (1), 3)1; ({e), 5)1)0(({b}, 3)2; ({c), 3)2)) * Stop]] .

41



%

O,

Figure 10:< . preserves steady-state behaviour and sojourn time piepérithe equivalence classes.

The steady-state PMRsfor SMQEE) and¢’ for SMQEE’) are

11\ , 111
Y= (0»5,5), ¥ —(O,E 2 4_1)
Consider the equivalence class (with respecRE, E")) H = (s, s;. S;}. One can see that the steady-state

probabilities for H coincide: Yoy pri) #(9) = ¢(Ss) = 3 = ;11 +1=09 (%) +¢'(8) = Zecmnore) ¥ (S)-

LetX = {{c}}. The steady-state probabilities to come in the equivaleteesH and start the derived step trace

¥ from it coincide as well: o(ss)(PT({({c}, £)1}, S3) + PT(({c), 2)2), %)) = %(711 + 711) =1=1.14+1.1=

¢'(PT(((c), )} ) + ¢/ (S)PT(((c), 3)2). 5y).

Further, the sojourn tlme averages in the equwalence ci:élssommde S & E,)Q(DR(E))Z(?{ N DR(G))

L B = — —
Sk, Enoreyis )_ 1_PM(’53H53)) ~ T-PM(ss.s) E 2= _% = 1—PM(5’3 9T PM(g =T pM((sésl)’%s/)) =
SR EEINORE ))2( S S‘JRSS(E E)N(DRE £y (H N DR(G)).
At last, the sojourn tlme variances in the equivalence cldssincide: VAF;Q EF )ﬁ(DR(E))Z(H N DR(G)) =
VAR, ((ss) = PM(Sshiss))  _ _ PM(ss.ss)  _ 5 _ oL 3 _ _PMSS)  __PMSS)
so(EE)NORE)? @PM(slis)? — @TPMsS)? — (117 (1—%) T OPME )P T T-PM(S,S))

HUESARESA . _ L _ ,
s s 5 = VAR EEnorE) (1S D) = VAR EE)nor@E) (1 N DRGY)). .
In Figure 10, the marked dtsi-boxes corresponding to theadyin expressions above are presented, i.e.
N = Boxisi(E) and N = Boxgsi(E’).

8.2. Preservation of performance and simplification of italgsis

Many performance indices are based on the steady-statalglitibs to come in a set of similar states or, after
coming in it, to start a derived step trace from this set. Tihelarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence clagseposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the exgmesselated by~ . Thus,<_ (hence, all the stronger
equivalences we have considered) preserves performastaobiastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using arCSiith less states, since in this case the size of the
transition probability matrix will be smaller, and we shatilve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the follgwirethod of performance analysis simplification.

1. The investigated system is specified by a static expmess$idtsiPBC.
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Figure 11: Equivalence-based simplification of perforneaeealuation.

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similgyit step stochastic autobisimulation equivalence for the
expression is determined.

4. The quotient underlying SMC is constructed from the cqgrdtiransition system.

5. Stationary probabilities and performance indices alauzted using the SMC.

The limitation of the method above is its applicability ondythe expressions such that their corresponding SMCs
contain one irreducible subset of states, i.e. the existehexactly one stationary state is required. If an SMC dosta
several irreducible subsets of states then several sté¢aidys snay exist which depend on the initial PMF. There is an
analytical method to determine the stable states for SM@s®okind as well [44]. Note that, for every expression, the
underlying SMC has by definition only one initial PMF (thatla¢ time moment 0), hence, the stationary state will be
only one in this case too. The general steady-state pratyabitalculated as a sum of the stationary probabilities of
the irreducible subsets of states weighted by the proltiaiiio enter these subsets starting from the initial state a
walking through some transient states. It is worth to apipéyrhethod only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can farthreduce the quotient underlying SMC, using the algo-
rithm from [56, 3, 4] that eliminates vanishing states frdma torresponding EDTMC and thereby decreases the size
of its TPM. For SMCs reduction we can also apply an analoguketieterministic barrier partitioning method from
[30] for semi-Markov processes (SMPs), which allows oneaidgrm quicker the first passage-time analysis. Another
option is the method of stochastic state classes from [38jdéneralized SMPs (GSMPs) reduction, allowing one to
simplify transient performance analysis (based on thestesm probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow usitaplify the steps 4 and 5 of the method above
by constructing the reduced quotient DTMC (instead of thetignt underlying SMC) from the quotient transition
system, followed by calculating the stationary probaiefitof the quotient underlying SMC using this DTMC, and
then obtaining the performance indices. We first merge thavalgnt states in transition systems and only then
eliminate the vanishing states in Markov chains. The re&strat transition systems, being a higher-level formalism
than Markov chains, describe both functional (qualitgtased performance (quantitative) aspects of behaviourewhil
Markov chains represent only performance ones. Thus, gditimg vanishing states first would destroy the functional
behaviour (which is respected by the equivalence used faienting), since the steps withftBrent multiaction parts
may lead to or start from fferent vanishing states.

Figure 11 presents the main stages of the standard andaiteraquivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory systershaw how steady-state distribution can be used
for performance evaluation. The example also illustrdiesnethod of performance analysis simplification above.

9.1. The standard system

Consider a model of two processors accessing a common sim@&rmadry described in [56, 3, 4] in the continuous
time setting on GSPNs. We shall analyze this shared memetgrsyin the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, &/hib two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation bétsystem (turning the computer on), two processors are
active, and the common memory is available. Each processorarjuest an access to the memory after which the
instantaneous decision is made. When the decision is mdaeadur of a processor, it starts acquisition of the memory
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Figure 12: The diagram of the shared memory system.

and another processor should wait until the former one @éaasémory operations, and the system returns to the state
with both active processors and the available common meriibey diagram of the system is depicted in Figure 12.

Let us explain the meaning of actions from the syntax of d@&iRexpressions which will specify the system
modules. The actiom corresponds to the system activation. The actiond < i < 2) represent the common
memory request of processiorThe actiongl; correspond to the instantaneous decision on the memoigasilbm in
favour of the processar The actionsm represent the common memory access of procesJdre other actions are
used for communication purposes only via synchronizatioml, we abstract from them later using restriction. For
a,...,an € Act(n e N), we shall abbreviatesy a; --- syanrsa;--- rsa, to sr(as,...,an).

The static expression of the first processor is

1 1 1
E1 = [({xa}, 5) « (({fra), E); ({d1, ya}, 1); ({ry, 2}, E)) * Stop].

The static expression of the second processor is

1 1 1
E2 = [((a). 5) * ((r2). 5): (d.ya). 1 (me. 21, 5) « Stopl.

The static expression of the shared memory is

E3 = [((@ %, %), 3) » (931 1); (70, )53}, 1); (7). 5)) = Stopl.

The static expression of the shared memory system with teogssors is

E = (EillE2lIEs) st (X1, X2, Y1. Y2, 21, 22).

Let us illustrate anféect of synchronization. As result of the synchronizatiomohediate multiactiong;, yi}, 1)
and (Vi}, 1) we obtain {di},2) (1 < i < 2). The synchronization of stochastic multiactiofrs (z}, %) and (z}, %)
produces{m}, 1) (1 < i < 2). The result of synchronization ofg( %1, 53}, 3) with ({x1}, ) is (fa, %}, ), and that
of synchronization of{@, X1, %}, 3) with ({X2}, 3) is ({a, X1}, 7). After applying synchronization to&, %3}, 1) and
({x2}, 3), as well as toffa, X1}, 1) and (xa}, 3), we obtain the same activitya, 3).

DR(E) consists of the equivalence classes

st = [([(xah, 2) = ((Arad, 2); (do, yab, 1); ((my, 20}, 3)) = Stop]|
[({x2}, 2) = ((fr2}, 2); ({d2, y23. 1); (fmp, 25}, 2)) = Stop]|

[(fa X1, %2}, 3) * (192}, 1); (1Z2), 3D 1); (122}, 3))) = Stop])
S (X1, X2, Y1, Y2, Z1, 22)] ~»

S = [([({xa}, 2) = ((Ara}, 2); (de, ya}, 1); ((my, 20}, 3)) = Stop] |
[({x2}, 2) = ((fr2}, 2); ({d2, y23. 1); ((mp, 25}, 2)) = Stop]|

[(fa, %1, %2}, 3) = (191}, 1); (Z2), $)DO({¥2), 1); (Z2), 3))) * Stop])
S (X1, X2, Y1, Y2, Z1, 22)] ~»
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s = [([({xa}, 2) * (({red, 2); (de, yab, 1); (fmy, 2}, 3)) = Stop]|
[({x2}, 3) = (({r2}, 3); ({d2, y2}, 1); (Mg, 22}, 3)) * Stop]|
[({fa X1, %2}, 2) = (192}, 1); (Z) N9} 1); (Z), 1)) = Stop])
ST (X1, X2, Y1, Y2, Z1, 22)] ~»

se = [([(1xa), 3) = (), 3); ({da, ya), 1); ((my, 22}, 3)) * Stop] |
[({x2}, 3) = (({r2}, 2); ({d2, Y2}, 1); (fmp, 22}, 3)) = Stop] ||
[(fa, X1, %2}, 2) = (192}, 1); (2 $NOCEY2) 1); (), 2))) * Stop])
st (X1, X2, Y1, Y2, 21, 22)] ~»

s = [([({xa}, 3) = ((fra), 3); ({da, ya}, 1); ({my, 22}, 3)) * Stop] |
[({x2}, 3) = (({r2}, 2); ({d2, y2), 1); (Mg, 22}, 2)) = Stop]|

[({a, 5, %), 3) = (151}, 1); (Z), 2)0(({%2), 1); (), 3))) * Stop])
sr (X]-? X2, Y1, Y2, Z1, ZZ)]:,

s6 = [([({xa), 3) = (({ra), 3); ({dw, ya), 1); ((mu, z1}, 2)) * Stop] |
[({x2}, 2) = ((fr2}, 2); ({d2, y23. 1); (IMe, 25}, 2)) = Stop]|
[(fa, %1, %2}, 3) = (Y1}, 1); (Z2), $)O(({¥2), 1); (Z2), 3))) * Stop])
ST (X1, X2, Y1, Y2, Z1, 22)] ~»

7= [([({xa), 3) = (({ra), 3); (1w, ya), 1); ((mu, z2), 2)) = Stop] |
[({x2), 3) = (({r2}, 2); ({d2, Y2}, 1); (fmp, 22}, 2)) = Stop] ||

[(fa, %1, %2}, 3) = (191}, 1); (Z2), $)O(({¥2), 1); ({2}, 3))) * Stop])
St (X1, X2, Y1, Y2, Z1, 22)] ~»

se = [([({xa), 3) * (({ra), 3); (1w, ya), 1); ({mu, 2}, 2)) * Stop] |
[({x2}, 2) = ((fr2}, 2); ({d2, y23. 1); (IMe, 25}, 2)) = Stop]|

[(fa, %1, %2}, 3) = ({91}, 1); ({22, SNO(((¥2), 1); (Z2), 3))) * Stop])
sr (Xl’ X2, Y1, Y2, Z1, ZZ)]:,

o = [([({xa}, 3) = ((fra), 3); ({1, ya}, 1); (Imy, 22}, 3)) * Stop] |
[({%2}, 3) = (({r2}, 2); ({d2, y2}, 1); (Mg, 22}, 2)) = Stop]|

[(fa, X1, %2}, 3) * (172}, 1); (1z1), 3D}, 1); (122}, 3))) = Stop])
St (X1, X2, Y1, Y2, 71, 22)] ~.

We haveDRr(E) = {s1, S, S5, S7, S8, So} andDRy(E) = {s3, s4, Sg}-
The states are interpreted as followsis the initial states,: the system is activated and the memory is not requested,
s3: the memory is requested by the first processgr,the memory is requested by the second processorthe
memory is allocated to the first processsr,the memory is requested by two processsrsthe memory is allocated
to the second processas, the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the mesne@quested by the first processor.

In Figure 13, the transition systefS(E) is presented. In Figure 14, the underlying SB®IQE) is depicted.

The average sojourn time vectorBfis

4 8 8
SJ=18,-,0,0,-,0,-,4,4].

The sojourn time variance vector Bfis
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Figure 13: The transition system of the shared memory system
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Figure 14: The underlying SMC of the shared memory system.



Table 5: Transient and steady-state probabilities for th&MC of the shared memory system.

[k O] 5 [ 10 [ 16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
I L1] O 0 0 0 0 0 0 0 0 0 0

gl [0 0 | 00754/ 0.0859] 0.0677] 0.0641] 0.0680] 0.0691| 0.0683] 0.0680| 0.0681] 0.0682
y;[K| | 0] 0.2444] 0.2316] 0.1570] 0.1554] 0.1726] 0.1741] 0.1702] 0.1696] 0.1705] 0.1707| 0.1705
y:[K | 0] 0.2333] 0.0982] 0.1516] 0.1859] 0.1758] 0.1672] 0.1690] 0.1711] 0.1708] 0.1703] 0.1705
yi[K] | 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237] 0.0234] 0.0226| 0.0226] 0.0228| 0.0228] 0.0227
yi[ 0] 0 [01163]0.1395] 0.1147] 0.1077] 0.1130] 0.1150] 0.1139] 0.1133] 0.1136] 0.1136

4 24 24 5
97725 772 '

VAR= (56,— 0,0, —=,0, 25 121

The TPM forEDTMCE) is

01 0000UO0TO0O
0022101000
000O0T1O0U0UO0O
000O0OOT1O0O

P*:O%O%OOO"—%O
ooooooozé
ot loo0000:3
000 1000UO0UO
001 000O0TUO0U 0O

In Table 5, the transient and the steady-state probabififigk] (i € {1, 2, 3,5, 6, 8}) for the EDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 15, the alteration
diagram (evolution in time) for the transient probabilitis depicted. It is dticient to consider the probabilities for
the states;, 5, S3, S5, S, Ss only, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@DTMC(E) is

V=" a2 88 88 88' 24 88 34" 24
The steady-state PMF* weighted bySJis
1 3 3 55
(03 ﬂ» Oy 09 ﬂ» Oy ﬂ» ﬁ: ﬁ) .
It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

(031515151155 5)

17
s _ =0
sl =4
Thus, the steady-state PMF 8MQE) is
1 3 3 5 5
e=fgo0dod t)

We can now calculate the main performance indices.

e The average recurrence time in the statavhere no processor requests the memory, calledibeage system
run-through is 2 = 17.
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Figure 15: Transient probabilities alteration diagramtfer EDTMC of the shared memory system.

e The common memory is available only in the stadgs;, 4, Ss. The steady-state probability that the memory
is available isp + @3+ @4+ g = 1% +0+0+0= 1% Then the steady-state probability that the memory is used

(i.e. not available), called thehared memory utilizatigris 1- & = 1.

o After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptiosofThus, therate with which the shared memory necessity

emerge<oincides with the rate of leaving, calculated agL 17 3 638.

e The common memory request of the first proces(sqn},(%) is only possible from the statess, s;. In each of
the states, the request probability is the sum of the exattiobabilities for all sets of activities containing
({re}, %). Thesteady-state probability of the shared memory request franfirst processois

@2 ey, ery PTOC: S2) + 07 Xpyey. pyery PT(L, 7) = . (711 + 711) + (% + %) = &.

In Figure 16, the marked dtsi-boxes corresponding to themhyo expressions of two processors, shared memory
and the shared memory system are presented\ji2.Boxsi(Ei) (1 <1 < 3) andN = Boxsi(E).

9.2. The abstract system and its reduction

Let us consider a modification of the shared memory systeim aistraction from identifiers of the processors,
i.e. such that they are indistinguishable. For example, arejost see that a processor requires memory or the
memory is allocated to it but cannot observe which proceissibr We call this system the abstract shared memory
one. To implement the abstraction, we replace the actipdsm (1 < i < 2) in the system specification lwyd, m,
respectively.

The static expression of the first processor is

F1 = [({xa}, )(( )(d)’1 1); ({m, z1}, ))*SIOP]

The static expression of the second processor is
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Figure 16: The marked dtsi-boxes of two processors, shasgdary and the shared memory system.

1 1 1
F2 = [({x2}, E) * (({r}, 5); ({d,y2}, 1); ((Im, 22}, 5)) * Stop].

The static expression of the shared memory is

Fa = [((@ 5. ). 2) * (931 2); (Z0). )0((153) 1); (7). 5)) = Stopl.

The static expression of the abstract shared memory syst#mtwo processors is

F = (FallF2llF3) sr (X1, X2, Y1, Y2, Z1, 22).

DR(F) resemble®R(E), andT S(F) is similar toT S(E). We haveSMQ[F) =~ SMQE). Thus, the average sojourn
time vectors ofF andE, as well as the TPMs and the steady-state PMFEBFMC(F) andEDTMC(E), coincide.

The first, second and third performance indices are the sanmthé standard and the abstract systems. Let us
consider the following performance index which is specifithte abstract system.

e The common memory request of a process$oy; %) is only possible from the states, s5, ;. In each of the
states, the request probability is the sum of the executioipgbilities for all sets of activities containing, %).
The steady-state probability of the shared memory request faoprocessoris ¢, Z‘TK",,%H} PT(T, s) +

_ 11 1 1 3 (3 1 3 (3 1\ _ 15
@5 Zpr.yer PTON S5) + 97 Spyn byery PTG ) = (5 + 5+ 1)+ F+3)+2(3+8)=-%

The marked dtsi-boxes corresponding to the dynamic expressf the standard and the abstract two processors
and shared memory are similar, as well as the marked dtgshoarresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We haveDR(E)/RSS(E) = {K1, Ko, K3, Ka, Ks, K}, WhereKy = {51} (the initial state) K> = {s;} (the system is
activated and the memory is not requesté®),= {ss, S4} (the memory is requested by one processi) = {Ss, S7}

(the memory is allocated to a processdf}, = {ss} (the memory is requested by two processok&) = {Ss, So} (the
memory is allocated to a processor and the memory is reqlibgtenother processor).
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Figure 17: The quotient transition system of the abstraateshmemory system.

[N

We also havedRr (F)/ ) = (K1, Ko, Ka, K} andDRy(F) /) = (K3, Ks).
In Figure 17, the quotient transition syste‘l’nsiss(f) is presented. In Figure 18, the quotient underlying SMC

SMC,_(F) is depicted.
The quotient average sojourn time vectoiFois

4 8
SJ =(8,2,0,=,0,4/.
250504
The quotient sojourn time variance vectorfofs

4 24
VAR = (56, 5 0, >e 0, 12).

The TPM forEDTMC,,_(F) is

010000
002010
pe_[0 00100
"ot ioo:
0000O0O01
001000

In Table 6, the transient and the steady-state probabilitigk] (1 < i < 6) for the quotient EDTMC of the
abstract shared memory system at the time momeat®, 5, 10, .. ., 50} andk = o are presented, and in Figure 19,
the alteration diagram (evolution in time) for the transigrobabilities is depicted.

The steady-state PMF f&@DTMC,,_(F) is
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Table 6: Transient and steady-state probabilities for timignt EDTMC of the abstract shared memory system.

SMC«_(

S

=

[SV[ )

-

W=

1

’C50

Figure 18: The quotient underlying SMC of the abstract shanemory system.

[k JO[ 5 [ 10 [ 156 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
Y, K[1] O 0 0 0 0 0 0 0 0 0 0

v, [k [[0] 0 |0.0754]0.0859] 0.0677| 0.0641] 0.0680] 0.0691| 0.0683] 0.0680] 0.0681 ] 0.0682
y,’[K] | 0] 0.4889] 0.4633] 0.3140] 0.3108| 0.3452| 0.3482| 0.3404 | 0.3392| 0.3409| 0.3413| 0.3409
v, ’[Kl || 0] 0.4667] 0.1964] 0.3031] 0.3719] 0.3517| 0.3344] 0.3380] 0.3422] 0.3417] 0.3407 0.3409
y.’[K] || 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237| 0.0234] 0.0226] 0.0226] 0.0228] 0.0228] 0.0227
v [K[[0] 0 |0.2325]0.2791] 0.2294] 0.2154] 0.2260] 0.2299] 0.2277] 0.2267] 0.2271] 0.2273
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Figure 19: Transient probabilities alteration diagramtfar quotient EDTMC of the abstract shared memory system.
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The steady-state PMF* weighted bySJ is
1 6 10
(O’ ﬁ, O’ ﬁ, O’ ﬁ) .
It remains to normalize the steady-state weighted PMF bigighg it by the sum of its components

17
7SIt = =
v 11
Thus, the steady-state PMF 8MC,,_(F) is

) 1 6 _10
¢ _(071_7’ 71_7’071_7 .
Alternatively, fromTS.,_(F), we can construct the reduced quotient DTMCFORDTMGC,,_(F), and then cal-

culatey’ usingit. _ _
Remember thaDRT(F)/RSS(E) = {K1, K2, K4, K5} and DRV(F)/RSS(E) = {K3,Ks}. We reorder the elements of

DR(E) I, F) by moving the equivalence classes of vanishing statestéirt positionsKs, Ks, K1, Ko, Ka, Ke.
The (reordered) TPM faDTMC,,_(F) is

T

1l
NI N Y o N e N o)
O OO OO
O O Ow~No o
O®IRPNFDIR & o
OPWO O o 1
RO O O s o

a1
N
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Figure 20: The reduced quotient DTMC of the abstract sharemhony system.

The result of the decomposii®j are the matrices

0 0 g%oo
, {00y, (0o010\_ |22 _loioo
C‘(oo)’D‘(0001)’E‘%O’F‘oggg
Iy 00 03

SinceC™ = 0, we havevk > 0, C’* = 0, hence) = 0 and there are no loops among vanishing states. Then

|
Gl :ch :ClO:I
k=0

Further, the TPM foRDTMGC,,_(F) is

P°=F +EGD =F +EID'=F +E'D =

O O OwiN
O DIl
BIENIFVIE O
Blwolwbi- O

In Figure 20, the reduced quotient DTMRDTMG,,_ (F) is presented.

In Table 7, the transient and the steady-state probabm]‘.i”e{k] (1 <i < 4)for the reduced quotient DTMC of the
abstract shared memory system at the time momeat®, 5, 10, .. ., 50} andk = o are presented, and in Figure 21,
the alteration diagram (evolution in time) for the tran$ipmbabilities is depicted.

Then the steady-state PMF fRDTMC,,_(F) is

oo L 8 10
vEP )
Note thaty’> = (¥"° (K1), ¥ (K2), ¥ (Ka), ¥ (Ke)). By the “quotient” analogue of Proposition 5.3, we have
¢K) =0, ¢K)=2, ¢(K)=0, ¢ Ki)=2. ¢(Ks)=0, ¢'(Ke) =12
Thus, the steady-state PMF fSMCiSS(F) is
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Table 7: Transient and steady-state probabilities for ¢deiced quotient DTMC of the abstract shared memory system.

| k JJo] 5 | 10 | 15 [ 20 | 25 | 30 | 35 [ 40 [ 45 | 50 | o |
y;°[K] [[ 1] 05129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0
y5°[K] || 0] 0.1244] 0.0931] 0.0764| 0.0679] 0.0635| 0.0612| 0.0600| 0.0594| 0.0591| 0.0590] 0.0588
y3°[Kl || 0] 0.1726] 0.2614] 0.3060| 0.3289| 0.3406| 0.3466| 0.3497] 0.3513] 0.3521| 0.3525] 0.3529
y,°[K] || 0] 0.1901] 0.3824] 0.4826| 0.5341| 0.5605| 0.5740| 0.5810] 0.5845| 0.5863| 0.5872| 0.5882
1.0 X
-0 y1°[K]
a2 °[K]
0.8 —o— Y3 °[K]
—a— Y4’ [K]
0.6t
0.4
0.2 1’
i
/A ¢ '
‘ (&
/ L L A A 41 a1 : Y YVR k
10 20 30 40 0

Figure 21: Transient probabilities alteration diagramtfa reduced quotient DTMC of the abstract shared memorgisyst
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1 6 10
y 1_7, 0, 1_7, 0, 1_7 .
This coincides with the result obtained with the usgtfandSJ.
We can now calculate the main performance indices.

¢ =10

e The average recurrence time in the stitewhere no processor requests the memory, calledbeage system
run-through is wi = =17
2

e The common memory is available only in the stat€sKs, Ks. The steady-state probability that the memory
is available isp, + ¢4 + ¢ = 15 + 0+ 0 = &. Then the steady-state probability that the memory is uised (
not available), called thehared memory utilizatioris 1- & = 2.

o After activation of the system, we leave the st&tefor ever, and the common memory is either requested or
allocated in every remaining state, with exceptiofi®f Thus, theate with which the shared memory necessity
emergesoincides with the rate of leavinfz, calculated ag = 47 - § = &.

e The common memory request of a procegspis only possible from the staté¢,, K. In each of the states, the
request probability is the sum of the execution probabsifor all multisets of multiactions containifig. The

steady-state probability of the shared memory request &@Tocessois ¢} 3, | PMa(%z, K) +
) PMA(q(A,q()zﬁ(%ﬁ)Jr%(ng;)_15

8 8/ 68"

One can see that the performance indices are the same favrti@ate and the quotient abstract shared memory
systems. The coincidence of the first, second and third paeince indices obviously illustrates the results of Propo-
sition 8.1 and Proposition 8.2. The coincidence of the toperformance index is due to Theorem 8.1: one should
just apply its result to the derived step tra¢gs$), {{r},{r}}, {{r}, {m}} of the expressioR and itself, and then sum the
left and right parts of the three resulting equalities.

(AKIrIeA, ToDK

AKI(r)eA, KaDS%K)

9.3. The generalized system

Now we obtain the performance indices taking general véfluesll multiaction probabilities and weights. Let us
suppose that all the mentioned multiactions have the samergiézed probability) € (0; 1), and generalized weight
| € N»1. The resulting specificatiod of the generalized shared memory system is defined as follows

The static expression of the first processor is

K1 = [({xa}, p) * ((fra}, p); ({d1, ya}, 1); ({ma, 21}, o)) * Stop].
The static expression of the second processor is

Kz = [({x2}, p) * (({r2}, p); ({d2, Y2}, 1); (Mg, 22}, p)) * Stop].
The static expression of the shared memory is

Ks = [({a, X1, %2}, p) + ((1Y2h,1); ({1}, oD O((HY2) 1); ({22, p))) = Stop].
The static expression of the generalized shared memorgraysith two processors is

K = (KylIK2llK3) st (X1, X2, Y1, Y2, 21, 22).

We haveDRy (K) = {31, %, &, %, %, %) andDRy(K) = {5, &, %).
The states are interpreted as followsisthe initial states;: the system is activated and the memory is not requested,
§: the memory is requested by the first processgr,tie memory is requested by the second processorthe
memory is allocated to the first processsr,the memory is requested by two processerstlie memory is allocated
to the second processas; the memory is allocated to the first processor and the memagguested by the second
processorsyg: the memory is allocated to the second processor and the mesn@quested by the first processor.
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Figure 22: The transition system of the generalized shamdony system.
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Figure 23: The underlying SMC of the generalized shared ngsystem.
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In Figure 22, the transition syste‘ﬁ_ﬁ(ﬁ) is presented. In Figure 23, the underlying S®QK) is depicted.
The average sojourn time vectorkfis

~ 1 1 1 1 11
SJ: a3 90709 709 9_9_)'
(ps p(2-p) p(L+p=p?)" " p(l+p-p?) p? p?
The sojourn time variance vector Kfis
\mz(l—ps (1-p o 1=pA+p) | (1=p)*L+p) 1-p? 1—p2)
p° TpH2-p)* T T PP+ p—p?? T AL+ p—pD? p* T pt
The TPM forEDTMQ(K) is

0 1 0 0O 0 0 0 O 0
0 o0 ;;_g ;;_g 0 £ 0 0 0
0 o0 0 0O 1 0 o0 0O 0
0 o0 0 0O 0 0 1 O 0
—_ ) )2 2
P = 0 fii)—;)z 0 l+ﬁ)—p2 0 0 0 lipl—pz 0
0 0 0O 0 0 o0 1% i
(1-p) 2 192
0 £2 £~ 0 0 0 0 0
0 o0 0 1 0 0 0 O 0
0 o0 1 0O 0 0 0 O 0

The steady-state PMF f&DTMQ(K) is

U = st (0202 30 = %), 2+ p = 307 + p%, 24+ p = 307 + p% 24+ p — 30% + p%, 20%(1 ~ p),
2+p-302+p%2-p-p%2-p-p.
The steady-state PM§* weighted bySJis

1
2613 97 1 20 (0.20%(1 - p),0,0,p(2 - p),0,p(2— p),2— p — p*, 2= p — p).

It remains to normalize the steady-state weighted PMF bigighg it by the sum of its components

- - 2 _ 2 _ 3
787 = ; +p—p Zp .
p*(6 + 3p — 9p? + 2p°)

Thus, the steady-state PMF 8MQK) is

1 2 2 2
1- 2— 2-p),2-p—-p°,2—-p-p).
2(2+p—p2—p3)(0’2'0( 0),0,0,0(2-p),0,p(2-p),2—p—p~,2—p —p°)

We can now calculate the main performance indices.

Q=

e The average recurrence time in the statevhere no processor requests the memory, calledibeage system

_ i« 1 _ 24p—p?-p°
run-through is %= )

e The common memory is available only in the stadg$s, &4, &%. The steady-state probability that the memory

is available isp3 + 3 + @4 + e = 255(_;{),)3 +0+0+0= 25‘_1[;2‘:)[)3. Then the steady-state probability that the

2, 2
i i i iizatione 1 P (-p) _ 2+p-2p
memory is used (i.e. not available), called #te@red memory utilizatigris 1 vl v <

e After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptiosofThus, therate with which the shared memory necessity

A ; ey ™ F2 _ _p*(1-p)  p(2-p) _ p*(1-p)(2-p)
emerge<oincides with the rate of leaving, calculated a% = TR T T it
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e The common memory request of the first procesgef,(p) is only possible from the stateg, 5;. In each of the
states, the request probability is the sum of the executiolpgbilities for all sets of activities containing{}, p).
Thesteady-state probability of the shared memory request fr@nfirst processois @z 3. v, p)er; PT(T, &)+

~ ~ 2(1— 2 2(24+p—202
&1 erirapen PTOL8) = 525525 (0(1 - p) + p?) + 56558 (p(1 - p) + ) = Sl

9.4. The abstract generalized system and its reduction

Let us consider a modification of the generalized shared mgsystem with abstraction from identifiers of the
processors. We call this system the abstract generaliz@ddimemory one.
The static expression of the first processor is

Ly = [(xa}, o)+ ((Ar}, p); ({d, yab 1); (I 1, p)) + Stop].
The static expression of the second processor is

Lz = [({x2}, p) = ((fr}, p); ({d, Y2}, 1); (Im, 22}, p)) + Stop].
The static expression of the shared memory is

Ls = [({a X1, X2}, p) = (Y1} 1); ({z}, D O((HY2), 1); (1223, p))) = Stop].
The static expression of the abstract generalized sharatbnyesystem with two processors is

L = (LallL2lIL3) sr (X1, X2, Y1, Y2, Z1, 22).

DR(L) resemble®R(K), andT S(L) is similar toT S(K). We haveSMQL) ~ SMQK). Thus, the average sojourn
time vectors oL andK, as well as the TPMs and the steady-state PMFEBFMC(L) andEDTMC(K), coincide.

The first, second and third performance indices are the santbd generalized system and its abstract modifica-
tion. Let us consider the following performance index whighgain specific to the abstract system.

e The common memory request of a process$oy; ) is only possible from the states, 55, ;. In each of the
states, the request probability is the sum of the executiolgbilities for all sets of activities containingy, p).
The steady-state probability of the shared memory request foprocessoris @2 3y pery PT(T, $2) +

~ ~ ~ ~ 2(1—
&5 2 riar ey PTY, 85) + &7 Xy pper) PT(T, &) = 52 LA (p(1 - p) +p(L - p) +p?) +

2+p—p2—p3
2- 2- 2(2-p)(L+p—p?
2 O = 0%) + 0°) + st S (0L = p) 4 p°) = EEERESS,

We haveDR(E)/Rss(D = {7?1,7?2,7?3, 7?4, 7?5, 7?6}, where??l = {§} (the initial state),‘l?g = {%} (the system is
activated and the memory is not requegé@,z {%s, &} (the memory is requested by one procigssﬁn); {5, 57}

(the memory is allocated to a processdf}, = {5} (the memory is requested by two processol&) = {Ss, S} (the
memory is allocated to a processor and the memory is regliegtanother processor).

We also havédRr(D)/x_r) = (K1, Ka. Ka. Ke} andDRy(L)/_ry = (K, K}
In Figure 24, the quotient transition systé’nsﬁss([) is presented. In Figure 25, the quotient underlying SMC
SMC.,_(L) is depicted.
The quotient average sojourn time vectoiFois
~7 1 1 1 1
SJ 2(_, ,09 709_)'
PP p(2-p) T p(L+p-p?) 7 p?
The quotient sojourn time variance vectorfofs
., _ 3 _ )2 _ )2 _ 2
VAH :(1 6p , gl p) .0 (1 p) (1+2pl,0’1 4p )
P p*2-p)*  pA(l+p-p?) P

The TPM forEDTMC,,_(L) is
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Figure 24: The quotient transition system of the abstraceg®ized shared memory system.
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Figure 25: The quotient underlying SMC of the abstract galiesd shared memory system.
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0 1 0 0 O 0
2(1-p)

0 0 3 ; 0 z%p 0
5|0 o 10 o
- (1-p) ? 1-p?
0 f+p—/;2 l+f:—p2 0 0 l+pF—}p2

0 0 0 0 O 1

0 0 1 0 O 0

The steady-state PMF f&DTMC,,_(L) is

1

= 0.0(2-3p+p%),2+p - 3% +p°,2+p—30° +p°,p*(L - p),2 - p — p).
6+3p—9p2+2p3( p(2=3p+p%),24p=30"+p% 24 p =30+ p(1 =p), 2= p - p)

IZ/*

The steady-state PMF* weighted by§j is

1 2 2
p2(6+3p_9p2+2p3)(0’p (1_)0),0’;0(2_)0),0’2_,0_.0 )

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

2+p-p*-p°

~, ~T
7S = .
v 726+ 30— 92+ 209)

Thus, the steady-state PMF 8MC,,_(L) is

1
4 2+p_p2_p3( ’p( P), ’P( ,0), ’ P p)

Alternatively, fromT Sﬁss(f), we can construct the reduced quotient DTMCI__oRDTMCiSS(E), and then calcu-
late¢’ using it. - 3 o

Remember thaDRT(L)/RSS(D = {K1, K>, K4, K} and DRV(L)/&S(E) = {K3,%Ks}. We reorder the elements of
DR(L)/g.ry» by moving the equivalence classes of vanishing statestbrét positionsKs, Ks, K1, Kz, Ka, K.

The (reordered) TPM foDTMC,, (L) is

0 0 0 0 1 0
0 0 0 0 0 1
P 0 0 1-p° o 0 0
20(1-p) p* 0  (1-p)? 0 0
p° 0 0 p¥(l-p) 1-pA-p?) p(1-p?)
0? 0 0 0 0 1-p?
The result of the decomposirﬁj are the matrices
0 0
~ 0 0 N — 0 010 = _ 2p(1 _p) p2
C‘(o o)’D‘(0001)’E‘ 2o |
p° 0
1-p° o3 0 0
=_| 0 @-pp? 0 0
0 p(1-p) L-pA-p?) p(1-p?)
0 0 0 1-p?

SinceC’! = 0, we havevk > 0, C’X = 0, hence| = 0 and there are no loops among vanishing states. Then
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RDTMC._ ()

= P p) =
c< ( -
P IC4 /' 20(1 — p) | ICQ (1— p)?

G = Cll C/O |
k=0
Further, the TPM foRDTMC,,_(L) is
1-p° o 0 0
~/<> T'~A =4l e =4 e Y 0 (1 P)Z 2p(1 p) pZ
P +E'GD'=F +FID'=F +ED’ =
0 p(l-p) 1-p- p+2p3 p(L- p)
0 0 o2 1-p?
In Figure 26, the reduced quotient DTI\/RDTMC:SS(E) is presented.
Then the steady-state PMF fBDTMC,,_(L) is
7= (0051 p).p(2-p).2— p - p?)
2 + p _ p2 _ p3 9 9 9 .

Note thaty’® = (J"°(Ky), ° (%), i (Ka), ¥° (Ks)). By the “quotient” analogue of Proposition 5.3, we have

FK) =0, F(Ko) =20 #(Ks)=0, §(Ka)=L2L §(Ks)=0, F(Ko)= 2L

2+p—p?—p*’ 2+p—p?-p*’ 2+p—p?—p**

Thus, the steady-state PMF 8MC,,_(L) is

1

y=——"— (0,0%(1-p),0,p(2-p),0,2-p —p).
2+p_p2_p3(,p( p),0,p(2 - p) p=p°)

This coincides with the result obtained with the uséz@fand§i.

We can now calculate the main performance indices.

e The average recurrence time in the stitewhere no processor requests the memory, calledbege system

_ i 1 _ 2+p—p?—p°
run-through is 5= )

61



e The common memory is available only in the statés K, Ks. The steady-state probability that the memory

is available isgy + & + ¢, = Zf;flf}z’?p3 +0+0= zji(;’i)pg. Then the steady-state probability that the memory

; ; ; i atian PP(A=p) _ _2+p-2p°
is used (i.e. not available), called thleared memory utilizatigris 1— T R = TR

o After activation of the system, we leave the statefor ever, and the common memory is either requested or
allocated in every remaining state, with exceptiofk®f Thus, theate with which the shared memory necessity

T : ey G _ _p*(1-p)  pR-p) _ p’(1-p)(2-p)
emergegoincides with the rate of leavirl>, calculated a%,z = gh s B = 5

e The common memory request of a procegspis only possible from the statdé, K. In each of the states, the
request probability is the sum of the execution probabgifor all multisets of multiactions containifig. The

steady-state probability of the shared memory request agrocessois ¢, Z{M?ur:eA, AR PMa(7, K) +

- - 201 - 209 _ 2
PMa(Ka, K) = 52 (& p)3(2p(1—p) +p?) + p(2-p) 2(0(1 - p?) + p3) = 2 @p)(L+p—p7)

2+p—p%—p’ 2+p—p2—p 2+p—p2—p3

~7
P4 Z|A,7?\|r]eA, K55

One can see that the performance indices are the same footgate and the quotient abstract generalized
shared memory systems. The coincidence of the first, seqahthad performance indices obviously illustrates the
results of Proposition 8.1 and Proposition 8.2. The coimeid of the fourth performance index is due to Theorem
8.1: one should just apply its result to the derived stepes#c}}, {{r},{r}}, {{r}, {m}} of the expressioh and itself,
and then sum the left and right parts of the three resultingktips.

Let us consider what is thefect of quantitative changes of the parameterpon performance of the quotient
abstract generalized shared memory system in its steady ®amember that € (0; 1) is the probability of every
multiaction of the system. The closerdgo 0, the less is the probability to execute some activitiesvary discrete
time step, hence, the system will most probatnd idle The closer i to 1, the greater is the probability to execute
some activities at every discrete time step, hence, themsystill most probablyperate

2 2

Sinceg, = @3 = ¢, = 0, only ¢, = pr(_;‘_’)lﬁ, @, = 2+Z(_2;f_)p3, &y = % depend omp. In Figure 27, the
graphs fors}, @), & as functions op are depicted. Notice that, however, we do not alfow 0 orp = 1.

One can see that,,” ¢, tend to 0 andpg tends to 1 whemw approaches 0. Thus, whenis closer to 0, the
probability that the memory is allocated to a processor aediiemory is requested by another processor increases,
hence, we haveore unsatisfied memory requests

Further,g,,, ¢; tend to 0 and, tends to 1 whep approaches 1. Thus, wheris closer to 1, the probability that
the memory is allocated to a processor (and not requesteddifier one) increases, hence, we hi@gs unsatisfied
memory requests

The maximal value 0797 of g, is reached whep ~ 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, iEmtximal shared memory availability about 8%.

In Figure 28, the graph for the average system run-throwdbutated asq;}, as afunction op is depicted. One can
see that the run-through tendsstovhenp approaches 0 or 1. Its minimal value.3216 is reached when~ 0.7433.

To speed up operation of the system, one should take the ptegntloser to 07433.

The first graph in Figure 29 represents the shared memoatitin, calculated as-1 ¢, — ¢; — ¢, as a function
of p. One can see that the utilization tends to 1 both whapproaches 0 and whenapproaches 1. The minimal
value 09203 of the utilization is reached when~ 0.7433. Thus, theninimal shared memory utilizatios about
92%. To increase the utilization, one should take the parerpeloser to 0 or 1.

_ The second graph in Figure 29 represents the rate with whechttared memory necessity emerges, calculated as
%, as a function op. One can see that the rate tends to 0 both whapproaches 0 and wherapproaches 1. The
maximal value @751 of the rate is reached when: 0.7743. Thus, thenaximal rate with which the shared memory
necessity emergésaboutl%. To decrease the mentioned rate, one should take the pamnodbser to 0 or 1.

The third graph in Figure 29 represents the steady-statepility of the shared memory request from a processor,
calculated agp’zf’z + &;;21, Wherefi’ = ZIA%H%A AR PMA(7~G,‘]~(), i € {2,4}, as a function op. One can see that
the probability tends to 0 whem approaéhes 0 and it tends to 1 wheapproaches 1. To increase the mentioned
probability, one should take the parameteroser to 1.
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Figure 29: Some performance indices as functions of thenpetexp.

10. Related work

In this section, we consider in detailfirences and similarities between dtsiPBC and other wellwkror similar
SPAs for the purpose of subsequent determining the spedifemgages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian TilReatesses for Performance Evaluation (MTIPP)
[34], Performance Evaluation Process Algebra (PEPA) [86] Bxtended Markovian Process Algebra (EMPA) [10].

In MTIPP, every activity is a pair consisting of the actiomm(including the symbat for theinternal, invisible
action) and the parameter of exponential distribution efdhtion delay (theate). The operations angrefix choice
parallel composition includingynchronizatioron the specified action set aretursion It is possible to specify pro-
cesses by recursive equations as well. The interleavingsies is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systeNwte that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultanetngs &f any two activities has zero probability according
to the properties of continuous distributions. The cordgimitime Markov chains (CTMCs) can be derived from the
mentioned transition systems to analyze the performance.

In PEPA, activities are the pairs consisting of action tyfiasluding theunknown unimportant typer) and
activity rates. The rate is either the parameter of expaaletiistribution of the activity duration or it isnspecified
denoted byt. An activity with unspecified rate ipassiveby its action type. The set of operations inclugesfix
choice cooperation hiding and constants whose meaning is given by the defining eq@atictuding therecursive
ones. The cooperation is accomplished on the set of acti@st{the cooperation set) on which the components must
synchronizer cooperate. If the cooperation set is empty, the coomarafperator turns into thgarallel combinator.
The semantics is interleaving, it is defined via the extemsidabeled transition systems with a possibility to specif
activity rates. Based on the transition systems, the coatia time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the eltdd@ continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and raetions can beexternalor internal (denoted by
1) according to types. There are three kinds of actions aguptd rates:timedones with exponentially distributed
durations (essentially, the actions from MTIPP and PERAnediateones with priorities and weights (the actions
analogous to immediate transitions of generalized SPN$NS¥ andpassiveones (similar to passive actions of
PEPA). Timed actions specify activities that are relevanplerformance analysis. Immediate actions model logical
events and the activities that are irrelevant from the perémce viewpoint or much faster than others. Passive
actions model activities waiting for the synchronizatioithviimed or immediate ones, and express nondeterministic
choice. The set of operators consistpoéfix functionalabstraction functionalrelabeling alternativecomposition
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andparallel composition ones. Parallel composition incluggachronizatioron the set of action types like in TCSP
[37]. The syntax also include®cursivedefinitions given by means of constants. The semantics ésl@atving
and based on the labeled transition systems enriched wétlinformation on action rates. For the exponentially
timed kernel of the algebra (the sublanguage including erponentially timed and passive actions), it is possible to
construct CTMCs from the transition systems of the processg to analyze the performance.

In dtsiPBC, every activity is a pair consisting of the mudtian (not just an action, as in the classical SPAs) as
a first element. The second element is either the probalgily the rate, as in the classical SPAS) to execute the
multiaction independently (the activity is called a stostimmultiaction in this case) or the weight expressing how
important is the execution of this multiaction (the actiig called an immediate multiaction in this case). Immealiat
multiactions in dtsiPBC are similar to immediate actionEMPA, but all the immediate multiactions have the same
priority 1 (with the purpose to execute them always befooelsastic multiactions, all having the same priority 0),
whereas the immediate actions in EMPA can ha¥iedint priority levels. There are no immediate actions in RH |
and PEPA. Immediate actions are available only in IPEPA, [88Ere they are analogous to immediate multiactions in
dtsiPBC, and in a variant of TIPP [29] discussed while cartiing the calculus PM-TIPP in [67], but there immediate
activities are used just to specify probabilistic brangrand they cannot be synchronized.

dtsiPBC has the sequence operation in contrast to the pirediindhe classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is morebfeexinan the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is agals to that in MTIPP and PEPA, as well as to the
alternative composition in EMPA, in the sense that the ah@qorobabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classicalutial Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), kanthe situation in the classical SPAs where parallel
composition (combinator) has a synchronization capgbRelabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. Theriggin operation in dtsiPBC diers from hiding in PEPA
and functional abstraction in EMPA, where the hidden actiare labeled with a symbol of “silent” actian In
dtsiPBC, restriction by an action means that, for a givemesgion, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an eleargraction in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are condbiméhe multiactions from the synchronized activities. The
operation produces new activities such that the first el¢émfegvery resulting activity is the union of the multiacton
from which all the mentioned pairs of conjugated actionsrareoved. The second element is either the product of
the probabilities of the synchronized stochastic muliiaxs or the sum of the weights of the synchronized immediate
multiactions. This diers from the way synchronization is applied in the classi¢¥\s where it is accomplished over
identical action names, and every resulting activity cetissof the same action name and the rate calculated via some
expression (including sums, minimums and products) onatesrof the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive diefiisi but it includes the iteration operation to specify
infinite looping behaviour with the explicitly defined starid termination.

dtsiPBC has a discrete time semantics, and time delays iatiggble states are geometrically distributed, unlike
the classical SPAs with continuous time semantics and expally distributed activity delays. As a consequence,
the semantics of dtsiPBC is the step one in contrast to tleeléatving semantics of the classical SPAs. The per-
formance is investigated via the underlying semi-Markoaioh (SMCs) and (reduced) DTMCs extracted from the
labeled probabilistic transition systems associated @xfiressions of dtsiPBC. In the classical SPAs, continumes t
Markov chains (CTMCs) are usually used for performancewsatan. In [26], a denotational semantics of PEPA has
been proposed via PEPA nets that are high-level CTSPNs withured tokens (coloured CTSPNSs), from which the
underlying CTMCs can be retrieved. In [9, 6], a denotati@eshantics of EMPA based on GSPNSs has been defined,
from which one can also extract the underlying SMCs and CT@®n both immediate and timed transitions are
present) or discrete time Markov chains (DTMCs) (but whesréhare only immediate transitions). dtsiPBC has a
denotational semantics in terms of LDTSIPNs from which thderlying SMCs and embedded DTMCs (EDTMCs)
can be derived.

10.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were proposed among norkdd@an ones [42]. The semantics of all Marko-
vian calculi is interleaving and their action delays havpanential distribution, which is the only continuous preba
bility distribution with memoryless (Markovian) property
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In [17], Generalized Stochastic Process Algebra (GSPA) imtasduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event stes{GSESs) with non-Markovian stochastic delays of events
In that paper, no operational semantics or performanceatiah methods for GSPA were presented. Later, in [41],
generalized semi-Markov processes (GSMPs) were extréciedGSESs to analyze performance.

In [65], generalized Stochasticcalculus (%) with general continuous distributions of activity delayas de-
fined. It has a proved operational semantics with transtiateled by encodings of their deduction trees. No
well-established underlying performance model for thisign of Sr was described.

In [15, 14], Generalized Semi-Markovian Process AlgebraMBA) was developed with ST-operational seman-
tics and non-Markovian action delays. The performanceyarsmin GSMPA is accomplished via GSMPs.

Again, the first fundamental filerence between dtsiPBC and the calculi GSPAa8d GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of ProcessrAl@eh) from [17], S extendsr-calculus [59]
and GSMPA is an enrichment of EMPA. Therefore, both GSPA af#BA haveprefixing choice (alternative
composition),parallel composition,renaming(relabeling and hiding (abstractior) operations, but only GSMPA
permitsconstantsUnlike dtsiPBC, GSPA has neither iteration or recursioBMPA allows onlyrecursivedefinitions,
whereas 8 additionally has operations to specifyobility. Note also that GSPA,75Sand GSMPA do not specify
instant events or activities while dtsiPBC has immediatdtiauations.

The second significantfierence is that geometrically distributed or zero delaysiaseciated with process states
in dtsiPBC, unlike generally distributed delays assigneévents in GSPA or to activities imSand GSMPA. As
a consequence, dtsiPBC has a discrete time operationahtemallowing for concurrent execution of activities
in steps. GSPA has no operational semantics whileafd GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleawingze simultaneous occurrence of any two events has zero
probability according to the properties of continuous ptaibty distributions. Therefore, interleaving traneits are
often annotated with an additional information to keep ecowrency data. The transition labels in the operational
semantics of B encode the action causality information and allow one tivdehe enabling relations and the firing
distributions of concurrent transitions from the tramsitsequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semaafigscalculus. ST-operational semantics of GSMPA is based
on decorated transition systems governed by transiti@smith rather complex preconditions. There are two types of
transitions: the choice (action beginning) and the tertingaction ending) ones. The choice transitions are &bel
by weights of single actions chosen for execution while éretnation transitions have no labels. Only single actions
can begin, but several actions can end in parallel. Thuschiée transitions are the interleaving ones while the
termination transitions are the step ones. As a result,éberdted interleavingstep transition systems are obtained.
dtsiPBC has an SPNs-based denotational semantics. In csmpavith event structures, PNs are more expressive
and visually tractable formalism capable of finitely spgicif an infinite behaviour. Recursion in GSPA produces
infinite GSESs while dtsiPBC has iteration operation withnitdi SPN semantics. Identification of infinite GSESs
that can be finitely represented in GSPA was left for a futasearch.

10.3. Discrete time

In [1], a class of compositional DTSPNs with generally digited discrete time transition delays was proposed,
called dts-nets. The denotational semantics of a stochadinsion (we call it stochastic ACP or SACP) of a subset
of Algebra of Communicating Processes (ACP) [5] can be cootd via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones, with zero delayd,teme ones, whose delays are random variables having
general discrete distributions. The top-down synthesidtefnets consists in the substitution of their transitibps
blocks (dts-subnets) corresponding to the sequence,ehmcallelism and iteration operators. It was explained ho
to calculate the throughput time of dts-nets using the semine (defined as holding time or delay) of their transiion
For this, the notions of service distribution for the traiasis and throughput distribution for the building blockene
defined. Since the throughput time of the parallelism bloéls walculated as the maximal service time for its two
constituting transitions, the analogue of the step semmaafiproach was implemented.

In [52, 53], an SPA called Theory of Communicating Processiéis discrete stochastic timd CP'sY) was in-
troduced. Its actions have (deterministic) discrete read tdelays (including zero time delays) or stochastic time
delays. The algebra generalizes real-time processesdetlistochastic time ones by applying real-time propertie
to stochastic time and imposing race condition to real tiemantics. TCP!st has an interleaving operational se-
mantics in terms of stochastic transition systems. Theopedince is analyzed via discrete time probabilistic reward
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Table 8: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions
Continuous No MTIPP (CTMC),PEPA (CTMP), GSPA (GSMP), 8, GSMPA (GSMP)
sPBC(CTMC)
Yes EMPA (SMC, CTMC),gsPBC(SMC) —
Discrete No — dtsPBC (DTMC)
Yes TCPSY(DTMRC) sACP, dtsiPBC (SMC, DTMC)

graphs which are essentially the reward transition syst&itisprobabilistic states having finite number of outgo-
ing probabilistic transitions and timed states having @lsiroutgoing timed transition. The mentioned graphs can
be transformed by unfolding or geometrization into diseté#he Markov reward chains (DTMRCs) appropriate for
transient or stationary analysis.

The first diference between dtsiPBC and the algebras SACH &#*tis that dtsiPBC is based on PBC, but SACP
andT CPst are the extensions of ACP. SACP has taken from ACP eatyuencechoicg parallelismanditeration
operations, whereas dtsiPBC has additionally relabetiegfriction and synchronization ones, inherited from PBC.
In TCP's! besides standard actipmefixing alternativeg parallel composition gncapsulatior{similar to restriction)
andrecursivevariables, there are aldoned delay prefixingdependent delays scopad themaximal time progress
operators, which are new both for ACP and dtsiPBC.

The second diierence is that zero or geometrically distributed delaysisseciated with process states in dtsiPBC,
unlike zero or generally distributed discrete time delayaadions in SACP and deterministic or generally distriloute
stochastic delays of actions TCPSt. Neither formal syntax nor operational semantics for sA@Pdefined and it
is not explained how to derive Markov chains from the algeleapressions or the corresponding dts-nets to analyze
performance. It is not stated explicitly, which type of senizs (interleaving or step) is accommodated in SACP. In
spite of the discrete time approach, operational semaoti# P'stis still interleaving, unlike that of dtsiPBC. In
addition, no denotational semantics was definedfePst

Table 8 summarizes the SPAs comparison above and that frotio®é& (the calculi SPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time,pitesence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denabsemantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specifigrthrentheses near the name of the corresponding SPA.

11. Discussion

Let us now discuss which advantages has dtsiPBC in compasith the SPAs described in Section 10.

11.1. Analytical solution

An important aspect is the analytical tractability of thelarlying stochastic process, used for performance eval-
uation in SPAs. The underlying CTMCs in MTIPP and PEPA, ad a®ISMCs in EMPA, are treated analytically,
but these continuous time SPAs have interleaving semar@&PA, & and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is construcked for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, wheneagerformance model forsSis defined. sACP and
TCP'stare the discrete time models with the associated analytiesthods for the throughput calculation in SACP
or for the performance evaluation based on the underlyinylRTs in TCP*S!, but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non{gaging semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model iprapriate as a framework for the analytical solution
towards performance evaluation then one has a choice betiveeontinuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones SACPC St Otherwise, if one needs a non-interleaving model with 8s®aiated analytical
methods for performance evaluation and the discrete tirpeoagh is feasible then dtsiPBC is the right choice.
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An existence of the analytical solution also permits toriptet quantitative values (rates, probabilities etc.yrfro
the system specifications as parameters, which can be edljiosbptimize the system performance, like in dtsPBC,
dtsiPBC and parametric probabilistic transition systeineas DTMCs whose transition probabilities may be real-ealu
parameters) [45]. Note that DTMCs whose transition proliieds are parameters were introduced in [23]. CTMCs
with the transition rates treated as parameters were iga¢stl in [31]. On the other hand, no parameters in formulas
of SPAs were considered in the literature so far. In dtsiPRCcan easily construct examples with more parameters
than we did in our case study. The performance indices wilthba interpreted as functions of several variables. The
advantage of our approach is that, unlike of the method feBh wve should notimpose to the parameters any special
conditions needed to guarantee that the real values, ieterpas the transition probabilities, always lie in theial
[0; 1]. To be convinced of this fact, just remember that, ashaee demonstrated, the positive probability functions
PF, PT, PM, PM*, PM° define probability distributions, hence, they always nefarobabilities belonging to (0; 1]
for any parameters from (0; 1).

11.2. Application area

From the application viewpoint, one considers what kind ystesms are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited forithterleaving continuous time systems such that the
activity rates or the average sojourn time in the statesraoevk in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can Bedito model the mentioned systems with the activity de-
lays of diferent duration order or the extended systems, in which pprebabilistic choices or urgent activities must
be implemented. GSPA and GSMPA fit well for modeling the amndius time systems with a capability to keep the
activity causality information, and with the known actielay distributions, which cannot be approximated accu-
rately by exponential distribution, while@®an additionally model mobility in such systenTsC Pstis a good choice
for interleaving discrete time systems with determinigfixed) and generalized stochastic delays, whereas sACP is
capable to model non-interleaving systems as well, bufétre not enough performance analysis methods. dtsiPBC is
consistent for the step discrete time systems such thantiependent execution probabilities of activities are kmow
and geometrical distribution approximates well the stagédence time distributions. In addition, dtsiPBC can nhode
these systems featuring very scattered activity delayse more complex systems with instant probabilistic choice
or urgency, hence, dtsiPBC can be taken as a non-interigdisnrete time counterpart of EMPA.

11.3. Concurrency interpretation

One can see that the stochastic process calculi proposée ilitdrature are based on interleaving, as a rule,
and parallelism is simulated by synchronous or asynchremaecution. As a semantic domain, the interleaving
formalism of transition systems is often used. Therefaregstigation of stochastic extensions for more expressive
and powerful algebraic calculi is an important issue. Theettgpment of step or “true concurrency” (such that
parallelism is considered as a causal independence) SBAsrigeresting and nontrivial problem, which has attracted
special attention last years. Nevertheless, not so mamyalostochastic models of parallel systems were defined
whose underlying stochastic processes are based on DTMQseAtioned in [25], such models are morgidilt to
analyze, since a lot of events can occur simultaneouslysoreie time systems (the models have a step semantics)
and the probability of a set of events cannot be easily rékatéhe probability of the single ones. As observed in [38],
even for stochastic models with generally distributed taeéays, some restrictions on the concurrency degree were
imposed to simplify their analysis techniques. In par@icuthe enabling restriction requires that no two generally
distributed transitions are enabled in any reachable mgriience, their activity periods do not intersect and no two
such transitions can fire simultaneously, this resultst@riaaving semantics of the model.

Stochastic models with discrete time and step semantiesthaollowing important advantage over those having
just an interleaving semantics. The underlying Markov siaif parallel stochastic processes have the additiomal tra
sitions corresponding to the simultaneous execution ofgoent (i.e. non-synchronized) activities. The traosis
of that kind allow one to bypass a lot of intermediate statdsich otherwise should be visited when interleaving
semantics is accommodated. When step semantics is useithitéhmmediate states can also be visited with some
probability (this is an advantage, since some alternayigeesn’s behaviour may start from these states), but this-pro
ability is not greater than the corresponding one in casatefleaving semantics. While in interleaving semantics,
only the empty or singleton (multi)sets of activities candxecuted, in step semantics, generally, the (multi)sets of
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activities with more than one element can be executed as Welice, in step semantics, there are more variants of
execution from each state than in the interleaving case laéxecutions probabilities, whose sum should be equal
to 1, are distributed among more possibilities. Thereftire systems with parallel stochastic processes usually hav
smaller average run-through. In case the underlying Madkains of the processes are ergodic, they will take less
discrete time units to stabilize the behaviour, since thBiMs will be denser because of additional non-zero elements
outside the main diagonal. Hence, both the first passagegerformance indices based on the transient probabilities
and the steady-state performance indices based on thenstatiprobabilities can be computed quicker, resulting in
faster quantitative analysis of the systems. On the othadl fetep semantics, induced by simultaneous firing several
transitions at each step, is natural for Petri nets and allmve to exploit full power of the model.

11.4. Advantages of dtsiPBC

Thus, the main advantages of dtsiPBC are the flexible mtitiia¢abels, immediate multiactions, powerful op-
erations, as well as a step operational and a Petri net dem@bsemantics allowing for concurrent execution of
activities (transitions), together with an ability for dytecal and parametric performance evaluation.

12. Conclusion

In this paper, we have proposed a discrete time stochaséogrn dtsiPBC of a finite part of PBC enriched with
iteration and immediate multiactions. The calculus hascthrecurrent step operational semantics based on labeled
probabilistic transition systems and the denotationalasgits in terms of a subclass of LDTSIPNs. A method of
performance evaluation in the framework of the calculustieen presented. Step stochastic bisimulation equiva-
lence of process expressions has been defined and its iatiems with other equivalences of the calculus have been
investigated. We have explained how to reduce transitistesys and underlying SMCs of expressions with respect
to the introduced equivalence. We have proved that the omedi equivalence guarantees identity of the stationary
behaviour and the sojourn time properties, and thus presgrgrformance measures. A case study of the shared
memory system has been presented as an example of modeifaynpance evaluation and performance preserving
reduction within the calculus.

The advantage of our framework is twofold. First, one carc#pén it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in sleal Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allowoaaqpty syntactic transformations and comparisons.
Process algebras are compositional by definition and tiparadions naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a @eeompbdel in the algebraic setting than in PNs. The com-
plexity of PNs generated for practical models in the literatdemonstrates that it is not straightforward to construc
such PNs directly from the system specifications. dtsiPB®e suited for the discrete time applications, such as
business processes, neural and transportation netwarkguter and communication systems, whose discrete states
change with a global time tick, as well as for those, in whicé distributed architecture or the concurrency level
should be preserved while modeling and analysis (remenhiaérin step semantics, we have additional transitions
due to concurrent executions).

Future work will consist in constructing a congruence failBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible candidga stronger version et __defined via transition systems
equipped with two extra transitiorskip andredo like those from [48]. We also plan to extend the calculus with
deterministically timed multiactions having a fixed timdale(including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calculds@extend application area of the associated analysis
techniques. Moreover, recursion could be added to dtsiPBctease further specification power of the algebra.

AcknowledgementsThe first author thanks Eike Best for the qualified considenatencouraging discussions and
many valuable advices related to the subject of the paper.
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Appendix A. Proofs

Appendix A.1l. Proof of Proposition 6.2

Like it has been done for strong equivalence in Propositi@ri§rom [36], we shall prove the following fact about
step stochastic bisimulation. Let us hatee 7, R : G G’ for some index seff. Then the transitive closure of
the union of all relation® = (UjcsR;)" is also an equivalence aml: G G'.

SinceVj € J, Rjis an equivalence, by definition &, we get thaiR is also an equivalence.

Let] € 7, then, by definition oR, (s1, ) € R; implies (51, ) € R. HenceVHjx € (DR(G)UDR(G'))/x;, AH €
(DR(G) U DR(G"))/», Hix € H. MoreoverdJ’, H = Uxeg Hik.

We denoteR(n) = (UjesR;j)". Let (s1, S2) € R, then, by definition ok, 3In > 0, (s1, ) € R(n). We shall prove
thatR : Ge G’ by induction om.

Itis clear thatVj € J, Rj : G G impliesVj € J, ([G]~.[G]:) € R; and we have (B]-,[G']+) € R by
definition of R.

It remains to prove that(, s,) € R impliesVH e (DR(G) U DR(G'))/z, YA e N4

fin® PMA(Sl, 7-{) = PMA(SQ, 7-{)
e N= 1
In this case, ¢.5) € R implies3j € J, (s1,%) € Rj. SinceR; : G G, we getVH € (DR(G) U
DR(G"))/x, YA € N%

fin?

PMa(st, H) = D PMa(st, Hi) = ) PMa(s2, Hi) = PMa(sz, H).

keg” ke g’
en—->n+1
Suppose tha¥m < n, (s, s) € R(m) impliesVH € (DR(G) U DR(G))/», YA € Nﬁn, PMa(s1, H) =
PMa(sz, H).

Then 1, 52) € R(n+1) implies3j € T, (s1, ) € RjoR(n), i.e. I3 € (DR(G)UDR(G")), such that$;, s3) € R;
and (3, ) € R(n).

Then, like for the cas@ = 1, we getPMa(si, H) = PMa(ss, H). By the induction hypothesis, we get
PMa(ss, H) = PMa(sz, H). Thus,YH € (DR(G) U DR(G'))/, YA N

fin?
PMa(s1, H) = PMa(s3, H) = PMa(s2, H).
By definition, Rs{(G, G’) is at least as large as the largest step stochastic bidiolaetweenG andG’. It fol-

lows from the proved above th&G, G’) is an equivalence amlls{G,G’) : G G, hence, it is the largest step
stochastic bisimulation betwe&handG’. O
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Appendix A.2. Proof of Proposition 8.1

By Proposition 6.1,DR(G) U DR(G"))/z = ((DRr(G) U DR (G"))/=) ¥ ((DRy(G) U DRy(G'))/). Hence¥H €
(DR(G) U DR(G"))/«, all states fron# are tangible, whef{ € (DR (G) U DRr(G’))/x, or all of them are vanishing,
whenH € (DRy(G) U DRy(G))/«.

By definition of the steady-state PMFs for SM@s, € DRy(G), ¢(s) = 0 andvs € DRy(G'), ¢’(s) = 0. Thus,
YH € (DRv(G)UDRV(G"))/=, Xscrnprie) $(S) = Zserinbry©) #(9) = 0= scrnnpr (@) ¢ (S) = Zsernpre) ¢'(S)-

By Proposition 5.2Ys € DRy (G), ¢(s) = % andVvs € DR (G’), ¢/'(S) = % wherey andy’

are the steady-state PMFs I9TMC(G) andDTMC(G’), respectively. Thus{H JHe (DRr(G) U DRy (G)) /=,

_ _ w(s) _ Zserrorr@ ¥(S) _ Tsernprr(e) ¥(9)
Zse’HﬁDR(G) @(s) = ZSEWODRT(G) @(s) = ZSEWODRT(G) (deDRT(G) w(é)) T Zeorr@¥(® T X Zeqrorr e ¥ and

, _ , _ W'(s) _ Zeernorr @) ¥ (S) _ Xeennprre) ¥'(S)
Y serroRrG) € (S) = Zserinorr(@) ¢'(S) = Zsernorr (@) (ngDRT(G,W(g)) R Ty ) il b — O

It remains to prove thatH € (DRr(G) U DRr(G'))/®, X scrinbry@) ¥(S) = Lsernpry(e) ¥’ (S). Since DR(G) U
DR(G"))/% = ((DRr(G) U DRr(G"))/xr) W ((DRy(G) U DRy (G"))/&), the previous equality is a consequence of the
following: YH € (DR(G) U DR(G"))/g, Y scrinpre) ¥(S) = Zsernpre) ¥’ (S). Itis suficient to prove the previous
statement for transient PMFs only, singe- limy_,., ¢[K] andy’ = limy_,«, ¢’[K]. We proceed by induction ok

[ ) k = O

The only nonzero values of the initial PMFs DTMC(G) and DTMC(G’) are ¢[0]([G]~) and ¢[0]([G']~).
Let Ho be the equivalence class containii@j{ and [G'].. Then X «4,pre) ¥[01(s) = ¥[0l([G]:) = 1 =
Y [0([G]x) = Xseronore) ¥ [01(S).

As for other equivalence class&i{ € ((DR(G) U DR(G'))/z) \ Ho, we havey s.4~pree) ¥[01(S) = 0 =
sernpr@) ¥'[0](S).

e k—ok+1

LetH € (DR(G) UDR(G"))/% ands;, s, € H. We haveyH e (DR(G)UDR(G")/%, YA€ Nﬁn,
A — —
2 —p H. ThereforePM(s,, H) = X, o+ PT(Y,81) = Zacnz 3

~ fin “TASEH, 158, L(T)=A)
2Zaeng, PMa(s1, H) = 2pcnz PMa(S2, H) = Xpenz. 2 asefl. 555, £(1)=A) PT(Y,s) =
ZlTB%EﬁLSzl%I

PT(T,s) = PM(SQ,7~{). Since we have the previous equality forall s, € H, we can denote
PM(H, H) = PM(s1, H) = PM(s,, H). Note that transitions from the statesR(G) always lead to those
from the same set, hencés e DR(G), PM(s, H) = PM(s, H N DR(G)). The same is true fdDR(G’).
By induction hypothesisy’ c4/npr) ¥IKI(S) = Xsernpre) ¥ [KI(S). Further, )
deqf(nDR(Gf l,b[k + 1](@ = deqf(nDR(gg ZseDR(G) lﬂ[k](S)PM(S, §) = ZseDR(G) Z§e‘ﬁnDR(G) 'ﬁ[k](S)PM(S S) =
§

ZSEDR(G) 4 k](S) Z§E<F{QDR(G) PM(S» =2H ZséHnDR(G) lﬂ[k](S) Z§E<F{QDR(G PM(S» §) =
2t Zserinor) YIKI(S) Zeiinprio) stj)g;’ PT(Y,8) = YXa Xserinoree) YIKI(9) Z‘TB&,%DR(G), Ty PT(Y,s) =

2t Lsernor) YIKI(SPM(S, H) = E g Zseriroree) YIKI(S)PM(H, H) =

Y PM(H, H) YseqirpReG) lP[k](s)j Y PM(H, H) Xgerirore) t,b'[k](S'Zf

2 Lsernore) ¥ [KI(S)PM(H, H) = Y Xservnore) ¥ [KI(S)PM(S, H) =

2 Lsernore) ¥ IKI(S) Z{TIHSVE(F{QDR(G’), ¢35 PT(Y,s) =

Lo Lsernore) ¥ [KI(S) Zyernore) Zinas. o 5g PTHS) =

2H ZS’E(/'(ODR(G’) Y'[KI(S) Zg:gﬁnDR G') PM(s, %) = ZS’EDR(G’) Y'[K](S) ZglequDR(Gr) PM(s,8) =

2seDR(G) Z§'e'77‘(mDR(G/) l//'[k](S’)PMéS’, §)= Z§'e‘l7mDR(G/) L 5eDR@G) Y'[K(s)PM(s, §) =

Lgeqinora) ¥ Tk + 1(8). 0

Appendix A.3. Proof of Theorem 8.1
LetH € (DR(G) U DR(G))/x ands, 5 € H. We have/H € (DR(G) U DR(G'))/x, YA € N&

fin>

A —_—
st H &

PT(Y,s1) =

Sip ﬂ =4

— A ~ . . . . — . . A ~

S —p H. The previous equality is valid for al, s € H, hence, we can rewrite it & —» H and denote
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PMa(H, 'ﬁ) PMa(s, ?7) PMa(s, ?{) Note that transitions from the statesR(G) always lead to those from
the same set, hencés € DR(G), PMa(s, 'H) = PMA(a?{ N DR(G)). The same is true fdDR(G’).

LetX = A;--- A, be a derived step trace & andG’. Then3dHo, ..., H, € (DR(G) U DR(G"))/z, Ho gpl

Hy Sp, - ﬁlﬂ H,. Now we intend to prove that the sum of probabilities of adl thaths starting in eversy € Hp
and going through the states frof, .. ., H, is equal to the product &4, ..., Py

Z HPT(TI»S 1) = HPMA.((Hl 1, Hi).
1

(11 Tolso—d S5, L(T)=A, sett (Lsi<n))

We prove this equality by induction on the derived step ttangthn.

e N= 1
. PT(Y1, S0) = PMa, (S0, H1) = PMa, (Ho, H1).
Lty 0ty ey 1 %0) = PMay (80, H) = PMa, (Ho. )
en—-n+1
n+l
PT(Y
(T X el 08, Bhs1, LO6)=A, SEH, (L<i<n+1) (11 8-0) = \
T 2 PT(Y, s-1)PT(Then, =
Z‘Tl ,,,,, Tn\sog'”ﬁsn, L(Ti)=A;, seH; (1<i<n)} Z‘Tn+1|5n El%»fl L(Tni1)=Ani1, Sn€Hn, Sir1€Hn41) i=1 ( i» S 1) ( n+l S«l)
. L PT(ri, PT(Tni1, S0) =
Z‘Tl ,,,,, TH‘SOE"”"SH L(T) A4 SEI{I (lﬁlgn)’ ( : S l) Z‘Tn+1‘31 n‘tlsml L(Tml) An+1 3157'{11 Sr|+1€l"{n+1’ ( n+l S’])
> - - TIY, PT(Yi, s-1)PMa,, (Sh, Hne1) =

(11, Malso—+Ssn, L(T)=A;, st (Isi<n)) _ - PT(Y PMa (H. A
(1 Yl D08, £(T)=A, set; (1<izn) [1i21 PT(Yi, s-1)PMa,., (Hn, Hnia) =

n . S —
PMa,,, (Fln, 'Hn+1)2m ..... Tolso-Ts, £(1)=A, seH, (1<i<n)) [Tz PT(Yi. 5-2) =

PMa,.,(Hn, Hir1) [T, PMa (Hi_1, Hi) = TT7 PMa (Hi-1, Hi).

Let 5, o € Ho. We havePT(A1- - An, Q) = w """ ' ‘SO_) _}sn £0)A, (1<|<n)) [ lPT(‘lV.,s 1) =

T . veey
(T4 TnlSo— =80, L(T)=A), seH; (1<i<n)) '

0 = = L PT(Yi,5.1) =
Dottt Xt 5T i, 3er aaey 11T 10 S

17, PT(Yi,5-1) = PT(As- - An, ).
Since we have the Iprevio_ué equality forsl s € Hp, we can denot®T(A; - - - An, Ho) = PT(Ar- - An, S0) =
PT(A1 - An, S0).
By Proposition 8.13 «4/npr) () = Xsernpr) ¢ (S). Now we can complete the proof:
Y sernpr©E) P(OPT(Z, 9) = Y sernore) P(SPT(E, H) = PT(E, H) Xserrpree) #() =
PT(E, H) Eserrore) ¥’ (S) = Zsernpra) ¢ (SIPT(E, H) = Xsernrore) ¢’ (S)PT(E, S). U

Appendix A.4. Proof of Proposition 8.2
Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, IR(G) U DR(G"))/z = ((DRr(G) U DRr(G"))/#) @ ((DRy(G) U DRy(G))/%). Hence,
VH e (DR(G) U DR(G"))/x, all states fron¥ are tangible, whef{ € (DRr(G) U DRr(G’))/, or all of them
are vanishing, whet{ € (DRy(G) U DRy(G))/x.

2. LetH € (DR(G) UDR(G))/x andsy, s, € H. We have/H e (DR(G) UDR(G))/z, YA€ N& |
A —_— —_—
s, - H. ThereforePM(s,, H) = ZlTlele'H o PT(Y,s1) = ZAeNﬁn z
Zacnt PMa(st. H) = Zacnt PMa(s2. H) = ZAeNL X
Z:T\ﬂsZew $5%) .
PM(H, H) = PM(sy, H) = PM(s,, H). The transitions from the statesDBR(G) always lead to those from the
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S —=pH &
(TASIEH, 5158, L(N)=A) PT(T, s1) =

=~ T PT(T, SQ) =
(T3%eH, %, L(T)=A}
PT(Y, s) = PM(SQ,?{). Since we have the previous equality forall s, € H, we can denote



same set, henc¥s € DR(G), PML&??) = PMLS,'i‘? N DR(G)). The same is true fdDR(G’). Hence, for alll
se HNDR(G), we obtainPM(H, H) = PM(s, H) = PM(s, HNDR(G)) = PM(HNDR(G), HNDR(G)). The
same is true foDR(G’). Finally, PM(HNDR(G), HNDR(G)) = PM(H, H) = PM(HNDR(G’), HNDR(G")).

Let us now prove the proposition statement for the sojoune tiverages.

o LetH € (DR\/(G) U DRv(G/))/-R.

Then we haveH N DR(G) = H N DRy(G) € DRy(G)/% andH N DR(G’) = H N DRy(G’) € DRy(G')/x.
By definition of the average sojourn time in an equivalenessbf states, we g&knpre)2(H N DR(G)) =
Sknpre)2(H N DRY(G)) = 0 = Sknpre)2(H N DRY(G")) = Sknapre)z(H N DR(G)).

o LetH e (DRT(G) U DRT(G'))/R.
Then we haveH N DR(G) = H N DRy (G) € DRy (G)/% andH N DR(G’) = H N DRy (G’) € DRy (G')/.
By definition of the average sojourn tlme in an equwalenaesbf states, we gSURm(DR(G))z (HNnDR(G)) =
S‘kﬂ(DR(G))Z(Hm DRr(G)) = - PM(HnDRT(G) HNDR;(G)) ~ 1I- PM(HnDR(G) HADRG)) — 1- PM(H H) —
= PM(‘HmDR(G’)'HmDR(G’)) = PM(‘HmDRT(G’)'HmDRT(G’)) = SknEre)(HNDR(G')) = Sknpre):(HNDR(G)).

Thus,YH € (DR(G) U DR(G’))/R we haveSJRm(DR(G))z ('7‘{ N DR(G)) = SJRQ(DR(Gr))z ('7‘{ N DR(G’))
The proposition statement for the sojourn time variancesdsed similarly to that for the averages. O
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