Stochastic equivalence for performance evaluation
of concurrent systems in dtsiPBC

Igor V. TarasyuR1?*, Hermenegilda Macl?, Valentin Valer§*

aA.P. Ershov Institute of Informatics Systems, SiberiamBneof the Russian Academy of Sciences, 6, Acad. Lavremti®3p090 Novosibirsk,
Russian Federation
bHigh School of Computer Science Engineering, Universitgasitilla - La Mancha, Avda. de Espafia 02071 Albacete, Spain

Abstract

We propose an extension with immediate multiactions ofrdtectime stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC iseréte time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Masiayalero and others within a continuous time domain.
In this version of dtsiPBC, we use positive reals (insteathefpreviously used positive integers) as the weights of
immediate multiactions to provide more flexibility in spiéeation. The step operational semantics is constructed via
labeled probabilistic transition systems. The denotaiieemantics is defined on the basis of a subclass of labeled
discrete time stochastic Petri nets with immediate traorsst The consistency of the both semantics is demonstrated
In order to evaluate performance, the corresponding searkd chains and (reduced) discrete time Markov chains
are analyzed. We define step stochastic bisimulation elguiga of expressions and prove that it can be applied to
reduce their transition systems and underlying semi-Madtmins while preserving the functionality and perfor-
mance characteristics. We explain how this equivalence mefyyto simplify performance analysis of the algebraic
processes. In a case study, a method of modeling, perfoeraratuation and behaviour preserving reduction of
concurrent systems is outlined and applied to the sharedomesgstem. We also determine the main advantages of
dtsiPBC by comparing it with other well-known or similar S®A
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1. Introduction

Algebraic process calculi like CSP [53], ACP [8] and CCS [@r& a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviousuch process algebras (PAs), systems and processes
are specified by formulas, and verification of their progsris accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stoctagtasions of PAs were proposed, such as MTIPP [50],
PEPA [52] and EMPA [14, 13, 9]. Stochastic process algetB&&§) do not just specify actions which can occur as
usual process algebras (qualitative features), but trecéste some quantitative parameters with actions (cpadiaé
characteristics).
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1.1. Petri box calculus

PAs specify concurrent systems in a compositional way viexgmessive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of suchmgséad capture explicit asynchrony in their behaviour. To
combine advantages of both models, a semantics of algdbraitlas in terms of PNs has been defined. Petri box
calculus (PBC) [15, 17, 16] is a flexible and expressive pge@dgebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was algpepose a compositional semantics for high level construct
of concurrent programming languages in terms of elemeréaly. Formulas of PBC are combined not from single
(visible or invisible) actions and variables, like in CC8t from multisets of elementary actions and their conjugjate
called multiactionslfasic formulag The empty multiset of actions is interpreted as the siteualtiaction specifying
some invisible activity. In contrast to CCS, synchroniaatis separated from parallelismancurrent construcjs
Synchronization is a unary multi-way stepwise operatioseblaon communication of actions and their conjugates.
This extends the CCS approach with conjugate matchingdaBghchronization in PBC is asynchronous, unlike that
in Synchronous CCS (SCCS) [77]. Other operations are seguamd choicesequential construc)s The calculus
includes also restriction and relabelirgpétraction construcjs To specify infinite processes, refinement, recursion
and iteration operations were adddudefarchical construcfs Thus, unlike CCS, PBC has an additional iteration
construction to specify infinite behaviour when the sentaintierpretation in finite PNs is possible. PBC has a step
operational semantics in terms of labeled transition systéased on the rules of structural operational semantics
(SOS) [85]. The operational semantics of PBC is of step tgimee its SOS rules have transitions with (multi)sets of
activities, corresponding to simultaneous executiongtivities (steps). Note that we do not reason in terms of a big
step (natural) [57] or small-step (structural) [85] opema&l semantics here, and that PBC (and all its extensiobps to
mentioned further) have a small-step operational sem@mtithat terminology. A denotational semantics of PBC was
proposed via a subclass of PNs equipped with an interface@mldered up to isomorphism, called Petri boxes. For
more detailed comparison of PBC with other process algeindshe reasoning about importance of non-interleaving
semantics see [15, 16]. In the last years, several extensibRBC with a deterministic, a nondeterministic or a
stochastic model of time were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real tips¢ems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A time extension of PBC witmondeterministic time model, called time Petri box
calculus (tPBC), was proposed in [61]. IntPBC, timing imf@tion is added by associating time intervals (the earliest
and the latest firing time) with instantaneagtions tPBC has a step time operational semantics in terms ofddbel
transition systems. Its denotational semantics was defintims of a subclass of labeled time Petri nets (LtPNSs),
based on tPNs [76] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box chis(TPBC), was defined in [73], it accommodates a
deterministic model of time. In contrast to tPBC, multiacts of TPBC are not instantaneous, but have time durations.
Additionally, in TPBC there exist no “illegal” multiactionccurrences, unlike tPBC. The complexity of “illegal”
occurrences mechanism was one of the main intentions tdroeh$PBC though this calculus appeared to be more
complicated than tPBC. TPBC has a step timed operationadustes in terms of labeled transition systems. The
denotational semantics of TPBC was defined in terms of a asbdf labeled Timed Petri nets (LTPNs), based on
TPNs [88] and called Timed Petri boxes (T-boxes). Note tR&Q and TPBC dfer in ways they capture time
information, and they are not in competition but complenezmh other.

The third time extension of PBC, called arc time Petri boxcahis (atPBC), was constructed in [83], and it
implements a nondeterministic time. In atPBC, multiactiare associated with time delay intervals. atPBC possesses
a step time operational semantics in terms of labeled tiansystems. Its denotational semantics was defined on a
subclass of labeled arc time Petri nets (atPNs), where tasigictions are associated with the arcs, called arc time
Petri boxes (at-boxes). Further, all the calculi tPBC, TRPB atPBC apply the discrete time approach, but only
tPBC and atPBC have immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or ntardenistic delays often diers drastically from that
for the timeless systems, hence, the analysis results fimed systems may be not valid for the time ones. To
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solve this problem, stochastic delays are considered,hndrie the random variables with a (discrete or continuous)
probability distribution. If the random variables govergidelays have an infinite support then the corresponding SPA
can exhibit all the same behaviour as its underlying untifd&dA stochastic extension of PBC, called stochastic
Petri box calculus (sPBC), was proposed in [68]. In sPBC tiaatlons have stochastic delays that follow negative
exponential distribution. Each multiaction is equippethve rate that is a parameter of the corresponding expotentia
distribution. The instantaneous execution of a stochastitiaction is possible only after the corresponding s&stic

time delay. Just a finite part of PBC was initially used for gh@chastic enrichment, i.e. in its former version sPBC
has neither refinement nor recursion nor iteration oparatid he calculus has an interleaving operational semantics
defined via transition systems labeled with multiactiordtaeir rates. Its denotational semantics was defined insterm
of a subclass of labeled continuous time stochastic PNs GFINS), based on CTSPNSs [74, 5] and called stochastic
Petri boxes (s-boxes). In [65], the iteration operator wdded to sPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying noatis time Markov chains (CTMCSs). In [66], a number of
new equivalence relations were proposed for regular tefreBBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched furthitrimmediate multiactions having zero delay in [67]. We
call such an extension generalized sPBC (gsPBC). An irsterg operational semantics of gsPBC was constructed
via transition systems labeled with stochastic or immedmatltiactions together with their rates or probabilitiés.
denotational semantics of gsPBC was defined via a subcldabeleéd generalized stochastic PNs (LGSPNSs), based
on GSPNs [74, 5, 6] and called generalized stochastic P@tad(gs-boxes). The performance analysis in gsPBC is
based on the underlying semi-Markov chains (SMCs).

PBC has a step operational semantics, whereas sPBC hagdeaving one. Remember that in step semantics,
parallel executions of activities (steps) are permittedenin interleaving semantics, we can execute only singte ac
tivities. Hence, a stochastic extension of PBC with a stepaseics is needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As merdionf9, 80], in contrast to continuous time approach
(used in sPBC), discrete time approach allows for constrgehodels of common clock systems and clocked de-
vices. In such models, multiple transition firings (or exteamus of multiple activities) at time moments (ticks of the
central clock) are possible, resulting in a step semankittreover, employment of discrete stochastic time fills the
gap between the models with deterministic (fixed) time dekayd those with continuous stochastic time delays. As
argued in [1], arbitrary delay distributions are much easidandle in a discrete time domain. In[71, 72, 69], diseret
stochastic time was preferred to enable simultaneousatiqrirof multiple delays. In [91, 93], a discrete time stagsha
tic extension dtsPBC of finite PBC was presented. In dtsPB&Erasidence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC wastcocted via labeled probabilistic transition systems. It
denotational semantics was defined in terms of a subclasbeldd discrete time stochastic PNs (LDTSPNSs), based
on DTSPNs [79, 80] and called discrete time stochastic Bees (dts-boxes). A variety of stochastic equivalences
were proposed to identify stochastic processes with sirb@haviour which are elierentiated by the semantic equiv-
alence. The interrelations of all the introduced equiveésnvere studied. In [92, 94], we constructed an enrichment
of dtsPBC with the iteration operator used to specify infiitocesses. The performance evaluation in dtsPBC with
iteration is accomplished via the underlying discrete thtagkov chains (DTMCSs) of the algebraic processes. Since
dtsPBC has a discrete time semantics and geometricallybdittd sojourn time in the process states, unlike sPBC
with continuous time semantics and exponentially disteédudelays, the calculi apply two féérent approaches to
the stochastic extension of PBC, in spite of some similafttheir syntax and semantics inherited from PBC. The
main advantage of dtsPBC is that concurrency is treatedrilRBC having step semantics, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to cotltéee information on causal independence of activities teefo
constructing the semantics. In [95, 96], we presented thension dtsiPBC of the latter calculus with immediate
multiactions. Immediate multiactions increase the spaatifin capability: they can model logical conditions, prob
abilistic branching, instantaneous probabilistic chsiaad activities whose durations are negligible in comparis
with those of others. They are also used to specify urgeitities and the ones not relevant for performance eval-
uation. Thus, immediate multiactions can be consideredkirscbof instantaneous dynamic state adjustment and, in
many cases, they result in a simpler and more clear systeresengtation.

1.4. Equivalence relations
A notion of equivalence is important in theory of computiygtems. Equivalences are applied both to compare
behaviour of systems and reduce their structure. There igla diversity of behavioural equivalences, and their
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interrelations are well explored in the literature. Thetdawwn and widely used one is bisimulation. Typically,
the mentioned equivalences take into account only funatifmualitative) but not performance (quantitative) aspec
Additionally, the equivalences are usually interleavimgs, i.e. they interpret concurrency as sequential nondete
minism. Interleaving equivalences permit to imitate plata&xecution of actions via all possible occurrence segegen
(interleavings) of them. Step equivalences require imsg#@ulating such a parallel execution by simultaneous oc-
currence (step) of all the involved actions. To respect tjtaive features of behaviour, probabilistic equivalesic
have additional requirement on execution probabilitieso Bquivalent processes must be able to execute the same
sequences of actions, and for every such sequence, itstiseptobabilities within both processes should coincide.
In case of probabilistic bisimulation equivalence, théestérom which similar future behaviours start are groupéal i
equivalence classes that form elements of the aggregatedsgtace. From every two bisimilar states, the same ac-
tions can be executed, and the subsequent states resutingkecution of an action belong to the same equivalence
class. In addition, for both states, the cumulative prdiisgs to move to the same equivalence class by executing
the same action coincide. Afeérent kind of quantitative relations is called Markoviameglences, which take rate
(the parameter of exponential distribution that govermetdelays) instead of probability. Note that the probabilis
tic equivalences can be seen as discrete time analogues dMalkovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence wasoithiced in [32] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation mgience was proposed in [64] on the same model. Interlgavin
probabilistic equivalences were defined for probabilipticcesses in [56, 42]. Interleaving Markovian strong bisim
ulation equivalence was constructed in [50] for MTIPP, i@l][tor PEPA and in [14, 13, 9] for EMPA. Some variants
of interleaving Markovian weak bisimulation equivalencereszconsidered in [27] on Markovian process algebras, in
[28] on labeled CTSPNs and in [29] on labeled GSPNSs. In[1,déomparison of interleaving Markovian trace, test,
strong and weak bisimulation equivalences was carried ogeguential and concurrent Markovian process calculi.
Nevertheless, no appropriate equivalence notion was difiimeoncurrent SPAs. The non-interleaving bisimulation
equivalence in GSMPA [21, 20] uses ST-semantics for actatigles while in & [87] it is based on a sophisticated
labeling.

1.5. Our contributions

In this paper, we present dtsPBC with iteration extendek imitnediate multiactions, calletiscrete time stochas-
tic and immediate Petri box calculygtsiPBC), which is a discrete time analog of sPBC. The datédculus has
iteration and immediate multiactions within the contextaofontinuous time domain. In the current version of dt-
siPBC, we use positive reals (instead of positive integesed in the previous versions) as the weights of immediate
multiactions, to allow for more flexibile and convenient sifieation of systems. The step operational semantics is
constructed with the use of labeled probabilistic transiystems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and imneslNs$ (LDTSPNs with immediate transitions, LDTSIPNS),
based on the extension of DTSPNs with transition labelirdjianmediate transitions, called dtsi-boxes. LDTSIPNs
possess some features of discrete time deterministic antiagttic PNs (DTDSPNSs) [104] and discrete deterministic
and stochastic PNs (DDSPNSs) [103], but in LDTSIPNs sim@tars transition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowede Thnsistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying SMQyristecucted and investigated, with the purpose of perfor-
mance evaluation, which is the same for both semantics. ditiad, the alternative solution methods are developed,
based on the underlying DTMC and its reduction (RDTMC) byn@iating vanishing states. Further, we propose step
stochastic bisimulation equivalence allowing one to idgmtigebraic processes with similar behaviour that are-how
ever diferentiated by the semantics of the calculus. We examinentberélations of the proposed notion with other
equivalences of the algebra. We describe how step stochésitnulation equivalence can be used to reduce transition
systems of expressions and their underlying SMCs whilegpvasy the qualitative and quantitative characteristics.
We prove that the mentioned equivalence guarantees igeftihe stationary behaviour and residence time proper-
ties in the equivalence classes. This implies coincidefigedormance indices based on steady-state probabilities
of the modeled stochastic systems. The equivalences pisgdéle property can be used to reduce the state space
of a system and thus simplify its performance evaluatioratvigh usually a complex problem due to the state space
explosion. We present a case study of a system with two psoceand a common shared memory explaining how
to model concurrent systems within the calculus and anahlyzie performance, as well as in which way to reduce
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the systems while preserving their performance indicesnaaking simpler the performance evaluation. Finally, we
consider diferences and similarities between dtsiPBC and other SPAst&ardine the advantages of our calculus.
We discuss the SPAs approaches to the analytical solutimcucrency interpretation and application area.

The first results on this subject can be found in [95]. Conicgrdifferences from our previous journal papers about
dtsiPBC [96, 97, 98], the present text is much more detaiteiraany new results have been added. In particular,
all the used notions (such as numbering, functions cotigatkecutable activities, probability functions) are faity
defined and completely explained with examples; the opmratiand denotational semantics are given in full detail
(the inaction, action rules, LDTSPNs and dtsi-boxes areresttely described and discussed); compact illustrative
examples (of standard and alternative solution metho@spraasented; keeping properties of original Markov chains
(irreducibility, positive recurrence and aperiodicitg)their embedded and state-aggregated versions is stuttied.
main new contribution of the paper, step stochastic bisatinm equivalence of the process expressions, is intrauce
and checked for stationary behaviour and sojourn time featpreservation in the equivalence classes; quotienting
the transition systems, SMCs and DTMCs by the equivalersce/edl as the resulting simplification of performance
evaluation, are considered. As an application examplestdnredard and generalized variants of the shared memory
system, quotients of their behaviour (represented by #esttion systems, SMCs and DTMCs) by the equivalence
and reductions of the quotients by removing vanishing state constructed; the generalized probabilities of the
reduced quotient DTMC are treated as parameters to be edjést performance optimization. In the enhanced
related work overview, strong points of dtsiPBC with regge®ther SPAs are detected; in the extensive discussion,
analytical solution, concurrency interpretation, apgicn area and general advantages of dtsiPBC are explained.

If we compare dtsiPBC with the classical SPAs MTIPP, PEPAENKPA, the first main dference between them
comes from PBC, since dtsiPBC is based on this calculus:lggbaaic operations and a notion of multiaction are
inherited from PBC. The second mainfférence is discrete probabilities of activities induced ly discrete time
approach, whereas action rates are used in the standard@RA®ntinuous time. As a consequence, dtsiPBC has a
non-interleaving step operational semantics. This is imtrest to the classical SPAs, where concurrency is modeled
by interleaving because of the continuous probabilityritigtions of action delays and the race condition applied
when several actions can be executed in a state. The thim aifférence is immediate multiactions. There are no
instantaneous activities in MTIPP and PEPA while the imratdactions in EMPA can haveftérent priority levels.

All immediate multiactions in dtsiPBC have the same priokével, with the intention to simplify the specification
and analysis, since weights (assigned also to immediatnadh EMPA) are enough to denote preferences among
immediate multiactions and to produce the conformable gdistic behaviours. The salient point of dtsiPBC is a
combination of immediate multiactions, discrete stodbdshe and step semantics in an SPA.

Thus, the main contributions of the paper are the following.

Powerful and expressive discrete time SPA with immediatieities called dtsiPBC in its final form.

Step operational semantics of dtsiPBC in terms of labelebdatilistic transition systems.

Petri net denotational semantics of dtsiPBC based on déstiree stochastic and immediate Petri nets.

Performance analysis via underlying semi-Markov chairts(a@duced) discrete time Markov chains.

Stochastic equivalence used for behaviour-preservingptexh that simplifies the performance evaluation.

e Extended case study illustrating how to apply the obtaihedttetical results in practice.

1.6. Structure of the paper

The paper is organized as follows. In Section 2, the syntak®fextended calculus dtsiPBC is presented. In
Section 3, we construct the operational semantics of trebadgin terms of labeled probabilistic transition systeins.
Section 4, we propose the denotational semantics basedulitkass of LDTSIPNSs. In Section 5, the corresponding
stochastic process is defined and analyzed. Step stochastiwilation equivalence is defined and investigated in
Section 6. In Section 7, we explain how to reduce transitimiesns and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced edgprive is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a sharethory system is presented as a case study. Tegelice
between dtsiPBC and other well-known or similar SPAs is m®ered in Section 10. The advantages of dtsiPBC are
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explained in Section 11. Finally, Section 12 summarizegéselts obtained and outlines the research perspectives.
The long and complex proofs are moved to Appendix A.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, @malt a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finitenultiset (bag) MoverX is a mappingM : X — N such that{x € X | M(X) >
0}] < o0, i.e. it can contain a finite number of elements only.

We denote theet of all finite multisetever a seiX by N¥ . LetM, M’ € N¥ . Thecardinality of M is defined
as|M| = Y ex M(X). We writex € M if M(X) > 0 andM € M’ if ¥x € X, M(X) < M’(X). We define M + M’")(X) =
M(X) + M’(x) and M — M")(X) = max0, M(x) — M’(X)}. WhenVx € X, M(X) < 1, M can be interpreted as a proper
set and denoted byl C X. Theset of all subsets (powerset) X is denoted by 2.

Let Act = {a,b,...} be the set oklementary actions ThenAct = {a, B,...} is the set ofconjugated actions
(conjugateskyuch tha&a ™+ aanda = a. LetA = ActU Actbe the set ofill actions and£ = Nﬁ‘n be the set o#ll
multiactions Note thatd € £, this corresponds to an internal move, i.e. the executiarafiltiaction that contains
no visible action names. Ttaphabetf a € L is defined asA(a) = {x € A | a(X) > O}.

A stochastic multiactions a pair ¢, p), wherea € L andp € (0;1) is theprobability of the multiactiona.
This probability is interpreted as that of independent etiea of the stochastic multiaction at the next discreteetim
moment. Such probabilities are used to calculate thosedoute (possibly empty) sets of stochastic multiactions
after one time unit delay. The probabilities of stochastidtractions are required not to be equal to 1 to avoid extra
model complexity, since in this case one should assign vagmtweights, needed to make a choice when several
stochastic multiactions with probability 1 can be executedh a state. The diculty is that when the stochastic
multiactions with probability 1 occur in a step (parallekewtion), all other with the less probabilities do not. listh
case, some problems appear with conflicts resolving. See8[Yor the discussion on SPNs. This decision also
allows us to avoid technical fiiculties related to conditioning events with probabilityAnother reason is that not
allowing probability 1 for stochastic multiactions excisla potential source of periodicity (hence, non-ergogicit
in the underlying SMCs of the algebraic expressions. On therdhand, there is no sense to allow zero probabilities
of stochastic multiactions, since they would never be peréal in this case. LeSL be the set ofll stochastic
multiactions

An immediate multiactios a pair ¢, 1), wherea € £ and is thd € R,y = (0; +c0) positive real-valuedveight
of the multiactiona. This weight is interpreted as a measure of importance (usgenterest) or a bonus reward
associated with execution of the immediate multiactiomatdurrent discrete time moment. Such weights are used to
calculate the probabilities to execute sets of immediatkiactions instantly. Immediate multiactions have a ptior
over stochastic ones. One can assume that allimmediat&@otidhs have priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of iactiions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate mudtieectannot participate together in some step (concurrent
execution), i.e. the steps consisting only of immediatetiactions or those including only stochastic multiactians
allowed. LetZ £ be the set oéll immediate multiactions

Note that the same multiactiene £ may have dferent probabilities and weights in the same specificatian. A
activity is a stochastic or an immediate multiaction. ItL = SL U 7L be the set o#ll activities Thealphabet
of a multiset of activitiesr € N is defined asA(Y) = UerA(a). For an activity &, «) € SIL, we define

fin
its multiaction partas £(«, k) = a and itsprobability or weight partasQ(a, k) = « if « € (0;1); orQ(a, ) = | if
x =1t | € R.o. Themultiaction partof a multiset of activitiest € N9/ £ is defined asL() = ¥, ger @

Activities are combined into formulas (process expressidny the following operationssequence, choicel],
parallelism||, relabeling[ f] of actions,restrictionrs over a single actionsynchronizatiorsy on an action and its
conjugate, andteration[ « =] with three arguments: initialization, body and termipati

Sequence (sequential composition) and choice (choice asitiqm) have a standard interpretation, like in other
process algebras, but parallelism (parallel composititm®s not include synchronization, unlike the correspandin
operation in CCS [77].



Relabeling functiond : A — A are bijections preserving conjugates, i¥x € A, f(X) = ﬁ;) Relabeling
is extended to multiactions in the usual way: foe £, we definef(a) = X, f(X). Relabeling is extended to the
multisets of activities as follows: for € NI, we definef (1) = 3, ger(f (@), &).

Restriction over an elementary actiar Actmeans that, for a given expression, any process behaviatainong
aor its conjugates not allowed.

Leta,B € L be two multiactions such that for some elementary acienActwe havea € « anda e 8, ord e «
anda € B. Then, synchronization ef andg by a is defined as @, 8 = y, where

[ e +B(X) -1 x=aorx=4§
() = { a(X) + B(X), otherwise

In other words, we require that®, 8 = a + 8 — {a, &}, i.e. we remove one exemplarafind one exemplar & from
the multiset sumw + 3, since the synchronization afandd produced). Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization &pf two activities, whose multiaction partsandg possess the
properties mentioned above, results in the activity withrtfultiaction partr &, 8. We may synchronize activities of
the same type only: either both stochastic multiactionsoblhh bnmediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and inmtesthultiactions cannot be executed together (note aégo th
the execution of immediate multiactions takes no time,kenthat of stochastic ones). Synchronizatiorsayeans
that, for a given expression with a process behaviour coimgitwo concurrent activities that can be synchronized by
a, there exists also the process behaviour thi@di from the former only in that the two activities are replhby the
result of their synchronization.

In the iteration, the initialization subprocess is exeddiest, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. éAshall see, the expressions correspond to unmarked
LDTSIPNSs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (o, k) € ST L anda € Act A static expressioof dtsiPBC is defined as
E:= (o.k) | E;E|E[JE|E|E|E[f]|Ersa|Esya]|[ExExE].

Let StatExprdenote the set dll static expressionsf dtsiPBC.

To make the grammar above unambiguous, one can add paresihake productions with binary operations:
(E; E), (E[]E), (E|IE). However, we prefer the PBC approach and add them to reaatéguities only.

To avoid technical diiculties with the iteration operator, we should not allow aoncurrency at the highest
level of the second argument of iteration. This is not a sevestriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction pdrater on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are no¢ safternatively, we can use aftérent, safe, version of the
iteration operator, but its net translation has six argusie®ee also [16] for discussion on this subject.

Definition 2.3. Let (o, k) € ST L anda € Act A regular static expressioaf dtsiPBC is defined as

E:= (o,«)|E;E|E[JE|E|E|E[f]|Ersa|Esya]|[E«D=E],
whereD ::= (a,«) | D;E | D[JD | D[f] |Drsa|Dsya|[D=D = E].

Let RegS tatE xpdenote the set d@ll regular static expressionsf dtsiPBC.

Dynamic expressions specify the states of processes. Asaliesge, the expressions correspond to LDTSIPNs
(which are marked by default). Dynamic expressions areimédsfrom static ones, by annotating them with upper or
lower bars which specify the active components of the systitime current moment of time. The dynamic expression
with upper bar (the overlined on&) denotes thénitial, and that with lower bar (the underlined origenotes the
final state of the process specified by a static expredsioithe underlying static expressioof a dynamic one is
obtained by removing all upper and lower bars from it.



Definition 2.4. Let E € StatExpranda € Act A dynamic expressioof dtsiPBC is defined as

G:= E|E|G.E|E;G|G[E|E[G|GIG|G[f] |Grsa|Gsya|[G*Ex«E]|[E+GxE]|[Ex*ExG].

Let DynExprdenote the set dadll dynamic expressionsf dtsiPBC.
Note that if the underlying static expression of a dynamie @mot regular, the corresponding LDTSIPN can be
non-safe (though, it is 2-bounded in the worst case [16]).

Definition 2.5. A dynamic expression igegularif its underlying static expression is regular.

Let RegDynE xpdenote the set dadll regular dynamic expressiord dtsiPBC.

3. Operational semantics

In this section, we define the step operational semantieyimg of labeled transition systems.

3.1. Inactionrules

The inaction rules for dynamic expressions describe theicsiral transformations in the form & = G which
do not change the states of the specified processes. Thefghabke syntactic transformations is to obtain the well-
structured resulting expressions called operative onadhich no inaction rules can be further applied. As we shall
see, the application of an inaction rule to a dynamic exjpzagstoes not lead to any discrete time tick or any transition
firing in the corresponding LDTSIPN, hence, its current nregkemains unchanged.

Thus, an application of every inaction rule does not reqaimg discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished irtista

First, in Table 1, we define inaction rules for regular dynamipressions in the form of overlined and underlined
static ones. In this tabl&, F, K € RegS tatExpanda € Act

Table 1: Inaction rules for overlined and underlined regstatic expressions.

EF=EF E.F>EF E;F=EF E[F = E[JF

E[IF = E[IF E[lF = E[IF E[IE = ElF E|F = EIIF

EIF = E|F E[f] = E[f] E[f] = E[f] Ersa=Ersa
Ersa=Ersa Esya=Esya Esya:?sya [ExF«K]=[ExF*K]
[ExF+K]=2[E*xFxK] [ExF+xK]=[E+xFx*K] [ExF+K]=[ExFxK] [ExFxK]=[Ex*F K]

Second, in Table 2, we introduce inaction rules for reguaraginic expressions in the arbitrary form. In this table,
E,F € RegStatExprG, H,G, H € RegDynExpiranda € Act By reason of brevity, two distinct inaction rules with
the same premises are collated in some cases, resulting inattion rules with double conclusion.

Definition 3.1. A regular dynamic expressida is operativeif no inaction rule can be applied to it.

Let OpRegDynExpdenote the set afll operative regular dynamic expressioofdtsiPBC.
Note that any dynamic expression can be always transfornmtedai (not necessarily unique) operative one by
using the inaction rules. In the following, we consider degexpressions only and omit the word “regular”.

Definition 3.2. The relatiorr = (= U «)* is astructural equivalencef dynamic expressions in dtsiPBC. Thus, two
dynamic expressions andG’ arestructurally equivalentdenoted byG ~ G/, if they can be reached from each other
by applying the inaction rules in a forward or backward dit
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Table 2: Inaction rules for arbitrary regular dynamic exgsiens.

G=G, oe{.[l} G=G G=>G G = G, o € {rs,sy}
GoE=GoE, EoG=>EoG G|H= G|H, HIG=H|G G[f] = G[f] Goa=Goa
G=>G G=G G=>G
[G+E*F] = [GxExF] [ExGx*F] = [E*G*F] [ExF%G] = [E*F «G]

3.2. Action and empty loop rules

The action rules are applied when some activities are eedcWith these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones.alde have the empty loop rule which is used to capture
a delay of one discrete time unit in the same state when no diateemultiactions are executable. In this case, the
empty multiset of activities is executed. The action and tgrigop rules will be used later to determine all multisets
of activities which can be executed from the structural egjence class of every dynamic expression (i.e. from the
state of the corresponding process). This informationttegyavith that about probabilities or weights of the aci@st
to be executed from the current process state will be usealtalate the probabilities of such executions.

The action rules with stochastic (or immediate, otherwisaltiactions describe dynamic expression transforma-

tions in the form ofG — G (orG 4 G) due to execution of non-empty multisét®f stochastic (ot of immediate)
multiactions. The rules represent possible state charfghe specified processes when some non-empty multisets of
stochastic (or immediate) multiactions are executed. Ashadl see, the application of an action rule with stochastic
(or immediate) multiactions to a dynamic expression leadthé corresponding LDTSIPN to a discrete time tick
at which some stochastic transitions fire (or to the insteadas firing of some immediate transitions) and possible
change of the current marking. The current marking remairchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be-element, i.e. the single stochastic (or immediate)
multiaction. The reason is the regularity requirement #ilmws no concurrency at the highest level of the second
argument of iteration.

The empty loop rule (applicable only when no immediate raatiobns can be executed from the current state)

describes dynamic expression transformations in the fdr@ 6% G due to execution of the empty multiset of
activities at a discrete time tick. The rule reflects a norezobability to stay in the current state at the next time
moment, which is an essential feature of discrete time sist@hprocesses. As we shall see, the application of the
empty loop rule to a dynamic expression leads to a discrete tick in the corresponding LDTSIPN at which no
transitions fire and the current marking is not changed. iBhésnew rule that has no prototype among inaction rules

of PBC, since it represents a time delay, but no notion of txists in PBC. The PBC rul& % G from [17, 16]

in our setting would correspond to the r@e= G that describes staying in the current state when no timesetap
Since we do not need the latter rule to transform dynamicesgions into operative ones and it can even destroy the
definition of operative expressions, we do not introduce itsiPBC.

Thus, an application of every action rule with stochastidtiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty) tisat of stochastic multiactions leading to the dynamic
expression transformation described by the rule is acashgd instantly after one time unit. An application of
every action rule with immediate multiactions does not takg time, i.e. the execution of a (non-empty) multiset of
immediate multiactions is accomplished instantly at theemt moment of time.

Note that expressions of dtsiPBC can contain identicalitiets. To avoid technical diiculties, such as the proper
calculation of the state change probabilities for multiplnsitions, we can always enumerate coinciding actiitie
from left to right in the syntax of expressions. The new atifig resulted from synchronization will be annotated
with concatenation of numberings of the activities they edrom, hence, the numbering should have a tree structure
to reflect the &ect of multiple synchronizations. We now define the numlgewhich encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. Thenumberingof expressions is defined as= n| (¢t)(c), wheren € N.
9
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Figure 1: The binary trees encoded with the numberingd(2) and (1)((2)(3)).

Let Numdenote the set all numberingf expressions.

Example 3.1. The numberindl encodes the binary tree depicted in Figure 1(a) with the fabeled byl. The
numbering(1)(2) corresponds to the binary tree depicted in Figure 1(b) withianternal nodes and with two leaves
labeled byl and2. The numbering1)((2)(3)) represents the binary tree depicted in Figure 1(c) with amerinal
node, which is the root for the subtré®)(3), and three leaves labeled y2 and3.

The new activities resulting from synchronizations iffelient orders should be considered up to permutation of
their numbering. In this way, we shall recognizéelient instances of the same activity. If we compare the ctsite
of different numberings, i.e. the sets of natural numbers in thenshall be able to identify the mentioned instances.

The contentof a numbering € Numis

(o, cet:
Conty) = { Confuy) UCont(ep), ¢ = (t1)(e2).

After the enumeration, the multisets of activities from éxressions will become the proper sets. Suppose that
the identical activities are enumerated when needed ta @arbiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian productX by X2. Let& € X? be an equivalence relation o6
Then theequivalence clasg@with respect taS) of an elemeni € X is defined by Klg = {y € X | (x,y) € &}. The
equivalences partitionsX into theset of equivalence classegeX= {[X]¢ | X € X].

Let G be a dynamic expression. TheB]L = {H | G ~ H} is the equivalence class & with respect to the
structural equivalences is aninitial dynamic expression, denoted inyt(G), if 3E € RegS tatExprG € [E].. G is
afinal dynamic expression, denoted bial(G), if E € RegStatExprG € [E]-.

Definition 3.4. LetG € OpRegDynExprWe define thaet of all non-empty sets of activities which can be potéptia
executed from Gdenoted byCan(G). Let (e, «) € STL, E,F € RegStatExprH € OpRegDynExpanda € Act

1. If final(G) thenCan(G) = 0.
2. If G = (@, ) thenCan(G) = {{(a, «)}}.
3. If Y e Can(G) thenT e CanGo E), T € CanE o G) (o € {;,[]}), T € CanG||H), T € Can(H||G),
f(r) e Can(G[f]), T € CanGrs a) (whena,a ¢ A(Y)), T € Can(Gsy a), T € Can[G = E = F]),
T e Can[E*G = F]), T € Can([E = F = G]).
. If T € Can(G) andE € Can(H) thenY + = € Can(G|/H).
5. If Y € Can(G sy a) and ¢, «), (8, 1) € T are diferent activities such thate «, & € g, then
(@) T —{(a, k), (B, )} + {(@ ®a B,k - 1)} € CanG sy &), if x, 1 € (0;1);
(b) Y —{(a,«), (B, )} + {(a ®a B, b+m)} € CanG sy @) if k =k, 2 =bm, |,me Roo.
When we synchronize the same set of activities ifiedeént orders, we obtain several activities with the
same multiaction and probability or weight parts, but withietent numberings having the same content.
Then we only consider a single one of the resulting actwititeavoid introducing redundant ones.
For example, the synchronization of stochastic multiadi@, p)1 and {3, ). in different orders generates
the activities & @a .0 - X)) and B ®a @.x - p))w). Similarly, the synchronization of immediate
multiactions &, k)1 and {3, im)2 in different orders generates the activitiessg 3, fii+m)(1)2) and
(B ®a @, bms1)2))- SinceConi((1)(2)) = {1.2} = Coni(2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchrdiopawill appear in a set fror€an(G sy a).

N
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Note that if Y € Can(G) then by definition ofCan(G), YE C T, E # 0, we haves € CanG).

LetG € OpRegDynExpandCan(G) + 0. Obviously, if there are only stochastic (or only immedjateiltiactions
in the sets fron€an(G) then these stochastic (or immediate) multiactions carxberged fronG. Otherwise, besides
stochastic ones, there are also immediate multiactionsdarséts fronCan(G). By the note above, there are non-
empty sets of immediate multiactions @an(G) as well, i.e. 3T € CanG), T € N{If \ {0}. In this case, no
stochastic multiactions can be executed fréneven ifCan(G) contains non-empty sets of stochastic multiactions,

since immediate multiactions have a priority over stodhastes, and should be executed first.
Definition 3.5. Let G € OpRegDynE xprTheset of all non-empty sets of activities which can be exeduedGis

Can(G), (CanG) ¢ N3~
Now(G) = { CanG) N NZ£,  otherwise

An operative dynamic expression expressiba OpRegDynE xpis tangible denoted byangG), if Now(G) <
N3£\ {0}. In particular, we havéangG), if NowG) = 0. Otherwise, the expressidh is vanishing denoted by

fin
vanish(G), and in this cas® # NowG) C N{If \ {0}. Note that the operative dynamic expressions fr@h.[may
have diterent types in general. The following example demonstitatesoperative dynamic expressiokisandH’
with H ~ H’, such thavanish(H), buttangH’).

{0)) v (Can(G) € N7\ {0));

fln

fin>

Example 3.2. Let G = ({{al. B)[I({b}. k2))li({c). 3) and G = (({a}. k) ({b}. E2))I({c}. 3). Then G~ G', since

G« G” = G for G” = (({a), b)[I({b}, B2))II({(c}, 3), but Car(G) = {{(fa), b)), ((fch, ) (({a), k), ({c), 3,
Can(@) = {{({b}. h2)}. {({c}, ). (((b). h). ({c}, 2)1} and NowG) = {{({a}, i)}}, Now@') = {{({b}. 52)}}. Clearly, we
have vanistG) and vanisfiG’). The executions like that ¢fic}, 2)} (and all sets including it) from G and’Gnust be
disabled using preconditions in the action rules, since @diate multiactions have a priority over stochastic ones,
hence, the former are always executed first.

Let H = ({a), 1)[I({b}, 3) and H = ({@), ka)[1 ({0}, 3)- Then H~ H’, since H=H" = H’ for H” = ({a), k) 1({b}, 3),
but Car(H) = Now(H) = {{({a}, b1)}} and CarfH’) = Now(H’) = {{({b}, %)}}. We have vanigl), but tandH’). To
make the action rules correct under structural equivaleribe executions like that gf{b}, %)} from H must be
disabled using preconditions in the action rules, since @diate multiactions have a priority over stochastic ones,
hence, the choices between them are always resolved inrfaf/the former.

Let G € RegDynExpr We writetang([G].), if YH € [G]. N OpRegDynExpr tandd). Otherwise, we write
vanish{[G].), and in this casd@H € [G]. N OpRegDynExpr vanighi).

Now, in Table 3, we define the action and empty loop rules. istdble, ¢, p), (B, x) € SL, (a.f), (B, tm) € 7L
and @,«) € STL. Further, E F € RegStatExprG,H € OpRegDynExprG,H € RegDynExpranda € Act

Moreover[, A € NS£\ {0}, T7 € NS4, 1,0 € NZL\ (0}, I’ € N7 andT e NS7£\ (),
We use the following abbreviations in the names of the rutes the table: EI” for “ Emptyloop”, “B” for “ Basis
case”, 'S’ for“ Sequence”, C” for “ Choice”, “P” for “ Parallel”, “L” for “re Labeling”, “Rs’ for “ Restriction”, “1” for

“Iteraton” and Sy’ for “ Synchronization”. The first rule in the table is the empty loafeiEl. The other rules are the
action rules, describing transformations of dynamic eggians, which are built using particular algebraic opereti

If we cannot merge a rule with stochastic multiactions andawith immediate multiactions for some operation then
we get the coupled action rules. In such cases, the names attion rules with immediate multiactions have figu
‘i’. To make presentation more compact, the action rules watlbte conclusion are combined from two distinct
action rules with the same premises.

Almost all the rules in Table 3 (exceptifd, P2, P2i, Sy2andSy2i) resemble those of gsPBC [67], but the former
correspond to execution of sets of activities, not of sirglvities, as in the latter, and our rules have simplergmec
ditions (if any), since all immediate multiactions in diSi2 have the same priority level, unlike those of gsPBC. The
preconditions in rule&l, C, P1, 12 andI3 are needed to ensure that (possibly empty) sets of stocastiiactions
are executed only frortangible operative dynamic expressions, such that all operativauhym expressions struc-
turally equivalent to them are tangible as well. For examaésuming thatang([G].) in rule C, if init(G) thenG ~ F
for some static expressidghandG[]E ~ F[]E ~ F[]JE ~ F[JE. Hence, it should be guaranteed ttemg([F[] E].),
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Table 3: Action and empty loop rules.

T ~
tang([G]. e GLG
El —ang(w[ 1) B Y (2,0 S— >
G-G G E—-GE, EG—-EG
cC L G, —init(G) v (init(G) A tang([E].)) . cLa oy G L G, tang([H].)
GIE & G[IE, E[JG & E[IG GIE L G[E, EIG S EJG  GIH 5 G|H, HIIG 5 H|IG
I = r —~ A~ (- J ~
HS A H A
P1j | ~G ~G — pp8 G H-H G§+A - ppi G2 G H-H G|’+J =
GlH = GJH, H|IG - H|IG GIH 25 GjA GIH 2 GA
cLG RSGLG,a,éeﬂ(T) 1 cLG
o] -9 & Grsa5Grsa [G+ExF] 5[GxE+F]
G L G, —init(G) v (init(G) A tang([F].)) i GLG
[ExGxF] 5 [ExGxF] [E+G+F] 5 [E+G+F]
3G L G, -init(G) v (init(G) A tang([F].)) 3 GLG sy1—C 5e
[E*F*G]L[E*F*G] [E*F*G]—|>[E*F*§] Gsyalésya
SZGsyaMGsya,aEa,ée,B SZiGsyawﬂésya,aea,éeﬂ
y " +{(e®af.0x)) =~ y I"+{(e®aBb1:m)) =~
Gsya————> Gsya Gsya———— Gsya

which holds ff tang([E].). The cas€[] G is treated similarly. Further, assuming tang([G].) in rule P1, it should
be guaranteed th&ng[G||H].) andtang[H||G].), which holds ff tang([H].). The preconditions in ruld? andI3
are analogous to that in ru@

RuleEl corresponds to one discrete time unit delay while executingctivities and therefore it has no analogues
among the rules of gsPBC that adapts the continuous timelmode

RulesP2 andP2i have no similar rules in gsPBC, since interleaving semamidhe algebra allows no simul-
taneous execution of activities. On the other haP@andP2i have in PBC the analogous rukRAR that is used to
construct step semantics of the calculus, but the formerrtiles correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule. RuR3andP2i cannot be merged, since otherwise simultaneous
execution of stochastic and immediate multiactions woelélowed.

RulesSy2 and Sy?2i differ from the corresponding synchronization rules in gsPB@esthe probability or the
weight of synchronization in the former rules and the ratéher weight of synchronization in the latter rules are
calculated in two distinct ways.

RuleSy2establishes that the synchronization of two stochastitiantions is made by taking the product of their
probabilities, since we are considering that both must ofmuthe synchronization to happen, so this corresponds,
in some sense, to the probability of the independent evéartsiection, but the real situation is more complex, since
these stochastic multiactions can also be executed inlglarblevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction otlee same action [16]) is applied over a parallel executian,
get as final result just the simple product of the probabsitsince no normalization is needed there. Multiplicaison
an associative and commutative binary operation that isloligive over addition, i.e. it fulfills all practical coittbns
imposed on the synchronization operator in [51]. Furthfebpth arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiptinataturally maintains probabilistic compositionalityour
model. Our approach is similar to the multiplication of sat# the synchronized actions in MTIPP [50] in the case
when the rates are less than 1. Moreover, for the probasiitindy of two stochastic multiactions to be synchronized
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we havep - y < min{p, y}, i.e. multiplication meets the performance requiremestirsg) that the probability of the
resulting synchronized stochastic multiaction shoulddss than the probabilities of the two ones to be synchronized
While performance evaluation, it is usually supposed thatexecution of two components together require more
system resources and time than the execution of each singleThis resembles tHmunded capacitgssumption
from [51]. Thus, multiplication is easy to handle with andatisfies the algebraic, probabilistic, time and perforcean
requirements. Therefore, we have chosen the product ofrtiteapilities for the synchronization. See also [24, 23]
for a discussion about binary operations producing thesm@itsynchronization in the continuous time setting.

In rule Sy2i, we sum the weights of two synchronized immediate multiasj since the weights can be interpreted
as the rewards [90], thus, we collect the rewards. Next, weess that the synchronized execution of immediate
multiactions has more importance than that of every singke @he weights of immediate multiactions can also be
seen as bonus rewards associated with transitions [12] réitierds are summed during synchronized execution of
immediate multiactions, since in this case all the syncizemhactivities can be seen as participated in the execution
We prefer to collect more rewards, thus, the transitionsiging greater rewards will have a preference and they will
be executed with a greater probability. Since executiomafiediate multiactions takes no time, we prefer to execute
in a step as many synchronized immediate multiactions asitdeso get more significant progress in behaviour.
Under behavioural progress we understand an advance intexgactivities, which does not always imply a progress
in time, as in the case when the activities are immediateiautibns. This aspect will be used later, while evaluating
performance via analysis of the embedded discrete time dwazkains (EDTMCSs) of expressions. Since every state
change in EDTMC takes one unit of (local) time, greater adean operation of the EDTMC allows one to calculate
quicker performance indices.

Example 3.3. In the following cases, the weights of immediate multiaxtiare interpreted as bonus rewards to be
summed while synchronous or parallel execution of the inm@chultiactions specifying instantaneous probabitisti
choice.

e A customer in a shop considers which products to purchasaviiget a bonus (pay points) | when he decides
({a}, 1) to buy the product A and, for the decidifi§}, i) to buy the product B, he will have the bonus m. Thus,
on every decision to buy both products A and B (first A, and tirext B; or first B, then A; or on the decision
{({a}, ), {&}, bm)} to buy A and B together, in one visit to the shop, i.e. in pafabr on the decisiord, §.m)
to buy a kit with A and B, which corresponds to their synctwedicomposition), the customer will get a bonus
| + m, this is a standard and well-accepted practice.

e A cook in a fast-food restaurant plans his everyday work kompa two-component dinner dish of vegetables
and meat), that consists in the decisi@a}, i) to perform work A (boil vegetables), for which he will get a
payment |, and the decisidf@}, km) to perform work B (fry meat), with the payment m. The works é Bn
are independent, and they can be even done together, siamedlre several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision tfope both works A and B (first A, then B; or first
B, then A; or on the decisioft{a}, 1), {&}, im)} to perform A and B in parallel; or on the decisi@d, .m) to do
a work including both A and B, for example, to warm up a froz@mlgined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of timehwbiresponds to the synchronized composition
of works A and B), the cook will get a paymentin, this is logical and fair.

In the both situations above, more successful customerak spends less resources (power, electricity, water, &ic.)
get his bonus or paymentin. Thus, the preferred and encouraged way of doing (the lalg@dviour or work) consists

in the parallel or the synchronized executing of actionsic8iwe prefer to collect more bonus rewards, clearly, the
decisions providing more rewards must have a preferenceshodld be executed with a greater probability.

The standard approach while system modeling within dtsiBBE split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, andtitme-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to iptet weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabijlgirse probabilities of stochastic multiactions are idteh
to calculate the duration of work.
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Table 4: Comparison of inaction, action and empty loop rules

| Rules | State change Time progress Activities execution

Inaction rules - - -
Action rules + + +
(stochastic multiactions
Action rules + - +
(immediate multiactions
Empty loop rule - + -

Observe also that we do not have self-synchronizationsyechronization of an activity with itself, since all the
(enumerated) activities executed together are considerkd diferent. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many techni@duliies [16].

In Table 4, inaction rules, action rules (with stochastitnemediate multiactions) and empty loop rule are com-
pared according to the three questions about their apigitavhether it changes the current state, whether it leads t
a time progress, and whether it results in execution of satigities. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the nsigrs If both positive and negative answers can be
given to some of the questions irfiirent cases then the plus-minus sign is written. The pratates are considered
up to structural equivalence of the corresponding exprassiand time progress is not regarded as a state change.

3.3. Transition systems

We now construct labeled probabilistic transition systerssociated with dynamic expressions. The transition
systems are used to define the operational semantics of dypapressions.

Let G be a dynamic expression. The setaiff sets of activities executable i states = [G]. is defined as
Exeds) = (Y |IH e s IH, H 5 A).

It can be proved by induction on the structure of expresdioasy’ € Exeds) \ {0} implies3H € s, T € Now(H).
The reverse statement does not hold in general, since terg#ions in the action rules disable executions of the
activities with the lower-priority types from evely € s, as the next example shows.

Example 3.4. Let H, H’ be from Example 3.2 and=s[H]. = [H’].. We have No(H) = {{({a}, h1)}} and NowH") =
{{({b}, )}}. Since only rule€i andB can be applied to H while no action rule can be applied o We get E xe) =
{{({a}, h1)}}. Then, for H € s andT = {({b}, %)} € Now(H’), we obtainY ¢ Exeqs).

The states is tangible if Exeds) C Nﬁf For tangible states we always have= Exe€s), and we may have

Exegs) = {0}. Otherwise, the stateis vanishing and in this cas&xegs) N{I;f \ {0}.

Since for evenyH € s, Now(H) containing the multisets of activities with the lowergmity types is not included
into Exeds), and the types of states are determined from the highastitgrtypes of the executable activities, the
state type definitions based dlow(H), H € s, and onExeds) are consistent.

Note that if Y € Exeds) then by ruleP2, P2i, Sy2, Sy2iand definition ofExeds), Y= C T, E # 0, we have
Z € Exeds), i.e. 2"\ {0} c Exeqs).

Since the inaction rules only distribute and move upper anei bars along the syntax of dynamic expressions,
all H € s have the same underlying static expresftorProcess expressions always have a finite length, hence, the
number of all (enumerated) activities and the number offadirations in the syntax &f are finite as well. The action
rulesSy2andSy?2iare the only ones that generate new activities. They resutt the handshake synchronization of
actions and their conjugates belonging to the multiactemsof the first and second constituent activity, respebtiv
Since we have a finite number of operatass in F and all the multiaction parts of the activities are finite tiseits,
the number of the new synchronized activities is also firlitee action rules contribute t6xeds) (in addition to the
empty set, if ruleéEl is applicable) only the sets consisting both of activitiesf F and the new activities, produced by
Sy2andSy?2i. Since we have a finite numbenf all such activities, we g¢E xegs)| < 2" < . Thus, summation and
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multiplication by elements from the finite sEixeqs) are well-defined. Similar reasoning can be used to demetestr
that for all dynamic expressior$ (not just for those frons), Now(H) is a finite set.

Definition 3.6. Thederivation sebf a dynamic expressioB, denoted byDR(G), is the minimal set such that
e [G]. € DR(G);
e if [H]. € DR(G) and3Y, H - H then [H]. € DR(G).

The set ofall tangible states from D) is denoted byDR(G), and the set oéll vanishing states from D) is
denoted byDR\/(G). Clearly,DR(G) = DR;(G) w DRy(G) (v denotes disjoint union).

Let nowG be a dynamic expression ases € DR(G).

LetY € Exeds) \ {0}. Theprobability that the set of stochastic multiactioiigs ready for execution in er the
weight of the set of immediate multiactioisvhich is ready for execution inis

p- |l @-x. seDRi@);
PF(T, ) = (afT | ({(B.))<Exed) ()T}
, se DRy(G).
(ah)er

In the casér’ = 0 ands € DRr(G) we define

(1-x), Exeqs)# {0};
PF(,9) =1 ((B.x)cExedy
1, Execs) = {0}.

If se DRr(G) andExeds) # {0} thenPF(T, s) can be interpreted ag@int probability of independent events (in
a probability sense, i.e. the probability of intersectidriheese events is equal to the product of their probabi)ities
Each such an event consists in the positive or negativeidadis be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides prolstibilly (using its probabilistic part) and independgiftfom
others), if it wants to be executed & If T is a set of all executable stochastic multiactions whichehdecided to
be executed irs andYT € Exeds) then is ready for execution irs. The multiplication in the definition is used
because it reflects the probability of the independent eméertsection. Alternatively, whelf # 0, PF(, s) can be
interpreted as the probability to execuaeclusivelythe set of stochastic multiactiofsin s, i.e. the probability of
intersectionof two events calculated using the conditional probabilitynula in the formP(X N'Y) = P(X|Y)P(Y).

The eveniX consists in the execution af in s. The eventy consists in the non-execution gof all the executable
stochastic multiactions not belonging 1o Since the mentioned non-executions are obviously indég@revents,
the probability ofY is a product of the probabilities of the non-executioP€Y) = [T, cexeesi@.ner (L — ). The
conditioning of X by Y makes the executions of the stochastic multiactions fibmdependent, since all of them
can be executed in parallel by definition of Exeds). Hence, the probability to execuitunder conditiorthat no
executable stochastic multiactions not belonginy &re executed isis a product of probabilities of these stochastic
multiactions:P(X[Y) = [1, ner p- Thus, the probability thar is execute@ndno executable stochastic multiactions
not belonging toY are executed irs is the probability ofX conditioned byY multiplied by the probability ofY:
P(XNY) = PXIY)P(Y) = [T per P - [ligpcexeesignern (1 = x). WhenT = 0, PF(, s) can be interpreted as the
probability not to execute is any executable stochastic multiactions, thRB(0, s) = [];,))cexeqsy (1 — x). When
only the empty set of activities can be executed,ine. Exeqs) = {0}, we takePF(0, s) = 1, since we stay irsin
this case. Note that fare DRy (G) we havePF(0, s) € (0; 1], hence, we can stay Bat the next time moment with a
certain positive probability.

If se DRy(G) thenPF(T, s) can be interpreted as tlwwerall (cumulativeweight of the immediate multiactions
from Y, i.e. the sum of all their weights. The summation here is shece the weights can be seen as the rewards
which are collected [90]. In addition, this means that corent execution of the immediate multiactions has more
importance than that of every single one. The weights of idiate multiactions can also be interpreted as bonus
rewards of transitions [12]. The rewards are summed wheneidiate multiactions are executed in parallel, because
all of them participated in the execution. Since executibimomediate multiactions takes no time, we prefer to
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execute in a step as many parallel immediate multiactiop®asible to get more progress in behaviour. This aspect
will be used later, while evaluating performance on thedakthe EDTMCs of expressions. Note that this reasoning
is the same as that used to define the weight of synchronizeédtiate multiactions in the rulgy?2i.

Note that the definition dPF(, ) (as well as the definitions of other probability functionsieh we shall present)
is based on the enumeration of activities which is consitiangplicit.

Let T € Exeds). BesidesY, some other sets of activities may be ready for executiog imence, a kind of
conditioning or normalization is needed to calculate thecetion probability. Theprobability to execute the set of
activitiesY in sis

PF(Y, s)

> PFE9
ZecExecs)

If se DRr(G) thenPT(Y, s) can be interpreted as tltenditionalprobability to execut&” in s calculated using
the conditional probability formula in the for(Z|W) = %. The evenZ consists in the exclusive execution of
T in s, henceP(Z) = PF(Y, s). The eventV consists in the exclusive execution of any set (includiregeimpty one)

E € Exed€s) in s. Thus,W = U;Z;, whereYj, Z; are mutually exclusive events (in a probability sensejmersection
of these events is the empty event) atid Z = Z. We haveP(W) = 3;P(Zj) = Xzcexees PF(E. 5), because
summation reflects the probability of the mutually exclesavent union. SincE N W = Z; n (UjZj) = Z = Z,
we haveP(Z|W) = % = % One can also tred@®T(, s) and PF(, s) as theactual and potential
probabilities to execut® in s, respectively, since we hawRT (Y, s) = PF(T, s) only whenall sets (including the
empty one) consisting of the executable stochastic mtiltias can be executed m In this case, all the mentioned
stochastic multiactions can be executed in paralled @amd we have) zcgye¢s) PF(E, S) = 1, since this sum collects
the products oéll combinations of the probability parts of the stochastictraations and the negations of these parts.
But in general, for example, for two stochastic multiactidm, p) and (3, ) executable irs, it may happen that they
cannot be executed mtogether, in parallel, i.€0, {(«a, p)}, {(B, x)} € Exe€s), but{(«, p), (8, x)} ¢ Exeds). Note that
for s € DRr(G) we havePT(0, s) € (0; 1], hence, there is a non-zero probability to stay in thées at the next time
moment. Then the residence timesis at least 1 discrete time unit, being 1 wheis left with the next time tick.

If s e DRy(G) thenPT(Y, s) can be interpreted as the weight of the set of immediateiactibnsY which is
ready for execution irs normalizedy the weights ofll the sets executable & This approach is analogous to that
used in the EMPA definition of the probabilities of immediatdions executable from the same process state [14]
(inspired by way in which the probabilities of conflicting mnediate transitions in GSPNs are calculated [6]). The
only difference is that we have a step semantics and, for every seth#dimte multiactions executed in parallel, we
use its cumulative weight. To get the analogy with EMPA pesiry interleaving semantics, we should interpret the
weights of immediate actions of EMPA as the cumulative wesigtf the sets of immediate multiactions of dtsiPBC.

The advantage of our two-stage approach to definition of tbbability to execute a set of activities is that the
resulting probability formuld@T (Y, s) is valid both for (sets of) stochastic and immediate mattans. It allows one
to unify the notation used later while constructing the atienal semantics and analyzing performance.

Note that the sum of outgoing probabilities for the expmssibelonging to the derivations & is equal to 1.
More formally,Vs € DR(G), Y vecexeqsy PT(T,S) = 1. This, obviously, follows from the definition &?T((, s), and
guarantees that it always defines a probability distritsutio

Theprobability to move from s t8 by executing any set of activitiess

PT(Y, ) =

PM(s § = > PT(T, 9).
{T|3Hes, IAes H-SHA)
The summation in the definition above reflects the probagbdit the mutually exclusive event union, since

-1 . i -
Zm.HHES’ SFes 1) ET(T, S) = Tererery PFED ZITBHe& s 1) PF(T, s), where for eaclt’, PF(Y, ) is the prob
ability of the exclusive execution of in s. Note thatVs € DR(G), . _ . v+~ PM(s 8) =
{§3Hes, IHeS, AT, H-H)
2\ g3tes Fcs 1, HSF) DiriaHes e ni 1) = Ureexeqy PT(T,8) = 1.

Example 3.5. Let E = ({a}, p)[I({a}, x), wherep, x € (0;1). DR(E) consists of the equivalence classes=s[E].
and s = [E].. We have DR(E) = {s;, 2}. The execution probabilities are calculated as followsicBIiE xe€s;) =
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Table 5: Calculation of the probability functiofF, PT, PM for s; € DR(E) andE = ({a}, p)[I({a}, x)

EN 0 (@) (a0l = ]
PE | QA-p)A-x) |p(1-x) [ x(1-p) | 1-px
PT [€X p)(l —X) 1) X(T-p) 1

s X
PM T 1y —PX (Sl) 1oy (SZ) 1

Table 6: Calculation of the probability functio®F, PT, PMfor s, € DR(E’) andE’ = ({a}, )[({a}, bm)

EXNEENCEESIIE

PF | m | +m
PT = o 1
PM 1(s,) 1

{0, {({a}, p)}. {({a}, X)}}, we get PR{({a},p)}.s1) = p(1 - x), PF({({a}.x)},s1) = x(1 - p) and PHO, 51) (1-
P)(L = x). ThenYzcereqs,) PF(E S1) = p(L = x) + x(1-p) + (L - p)(1 - x) = 1 - px. Thus PT{({a}, p)}, s1) =

”1(:;), PT{({a},x)}, s1) = Xl(l;)’;) and PT(0, s1) = PM(s1, 1) = (1_”)(1_’() . Further, Exe¢s;) = {0}, hence,
Yzeexeds) PF(E. 2) = PF(0, ) = 1and PT(0, s;) = PM(s,, 52) = 1 = 1 Finally, PM(sy, 52) PT({({a}. o)} 1) +

PT({({a},x)}, s1) = p(llj‘() + Xl(f o) — = 2 2”)‘ . In Table 5, the calculation of the probability functions @ s;),
PT(Y, s1), PM(s,9) is explained Whem' € Exeds), se€ {s1, &} (the value of s is depicted in the parentheses near
the value of PMisy, )) andX = Y zceyeqs,) PX(E, 1), PX € {PF, PT,PM}.

Let E = ({al,h)[I({a}, bm), where Im € R.q. DR(?) consists of the equivalence classés=s [E']. and
s, = [E']~. We have DIR(E) {s;} and DR/(E’) = {s;}. The execution probabilities are calculated as fol-
lows. Since Exde)) = al, i}, {({a} hm) we get PI{ al, bk 5'1) | and PF(( B}, 8)) = m. Then
Z_EEM%) PF(E,s) = | + m Thus, PT{({a h|) s) = I+m and PT({({a}, im)}. 5)) = I+m Further, Exe¢s)) =
hence, z_eExqu&) PF(E, %) = PF(0,) = 1and PT(0,s,) = PM(s,, &) = 3 = 1. Finally, PM(s], %)
PT({({a}, )}, s)) + PT({({a}, bm)}. 5'1) = I+m + - = 1. In Table 6, the calculation of the probability functions
PF(T,s), PT(T,s)), PM(s,,s) is explained, wher& € Exeqs)), s’ € {s,} (the value of sis depicted in the
parentheses near the value of Rl 5')) andX = Y zceyeqs) PX(E, 5)), PX € {PF,PT,PM}.

Definition 3.7. Let G be a dynamic expression. Tifabeled probabilistic) transition systeof G is a quadruple
TS(G) = (Se, La. 7o, Se), Where

o the set ofstatess Sg = DR(G);

e the set ofabelsis Lg = 257 x (0; 1];

e the set otransitionsis 7¢ = {(s. (T, PT(Y,9)),9 | s §c DR(G), dHe s dH e § H LN H};
e theinitial stateis sg = [G]~.

The definition of T S(G) is correct, i.e. for every state, the sum of the probabdinf all the transitions starting
fromitis 1. This is guaranteed by the note after the definibbPT(r, s). Thus, we have definedgenerativenodel
of probabilistic processes [42]. The reason is that the sthregprobabilities of the transitions with all possible ééb
should be equal to 1, not only of those with the same labeltqmumeration of activities they include) as in the
reactivemodels, and we do not have a nested probabilistic choicethe siratifiedmodels.
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The transition syster S(G) associated with a dynamic expressi®rdescribes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (oep}gtrobability and consist of sets of activities. Everpste
consisting of stochastic multiactions or the empty step (ihat consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step ctingisfimmediate multiactions occurs instantly withouyan
delay. The step can change the current state. The statdseatuctural equivalence classes of dynamic expressions
obtained by application of action rules starting from thpressions belonging t&] .. A transition §, (Y, P), 9 € 7¢

. . L . ~ .
will be written ass —¢ 8. Itis interpreted as follows: the probability to changeifreto §as a result of executing
iSP.

Note that for tangible state¥; can be the empty set, and its execution does not change trentatate (i.e. the
equivalence class), since we have a loop transgieny sfrom a tangible stats to itself. This corresponds to the
application of the empty loop rule to expressions from th&ejence class. We have to keep track of such executions,
calledempty loopsbecause they have non-zero probabilities. This folloasifthe definition oPF(0, s) and the fact
that multiaction probabilities cannot be equal to 1 as thelgig to the interval (0; 1). For vanishing statésannot
be the empty set, since we must execute some immediate atigitia from them at the current moment.

The step probabilities belong to the interval (0; 1], beirig the case when we cannot leave a tangible stated

the only transition leaving it is the empty loop 09e0+1 s, or if there is just a single transition from a vanishing stat
to any other one.

We Writesl Sif AP, Sip Sands — §if AT, si S.

The first equivalence we are going to introduce is isomomhigich is a coincidence of systems up to renaming
of their components or states.
Definition 3.8. Let TS(G) = (Sg, Le, 76, Ss) andT S(G') = (Se', Le, Te, So) be the transition systems of dynamic
expression& andG’, respectively. A mapping : Sg — Sg is anisomorphisnbetweenT S(G) andT S(G’), denoted
byB: TS(G) = TS(G), if

1. Bis a bijection such thad(sg) =

2. Vs 8€Sa, YT, S5p & & B8 5p BB
Two transition systems S(G) andT S(G’) areisomorphic denoted byl S(G) ~ T S(G"), if 38 : TS(G) = TS(G').

Transition systems of static expressions can be definedlasfweE € RegS tatExpriet TS(E) = T S(E).
Definition 3.9. Two dynamic expressionS andG’ are equivalent with respect to transition systerdsnoted by
G =G, if TS(G) ~ TS(G).

Example 3.6. Consider the expressidtop = ({g}, %) rs g specifying the special process that is only able to perform
empty loops with probabilityt and never terminates. We could actually use any arbitratyoacfrom A and any
probability belonging to the intervgD; 1)in the definition oStop. Note thatStop is analogous to the one used in the
examples of [66]. Then, faf, y,0,¢ € (0; 1)and Lm e R, let

= [({a}, p) * (({b}, x); (((tch, t); ({d}, ONO(({e}, m); ({T1, ¢)))) * Stop].

DR(E) consists of the equivalence classes

= [[({a), ) * (b}, x); ((({c), t); (), E)I(({e), ) (), )))) * Stop]] s,

= [[({a), ) * (b}, x); (((te), t); (), E)I(({e), s (), )))) * Stop]] s,

sz = [[({a}, p) = (({b} x); (e, i); (d}, ) I(({e) im); ({1, ¢)))) + Stop]] ~,

s = [[(fa, ) * (b}, x); (), b); ({d}, )D€}, bim); (11, 9)))) * Stop]]-,
{al, {b} ba); ({d), {

ss = [[({a}. p) = (({b}. x); (e} ); (0I O)(({e} im); ({f}, 4)))) * Stop]] ~.

We have DR(E) = {s1, &, S4, S5} and DR/(E) =

In Figure 2, the transition system B) is presented. The tangible states are depicted in ovalslamganishing
ones are depicted in boxes. For simplicity of the graphiegresentation, the singleton sets of activities are writte
without outer braces.
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Figure 2: The transition system &ffor E = [({a}, p) = (({b}. x); (({c}, &); ({d}, ) I(({e}, bm); (T}, 4)))) = Stop].

4. Denotational semantics

In this section, we construct the denotational semanti¢srins of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNS), called discrete time sta@ghasd immediate Petri boxes (dtsi-boxes).

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochasticimmediate Petri nets (LDTSIPNSs), a subclass of
DTSPNs [79, 80] (we do not allow the transition probabistte be equal to 1) extended with transition labeling and
immediate transitions. LDTSIPNs resemble in part disdigte deterministic and stochastic PNs (DTDSPNSs) [104],
as well as discrete deterministic and stochastic PNs (DBJPIN03]. DTDSPNs and DDSPNs are the extensions
of DTSPNs with deterministic transitions (having fixed defhat can be zero), inhibitor arcs, priorities and guards.
In addition, while stochastic transitions of DTDSPNSs, ltkese of DTSPNs, have geometrically distributed delays,
stochastic transitions of DDSPNs have discrete time phgmedistributed delays. At the same time, LDTSIPNs
are not subsumed by DTDSPNs or DDSPNSs, since LDTSIPNs haepasmantics while DTDSPNs and DDSPNs
have interleaving one. LDTSIPNs are somewhat similar teledbweighted DTSPNs (LWDTSPNs) from [30], but in
LWDTSPNSs there are no immediate transitions, all (stodtjastnsitions have weights, the transition probabiitie
may be equal to 1 and only maximal fireable subsets of the edatansitions are fired.

Stochastic preemptive time Petri nets (SpTPNs) [25] is ardie time model with a maximal step semantics,
where both time ticks and instantaneous parallel firings akimal transition sets are possible, but the transition
steps in LDTSIPNs are not obliged to be maximal. The tramsitielays in spTPNs are governed by static general
discrete distributions, associated with the transitiomisile the transitions of LDTSIPNs are only associated with
probabilities (or weights), used later to calculate the gieobabilities after one unit (from tangible markings) or
zero (from vanishing markings) delay. Further, LDTSIPNgehpst geometrically distributed or deterministic zero
delays in the markings. Moreover, the discrete time tick emdcurrent transition firing are treated in spTPNs as
different events while firing every (possibly empty) set of séstic transitions in LDTSIPNs requires one unit time
delay. spTPNs are essentially a modification and extengianlabeled LWDTSPNs with additional facilities, such
as inhibitor arcs, priorities, resources, preemptionsedalers etc. However, the price of such an expressiveriess o
sSpTPNs is that the model is rather intricate anticlilt to analyze.

Note also that guards in DTDSPNs and DDSPNSs, inhibitor andgaiorities in DTDSPNs, DDSPNs and spTPNs,
as well as the maximal step semantics of LWDTSPNs and spTRiks all these models Turing powerful, resulting
in undecidability of many important behavioural propestie

First, we present a formal definition of LDTSIPNSs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri nBIT&IPN)is a tuple
N = (P, Tn, Wi, Qn, L, My), where

e Py andTy = Tsy W Tiy are finite sets oplacesandstochastic and immediate transitigmespectively, such that
PyUTN #0andPy N Ty =0;
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e Wy @ (Pn X Tn) U (Tn X Py) — Nis a function providing theveights of arcdbetween places and transitions;
e Qy is thetransition probability and weighfunction such that

— Onlts, @ Tsv — (0; 1) (it associates stochastic transitions with prolitdss);
— Onlmy @ Tin = Roo (it associates immediate transitions with weights);

e [\ : Ty — Listhetransition labelingfunction assigning multiactions to transitions;
e My € priﬁ is theinitial marking.

The graphical representation of LDTSIPNs is like that fanstard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square bokasrnal thickness depict stochastic transitions, andehos
with thick borders represent immediate transitions. Indase the probabilities or the weights are not given in the
picture, they are considered to be of no importance in theesponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted thi¢hn. The names of places and transitions are depicted
near them when needed.

We now consider the semantics of LDTSIPNSs.

LetN be an LDTSIPN ande Ty, U € NfTiT]. Theprecondition"t and thepostconditiont of t are the multisets of
places defined astj(p) = Win(p,t) and ¢*)(p) = Wi(t, p). Theprecondition*U and thepostcondition U of U are
the multisets of places definedds = >, *tandU*® = >, t*. Note that forU = 0 we have’d = 0 = 0°.

LetN be an LDTSIPN and/, M € N7 M.

Immediate transitions have a priority over stochastic ptes, immediate transitions always fire first, if they can.
Suppose that all stochastic transitions have priority Oahidimediate ones have priority 1.

A transitiont € Ty is enabledat M if °t € M. In other words, a transition is enabled in a marking if it Basugh
tokens in its input places (in the places from its precoodjti LetEna(M) be the set oéll transitions enabled at M

Firings of transitions are atomic operations, and tramsitimay fire concurrently in steps. We assume that all
transitions participating in a step shouldtdr, hence, only the sets (not multisets) of transitions may fihus, we
do not allow self-concurrency, i.e. firing of transitionsparallel to themselves. This restriction is introduced to
avoid some technical fliculties while calculating probabilities for multisets ofnsitions as we shall see after the
following formal definitions. Moreover, we do not need to simter self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe &IPNs (hence, no self-concurrency is possible).

The following definition of fireability respects the pridziation among dferent types of transitions. A set of
transitiondJ € EnaM) is fireableat a markingM, if *U € M and one of the following holds:

1.0 #U CTiy; or
2. UCcTsgyandEnaM) Cc Tsy.

In other words, a set of transitiokskis fireable at a markindyl, if it has enough tokens in its input placesvitand the
following holds. IfU consists oimmediateransitions then it is enabled, since no additional coadits needed for
its fireability. If U is empty or it consists aftochastidransitions then there exist no immediate transitions lewidt
M. Let Fire(M) be the set oéll transition sets fireable at M

By the definition of fireability, it follows thaFire(M) c 2T \ {0} or Fire(M) C 2'S. The markingM is
tangiblg denoted bytangM), if Fire(M) C 2™, For a tangible markingyl we always haveé) € Fire(M) by
the definition of fireability (item 2), hence, we may haviee(M) = {0}. Otherwise, the markindyl is vanishing
denoted byvanisi{M), and in this cas&ire(M) c 2T'v \ {0}. A transitiont € Ena(M) is fireableat a markingM,
denoted byt € Fire(M), if {t} € Fire(M). If standM) then a stochastic transitidre Fire(M) fires with probability
Qn(t) when no diferent stochastic transition is fireable@ i.e. Fire(Q) = {0, {t}}. By the definition of fireability,
YU € Fire(Q) 2V \ {0} c Fire(Q).

LetU e Fire(M) andU % 0. Theprobability that the set of stochastic transitions U is rgddr firing at M or the
weight of the set of immediate transitions U which is readyifong at M is

[Tev®- ] @-ouw). tangm;
— teU {ueFire(M)|ugU}
PFU.M) Z On(b), vanisiM).

teU
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In the cas&J = () andtang(M) we define

{ [] @-anw). Fire(m) = (0)
PF(Q)’ M) =4 ueFire(M)
1, Fire(M) =

Let U € Fire(Q). BesidesU, some other sets of transitions may be ready for firing/lathence, a kind of
conditioning or normalization is needed to calculate thiediprobability. The concurrent firing of the transitions

from U changes the markinkfl to M = M — *U + U*, denoted byM > M, where® = PT(U, M) is theprobability
that the set of transitions U fires at Mefined as

PF(U, M)
Yveriremy PF(V, M)’

Note that in the casel = 0 andtang(M) we haveM = M.

The advantage of our two-stage approach to definition of tbbagbility that a set of transitions fires is that the
resulting probability formul@T(U, M) is valid both for (sets of) stochastic and immediate trémiss. It allows one
to unify the notation used later while constructing the dational semantics and analyzing performance.

Note that for all markings of an LDTSIPN, the sum of outgoing probabilities is equal to 1. More foryal
VM e NPY Yuerireqwy PT(U, M) = 1. This obviously follows from the definition &*T(U, M) and guarantees that it

fin®
defines altnprobability distribution.

We writeM = M if 3P, M S, M andM — M if 3U, M 5 M.
The probability to move from M td/ by firing any set of transitionis

PT(U, M) =

PM(M,M)= > PT(U,M).
UM Wy

SincePM(M, M) is the probability forany (including the empty one) transition set to change from rimayM to
M, we usesummatlonmthedeflnmon NotetlﬁMeN';n, Ziiv—imy PM(M, M)= PVIVIRY! ZMM il PT(U,M)=

Yuerirem) PT(U, M) =

Definition 4.2. Let N be an LDTSIPN. Theeachability sebf N, denoted byRS(N), is the minimal set of markings
such that

o My € RS(N);
e if M € RS(N) andM — M thenM € RS(N).

Definition 4.3. Let N be an LDTSIPN. Theeachability graphof N is a (labeled probabilistic) transition system
RG(N) = (SN, Ln, TN, SN), where

o the set ofstatesis Sy = RS(N);

o the set oflabelsis Ly = 2™ x (0; 1];

o the set otransitionsis Ty = (M, (U,?), M) | M, M € RS(N), M 5, M}:
e theinitial stateis sy = My.

The set ofall tangible markings from R&) is denoted byRSr(N), and the set oéll vanishing markings from
RS(N) is denoted byRSy(N). Obviously,RS(N) = RSr(N) w RSy (N).
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4.2. Algebra of dtsi-boxes
We now introduce discrete time stochastic and immediate B@tes and the algebraic operations to define a net

representation of dtsiPBC expressions.
Definition 4.4. A discrete time stochastic and immediate Petri box (dtsi}ia tupleN = (Py, Tn, Wn, An), Where
e Py andTy are finite sets oplacesandtransitions respectively, such th&ty U Ty # 0 andPy N Ty = 0;

e Wy @ (Pn X Tn) U (Thn X Py) — Nis a function providing theveights of arcdbetween places and transitions;

e Ay is theplace and transition labelinfunction such that

— Anlp, : Pn — {e,i,x} (it specifiesentry, internalandexit places, respectively);
— Anlty @ Tn = {o | o € 257£L x ST L} (it associates transitions with thelabeling relationson activities).

Moreover,Vt € Ty, °t # 0 # t*. In addition, for the set oéntryplaces ofN, defined asN = {p € Py | An(p) = e},
and for the set oéxit places ofN, defined adN° = {p € Py | An(p) = X}, the following condition holds®N # 0 #
NO, .(ON) — @ — (NO)..

A dtsi-box isplain if Yt € Ty, I(a,«) € STL, An(t) = 0., Whereoe g = {(0, (@, x))} is aconstant relabeling
that can be identified with the activity(«). A marked plain dtsi-bojs a pair (\, My), whereN is a plain dtsi-box
andMy € Nfif1 is its marking. We shall use the following notatioN: = (N,°N) andN = (N, N°). Note that a
marked plain dtsi-boxRy, Tn, Wi, An, M) could be interpreted as the LDTSIPR\, Tn, Wi, Qn, LN, My), Where
functionsQy and Ly are defined as followsyt € Ty Qn(t) = « if k € (0;1); orQn(t) = 1'if « =, | € R.o; and
Ln(t) = @, whereAn(t) = 0@ Behaviour of the marked dtsi-boxes follows from the firinderof LDTSIPNs.

A plain dtsi-boxN is n-boundedn € N) if N is so, i.e.YM € RS(N), Vp € Py, M(p) < n, and it issafeif it is
1-bounded. A plain dtsi-boN is cleanif YM € RS(N), °NC M = M =°NandN°cM = M = N°, i.e. if there
are tokens in all its entry (exit) places then no other pléaa® tokens.

The structure of the plain dtsi-box corresponding to a st@tipression is constructed like in PBC [17, 16], i.e.
we use simultaneous refinement and relabeling meta-opéregiorefinement) in addition to thaperator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC aatlifing transformational transition relabelings. Operat
dtsi-boxes specify-ary functions from plain dtsi-boxes to plain dtsi-boxe®(lave 1< n < 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-baxe safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions usedd@r. Bet® denoteoperator boxandu denotetransition
namefrom the PBC setting.

The relabeling relations ¢ 257£ x S7.£ are defined as follows:

e oid = {{(a, K)}, (@, k) | (@, k) € ST L} is theidentity relabelingkeeping the interface as it is;

O(ex) = (0, (a, x))} is theconstant relabelinghat can be identified witho «) € S7.L itself;

orn = {({(@. K} (@), k) | (. &) € STLY;
osa = {({(e. 0}, (@.K)) | (@, k) € STL, a, & ¢ a};

Osy a IS the least relabeling relation containing such that if I, (@, «)), (E, (8, 1)) € 0sy a, a € @, &€ Bthen

- (Y+E (@®af. k- 1) €0sya if k, 1€ (0;1);
- (T+E, (@®afB.b+m) €0syaif k =k, 1 =tm, |, me R.o.

The plain dtsi-boxedl ), Ne.y), Wherep € (0;1) andl € R.o, and operator dtsi-boxes are presented in Figure

3. The label of internal places is usually omitted.
In the case of the iteration, a decision that we must takeeiséiection of the operator box that we shall use for it,

since we have two proposals in plain PBC for that purpose [@6F of them provides us with a safe version with six
transitions in the operator box, but there is also a simp@esion, which has only three transitions. In general, in PBC
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Figure 3: The plain and operator dtsi-boxes.

with the latter version we may generate 2-bounded nets,hwidy occurs when a parallel behavior appears at the
highest level of the body of the iteration. Neverthelesgiun case, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot ocsorthat the net obtained will be always safe.

To construct the semantic function that associates a plairbdx with every static expression of dtsiPBC, we
introduce theenumeratiorfunction Enu: T — Num which associates the numberings with transitions of anplai
dtsi-boxN = (P, T, W, A) in accordance with those of activities. In the case of symeization, the function associates
with the resulting new transition the concatenation of taeepthesized numberings of the transitions it comes from.

We now define the enumeration functismufor every operator of dtsiPBC. L&l = Boxyisi(E) =
(Pg, Te, We, Ag) be the plain dtsi-box corresponding to a static expressimandEnu: : Te — Numbe the enumer-
ation function forNg. We shall use the analogous notation for static expres$icarslK.

e Boxsi((@, ).) = Nie.x,- Since a single transitioip corresponds to the activityr(«), € ST L, their numberings
coincide:

Enut) =

e Boxsi(E o F) = 0,(Boxisi(E), Boxisi(F)), o € {;,[].ll}. Since we do not introduce new transitions, we
preserve the initial numbering:

| Enwe(t), teTeg;
Em(t)_{ Enu=(t), teTg.

e Boxis(E[f]) = Ofj(Boxis(E)). Since we only replace the labels of some multiactions Hjjection, we
preserve the initial numbering:

Enult) = Enwe(t), t € Te.

e Boxsi(E rs a) = O a(Boxisi(E)). Since we remove all transitions labeled with multiaoi@ontaininga or
4, this does not change the numbering of the remaining tiansit

Enut) = Enue(t), te Te, aa¢ a, Ae(t) = 00-
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o Boxisi(E sy @) = Osy a(BoXisi(E)). Note thatVv,w € Tg, such thatAg(v) = 0@, Ae(W) = 0@,y and
a e a, ac B, the new transitiom resulting from synchronization efandw has the labeA(t) = ge.sa if tiS
a stochastic transitior(4 € (0; 1)); or A(t) = Oe.s.4.) If tis animmediate onec(= b, A = bm, |,m e R.o);
and the numberingnult) = (Enue(v))(Enue(w)). Thus, the enumeration function is defined as

Enut) = Enus(t), te Tg;
u) = (Enue(V))(Enug(w)), tresults from synchronization efandw.

According to the definition odsy a, the synchronization is only possible when all the traosiiin the set are
stochastic or when all of them are immediate. If we synclm®itie same set of transitions irftdrent orders,
we obtain several resulting transitions with the same laipel probability or weight, but with the @ierent
numberings having the same content. Then, we only consisi@igée transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions

For example, if the transitionsandu are generated by synchronizimgandw in different orders, we have
A() = 0s8.2) = A(u) for stochastic transitiong (1 € (0; 1)) orA(t) = 0we.s4..) = A(U) forimmediate ones
(k =, 2 = bm, I,m € Ryp), but Enut) = (Enue(V))(Enue(w)) # (Ente(W))(Enue(v)) = Enuu), whereas
ContEnut)) = ContEnu(v)) U ConEnuw)) = ContEnu(u)). Then only one transition(or, symmetrically,
u) will appear inBoxysi(E sy a).

o BoxXysi([E * F * K]) = Or..)(Boxisi(E), Boxitsi(F), Boxisi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t), teTg;
Enut) ={ Enu(t), teTE;
Enu(t), teTk.

We now can formally define the denotational semantics as ahwrphism.

Definition 4.5. Let (o, «) € SIL, a € ActandE, F, K € RegS tatExprThedenotational semantiosf dtsiPBC is a
mappingBoxyisi from RegS tatE xpmto the domain of plain dtsi-boxes defined as follows:

1. Boxtsi((a, «).) = N,

2. Boxtsi(E o F) = ©,(Boxtsi(E), Boxusi(F)), o € {;, [, I};

3. Boxts(E[f]) = Op1(Boxitsi(E));

4. Boxitsi(E 0 @) = @ca(Boxusi(E)), © € irs,syl;

5. Boxitsi([E * F * K]) = Op..1(Boxitsi(E), Boxitsi(F), Boxitsi(K)).

The dtsi-boxes of dynamic expressions can be defined askeelE € RegS tatExpriet BOthsi(E) = BoX4tsi(E)
andBoxsi(E) = Boxutsi(E).

Note that this definition is compositional in the sense that,any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressionsyliarth we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined adogrtb the term structure (by definition &oxys), the
resulting plain box being marked in the places that were ethik the argument nets.

Theorem 4.1. For any static expression,EBoxys(E) is safe and clean.

Proor. The structure of the net is obtained as in PBC [17, 16], coimbiboth refinement and relabeling. Conse-
guently, the dtsi-boxes thus obtained will be safe and clean O

Let ~ denote isomorphism between transition systems and re#ithgbaphs that binds their initial states. Note
that the names of transitions of the dtsi-box correspontiregstatic expression could be identified with the enumer-
ated activities of the latter.
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Figure 4: The marked dtsi-bdN = Boxusi(E) for E = [({a), p) = (b}, x); (({c}, &); (td), 6))I(({€), bm); (1 f}, #)))) * Stop] and its reachability graph.

Theorem 4.2. For any static expression E,
TS(E) ~ RG(Boxusi(E))-

Proor. See Appendix A.1l. O

Example 4.1. Let E be from Example 3.6. In Figure 4, the marked dtsi-box Boxis(E) and its reachability graph
RG(N) are presented. It is easy to see that(Epand RGN) are isomorphic.

The following example demonstrates that without the sytitaiestriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, 2) = (({b}, D)lI({c}, 3)) = ({d}. 3)]. In Figure 5, the marked dtsi-box N BoXysi(E)

and its reachability graph R@®N) are presented. In the markin@, 1, 1, 2, 0, 0) there are2 tokens in the place 4
Symmetrically, at the markin@®, 1, 1, 0, 2, 0) there are2 tokens in the placegp Thus, allowing concurrency in the
second argument of iteration in the expressBrcan lead to non-safeness of the corresponding markedodisi-
N, though, it is2-bounded in the worst case [16]. The origin of the problemhigttN has a self-loop with two
subnets which can function independently. Therefore, we Hacided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operawith six arguments in the corresponding dtsi-box, like
that from [16], is rather cumbersome and has too intricatérPeet interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible

5. Performance evaluation

In this section we demonstrate how Markov chains corresipgrtd the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.
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Figure 5: The marked dtsi-baX = Boxysi(E) for E = [(({a), ) * (({b}, 3)lI({c}, 1)) = ({d}, $)] and its reachability graph.

5.1. Analysis of the underlying SMC

For a dynamic expressida, a discrete random variab§€s) is associated with every tangible state DRy (G).
The variable captures the residence (sojourn) time in #ite.sDne can interpret staying in a state at the next discrete
time moment as a failure and leaving it as a success in soaies¢ties. It is easy to see thik) is geometrically
distributed with the parameter-lPM(s, s), since the probability to stay isfor k — 1 time moments and leave it at
the momenk > 1, called the probability mass function (PMF) of the resiietime ins, is pgs)(K) = P(&(s) = k) =
PM(s, 9% 1(1 - PM(s, 9) (k € Ns1) (the residence time is is k in this case). Hence, the probability distribution
function (PDF) of the residence time &is F¢g (k) = P(£(s) < k) = 1 - PM(s, 9% (k € N31) (the probability that
the residence time inis less thark).

Note that the residence time in an absorbing tangible statecan be interpreted as a random variaf{l® that
is geometrically distributed with the parameter@ — PM(s, s). In that casePM(s, s) = 1 and there exists no finite
residence time value with a positive probability. Henggy (k) = PM(s, 9 (1 - PM(s, 9)) = 1.0 = 0 (k € N»1),
i.e. the probability that the residence timekisquals 0 for everk > 1. Then we cannot leavgfor a different state
after any number of time ticks and we staysifor infinite time.

The mean value formula for the geometrical distributioma us to calculate the average sojourn times ia
DRy (G) asS Js) = Clearly, the average sojourn time in each vanishing stat®Ry(G) is S Js) = 0. Let
se DR(G).

Theaverage sojourn time in the statéss

1
1-PM(s9) "

—+i—. se DRy(G);
_ ] TPMG&s '
SJs) { 0, se DRy(G).

Theaverage sojourn time vectarf G, denoted by5J, has the elementsJs), s< DR(G).
Thesojourn time variance in the statés

M9 s e DRr(G);
VARS) ={ @-PM@E9)?2 T2
RS { 0, se DRy(G).
Thesojourn time variance vectaf G, denoted byAR has the element¢ARs), s< DR(G).
To evaluate performance of the system specified by a dynatpiessiorG, we should investigate the stochastic
process associated with it. The process is the underlyinG §M, 62], denoted bMQG), which can be analyzed
by extracting from it the embedded (absorbing) discrete tMarkov chain (EDTMC) corresponding €& denoted
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by EDTMC(G). The construction of the latter is analogous to that aplpliehe context of generalized stochastic PNs
(GSPNs) in [74, 5, 6], and also in the framework of discrateetideterministic and stochastic PNs (DTDSPNS) in
[104], as well as within discrete deterministic and stotica®Ns (DDSPNs) [103]EDTMC(G) only describes the
state changes @M{G) while ignoring its time characteristics. Thus, to constilhe EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from thgm time in its states. The (local) sojourn time in
every state of the EDTMC is equal to one discrete time unis Well-known that every SMC is fully described by the
EDTMC and the state sojourn time distributions (the latar be specified by the vector of PDFs of residence time
in the states) [48].

Let G be a dynamic expression as® € DR(G). The transition systeri S(G) can have self-loops going from a
state to itself which have a non-zero probability. Obviguie current state remains unchanged in this case.
Lets — s. Theprobability to stay in s due to & > 1) self-loopss

PM(s, 9)*.
Theself-loops abstraction factor in the statéss
SK(s) = 1—P'\l/|(s,5)’ S=S
1, otherwise

Theself-loops abstraction vectaf G, denoted bySL, has the elementSl(s), s< DR(G).
Lets — Sands # §,i.e. PM(s, ) < 1. Theprobability to move from s t§ by executing any set of activities after
possible self-loopis

PM(s, 3 Yo PM(s 9% = 15’2"“(5(»35), s— s

PM* = .
(89 { PM(s, §), otherwise;

} = SL()PM(s, §).
The valuek = 0 in the summation above corresponds to the case when nlmepE-occur.
Note thatvs € DRy (G), SI(s) = ﬁ(w = SJX9), hencey¥s € DRr(G) with PM(s, s) < 1, it holdsPM*(s, §) =

SJs)PM(s, §), since we always have the empty loop (which is a seIf—Iczmg) sfrom every tangible state Empty
loops are not possible from vanishing states, he¥ises DRy(G) with PM(s, s) < 1, it holdsPM*(s, 8) = 1_PQ",\(AS(’§)S),
when there are non-empty self-loops (produced by itergfimm s, or PM*(s, 8§ = PM(s, §), when there are no
self-loops froms. Further, we suppose that all (if any) loops among vanisisiates are “transient” rather than
“absorbing”, as in [75, 6]. Then for eacwith PM(s, s) = 1 (absorbing state) we hage= DR (G), since there exist
no absorbing vanishing states, herites DRy (G) PM(s, ) < 1.

Note that after abstraction from the probabilities of tiiass which do not change the states, the remaining
transition probabilities are normalized. In order to cédoel transition probabilitie®T(Y, s), we had to normalize
PF(T,s). Then, to obtain transition probabilities of the statexuging step$ M*(s, §), we now have to normalize
PM(s, §). Thus, we have a two-stage normalization as a result.

Notice thatPM*(s, §) defines a probability distribution, sinéés € DR(G), such thats is not an absorbing state
(i.e. PM(s, 9) < 1, hence, there are transitions téfdient states after possible self-loops from it) we have
Sigs-s 58 PM'(S9) = 1509 Dissos 5 PM(S. ) = 1pyeg(1 - PM(s 9) = 1.

We decided to consider self-loops followed only by a stdtenging step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops state-changing step preceded and followed by self-
loops. In all these three cases our sequence begiasdends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions cfed since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex descriptioacansider sequences ending with a state-changing step. It
resembles in some sense a construction of branching baiimnl[41] taking self-loops instead of silent transitions
Further, we shall not abstract from self-loops with probghil while constructing EDTMCs, to maintain a probability
distribution among transitions (actually, a single tréingito the same state) from every state with such a self-loop

Definition 5.1. Let G be a dynamic expression. Teenbedded (absorbing) discrete time Markov chain (EDTMIC)
G, denoted b)EDTMC(G), has the state spa¥R(G), the initial state ] and the transitions —»» §, if s — Sand
s# § whereP = PM*(s, §); ors—; s, if PM(s, ) = 1.
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The underlying SMCof G, denoted bySMJG), has the EDTMCEDTMC(G) and the sojourn time in every
se DRy (G) is geometrically distributed with the parameter PM(s, s) while the sojourn time in everge DRy(G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can be&fis well. FOE € RegS tatE xpriet
EDTMC(E) = EDTMC(E) andSMQE) = SMQE).

Let G be a dynamic expression. The eleméﬁi‘gs(l <i,j < n=|DR(G)|) of the (one-step) transition probability
matrix (TPM)P* for EDTMC(G) are defined as

PM*(s,sj), s—sj,i#]|;
1, PM(s,s)=1,i=j;
0, otherwise

Pl*l =

The transientk-step k € N) PMF y*[K] = (W*[K]|(S), . .., ¢ [K](s,)) for EDTMC(G) is calculated as

¢ [k = ¢ [01(P),
wherey*[0] = (¥*[0](s1), . . ., ¥*[0](sn)) is the initial PMF defined as

* S 1, S = [G]z,
vlol(s) = { 0, otherwise
Note also that*[k + 1] = ¢*[K]P* (k € N).
The steady-state PMF* = (y*(s1), . . ., ¥*(s)) for EDTMC(G) is a solution of the equation system

P -1)=0
{ l//*lT =1 >
wherel is the identity matrix of orden andO is a row vector of values 0 1 is that ofn values 1.

Note that the vectap* exists and is unique, EDTMC(G) is ergodic. TheleDTMC(G) has a single steady state,
and we have™ = limy . y*[K]. We shall consider only Markov chains with at most one syesidte.

The steady-state PMF for the underlying semi-Markov cl&WQG) is calculated via multiplication of every
v*(s) (1 < i < n) by the average sojourn tinfeXs) in the states, after which we normalize the resulting values.
Note that for each tangible states DRy (G) we haveSJs) > 1, sinceSJs) = m, wherePM(s, s) > PM(s, 0),
and by definition ofPM(s, 0), it holdsPM(s, @) > 0 because the probabilities o% stochastic multiactionsabways
less than 1. Remember that for each vanishing stat®R,(G) we haveSJs) = 0.

Thus, the steady-state PMI= (¢(s1), . . ., ¢(sh)) for SMQG) is

M s € DRr(G);
o(s) =1 D v(s)Sds)

j=1

O], S € DR\/(G)

Thus, to calculate, we apply abstraction from self-loops with probabilityde¢bkan 1 to geP* and thens*, followed
by weighting bySJand normalization EDTMC(G) has no self-loops with probability less than 1, unl&sQG),
hence, the behaviour #DTMC(G) may stabilize quicker than that 8VQG) (if each of them has a single steady
state), sinc®* has only zero (excepting the states having self-loops withability 1) elements at the main diagonal.

Example 5.1. Let E be from Example 3.6. In Figure 6, the underlying SMC $B)Gs presented. The average
sojourn times in the states of the underlying SMC are writtext to them in bold font.
The average sojourn time vectorbfis

The sojourn time variance vector Bfis
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Figure 6: The underlying SMC d for E = [({aJ, p) * (({b}, x); ((({c}. b); (i}, ))(({&), bm); (), 4)))) * Stop].

1-p 1-y ~1-0 1-
VAR:( L oy 2¢).
e X o ¢

The TPM for EDTMGE) is

010 0 O
001 0 O
* |
P=|0oo0o0 Lt m
010 0 O
010 0 O

The steady-state PMF for EDTME) is

The steady-state PMF* weighted by SJ is

- m
"3y’ 301 +m)’ 3p(l+m) )
It remains to normalize the steady-state weighted PMF biglitig it by the sum of its components

0ol + m) + y (4l + 6m)

sl _
VIS = i+ m)

Thus, the steady-state PMF for SKE} is

1
~ 0¢(1 + m) + (ol + 6m)
In the case E m andéd = ¢ we have

%) (0, 8¢(1 + m), O, x|, x6m).

1
- —— (0,2 .
¢ 2()(Jrg)(O, 6,0, x,x)

Let G be a dynamic expression asg € DR(G), S,S ¢ DR(G). The following standargerformance indices
(measuresgan be calculated based on the steady-state £ldF SMQG) and the average sojourn time vec&rof
G [82, 33, 58].

e Theaverage recurrence (return) time in the statéttee number of discrete time units required for thisﬁ@.
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Figure 7: The underlying SMC dfl = Boxysi(E) for E = [({a}, p) * (({b}, x); (({c}, b); ({d}, ))0(({e}, tim); ({}, #)))) * Stop].

e Thefraction of residence time in the statéssy(s).

e Thefraction of residence time in the set of state®iSheprobability of the event determined by a condition
that is true for all states from & > o5 ¢(9).

e Therelative fraction of residence time in the set of states $ wispect to that i is %'
%S

e Therate of leaving the stateis %.

e Thesteady-state probability to perform a step with a set ofati#is = is 3 s.pres) #(S) 2rizcr; PT(Y, 9).

e The probability of the event determined by a reward function rte statess . s.pre) ¢(9r(s), wherevs
DR(G), 0<r(s) < 1.

Let N = (P, Tn, Wi, Qn, £n, My) be a LDTSIPN andW, M € Nm. Then the average sojourn tingM),

the sojourn time varianc¢ARM), the probabilitiesPM*(M, M), the transition relatiotM —y» M, the EDTMC
EDTMC(N), the underlying SMCGSMQ(N) and the steady-state PMF for it are defined like the cormedipg notions
for dynamic expressions.
As we have mentioned earlier, every marked plain dtsi-baidbe interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs correspondimigsi-boxes and then transfer the results to the latter.
Let ~ denote isomorphism between SMCs that binds their initetkest where two SMCs are isomorphic if their
EDTMCs are so and the sojourn times in the isomorphic stdtded=DTMCs are identically distributed.

Proposition 5.1. For any static expression E,

SMQE) ~ SMQBoxis(E))-

Proor. By Theorem 4.2 and definitions of underlying SMCs for dynaexpressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, terage sojourn time in the states is the same, since it is
defined via the analogous probability functions. Seconel tithnsition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reactagitaphs. O

Example 5.2. Let E be from Example 3.6 and N Boxysi(E). In Figure 7, the underlying SMC SMR) is presented.
Clearly, SMGE) and SMEN) are isomorphic. Thus, both the transient and steady-stat&$for SMEN) and
SMQE) coincide.
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5.2. Analysis of the DTMC

Let us consider an alternative solution method, studyimgDAMCs of expressions based on the state change
probabilitiesP M(s, §).

Definition 5.2. LetG be a dynamic expression. THescrete time Markov chain (DTM®@Y G, denoted byp TMC(G),
has the state spa@R(G), the initial state ¢]. and the transitions —¢ §, where = PM(s, §).

DTMCs of static expressions can be defined as well.FFarRegS tatE xprlet DTMC(E) = DTMC(E).

One can see th&DTMC(G) is constructed fronDTMC(G) as follows. For each state BTMC(G), we remove a
possible self-loop with probability less than 1 associatét it and then normalize the probabilities of the remagnin
transitions from the state. ThUSDTMC(G) andDTMC(G) differ only by existence of self-loops with probability less
than 1 and magnitudes of the probabilities of the remainiagsitions. HenceEDTMC(G) andDTMC(G) have the
same communication classes of statesBBIMC(G) is irreducible ff DTMC(G) is so. Since botEDTMC(G) and
DTMC(G) are finite, they are positive recurrent. Thus, in case eflincibility, each of them has a single stationary
PMF. Note thaEDTMC(G) andor DTMC(G) may be periodic, thus having a unique stationary distigimjtbut no
steady-state (limiting) one. For example, it may happenhBERal MC(G) is periodic whileDTMC(G) is aperiodic due
to self-loops associated with some states of the latter.stdtes ofSMQG) are classified usingDTMC(G), hence,
SMQQG) is irreducible (positive recurrent, aperiodi) EDTMC(G) is so.

Let G be a dynamic expression. The elemefits(1 < i, j < n = |DR(G)|) of (one-step) transition probability
matrix (TPM)P for DTMC(G) are defined as

o = { PM(s,sj), s —S;
R otherwise
The steady-state PMFfor DTMC(G) is defined like the corresponding notigh for EDTMC(G).
Let us determine a relationship between steady-state PMESTMC(G) andEDTMC(G). The following theorem
proposes the equation that relates the mentioned steatdyPVIFs.
First, we introduce some helpful notation. For a veeter (vy, ..., V), let Diag(v) be a diagonal matrix of order
n with the element®iag;j(v) (1 <1, j < n) defined as

O I
Diagj(v) = { 0, otherwise

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops alistragector. Then the steady-state PMFs
¢ for DTMC(G) andy* for EDTMC(G) are related as followsYs € DR(G),

ACETCN
PIRACEC)

8DR(G)

() =

Proor. Let there is an absorbing stagee DR(G) (1 < i < n), i.e. PM(s,s) = 1. Then®; = 1 in the TPMP of
DTMC(G) and®; = 1 in the TPMP* of EDTMC(G), by definitions of those TPMs. We have earlier supposed that
there exist no absorbing vanishing states, hegee DRy (G) andSL(s) = oo = SXs). We have also supposed at most
one single steady state in the considered Markov chaingehgsy is a single communication (and ergodic) class of
states in botTMC(G) andEDTMC(G). Theny(s) = 1 = ¢*(s), whereas/s € DR(G) \ {s} SL(S) < o0, SJS) < >
andy(s) = 0 = ¢*(s). We thus get fors

yr(s)Ss) _1-Sls) 1

Ysore) Y (ISUE)  1-SU(s) 1°- 1=y(s),
whereas/s e DR(G) \ {s}
Y (9)SL(9) _0sy 0 _
Yeore) Y (DSLE  1-SUs) o 0=y(9).
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Let there are no absorbing states, ¥e8.€ DR(G) PM(s, s) < 1. LetPSLbe a vector with the elements

_ | PM(s8), s—s _ 1
PSW(s) = { 0, otherwise} STO)

By definition of PM*(s, 8), we haveP* = Diag(SL)(P — Diag(PSL) = Diag(SD(P - | + Diag(SD™?) =
Diag(SD(P —1) + 1. Hence,
P* -1 = Diag(SQh(P - I).
Theny*(P* —1) = 0implies

Y*Diag(SDH(P-1) = 0.
Forv = y*Diag(SL), we get

v(P-1) =0.

In order to calculatey on the basis of, we must normalize it by dividing its elements by their suince we
should havey1" = 1 as a result:

1 1 o
WV: Wlp Diag(SD.

Thus, the elements @f are calculated as follow§'s € DR(G),
ACSICN
Y sore) ¥ (HSLS)

It is easy to check that is a solution of the equation system

(p:

() =

Wy(P-1)=0
1T =1 ’
hence, it is indeed the steady-state PMFDBIMC(G). O

The following proposition relates the steady-state PMEStdQG) andDTMC(G).

Proposition 5.2. Let G be a dynamic expressiop be the steady-state PMF for SNI®) and ¢ be the steady-state
PMF for DTMC(G). ThenVs € DR(G),

— S sepRri(G);
o9 = §§;®¢“”
0, se DRy(G).

Proor. Let s € DRr(G). Remember tha¥'s € DRr(G), SL(s) = SJs) andVs € DRy(G), SJs) = 0. Then, by
Theorem 5.1, we have

¥(9) _ z@‘i(éff?(s?su@ _ Y (9)SL(s) - Zseore) ¥ (9SUS _
Y sorr(c) ¥(5 deDRT(G)(%) 2 s0rEe) ¥ (DSUS)  Xsor (g ¥ (9SUY)
Y (s)SUs) _ Y (9)SJI9) _ Y (9)SJs) = o9
Ysori@) ¥ (OSUS)  Xaor @ ¥ (9SAY  Xaore) ¥ (9SIY .
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Thus, to calculate, one can only apply normalization to some elementg @€orresponding to the tangible
states), instead of abstracting from self-loops with pbiliig less than 1 to ge®* and theny*, followed by weighting
by SJand normalization. Hence, usilfr MC(G) instead oEDTMC(G) allows one to avoid multistage analysis, but
the payment for it is more time-consuming numerical and ngoreplex analytical calculation @f with respect ta/*.
The reason is thddTMC(G) may self-loops with probability less that 1, unliE®TMC(G), hence, the behaviour of
DTMC(G) may stabilize slower than that BDTMC(G) (if each of them has a single steady state) Biglpotentially
more dense matrix thaR*, sinceP may have additional non-zero elements at the main diagoNal.ertheless,
Proposition 5.2 is very important, since the relationslépeeny andy it discovers will be used in Proposition 5.3
to relate the steady-state PMFs 8¥QG) and the reduceBTMC(G), as well as in Section 8 to prove preservation
of the stationary behaviour by a stochastic equivalence.

Example 5.3. Let E be from Example 3.6. In Figure 8, the DTMC DT(ELis presented.
The TPM for DTMGE) is

0
0
1

¥

m

oifoo

[
1

OO0 o= O

o |
=

|
-

The steady-state PMF for DTME) is

1
= 961+ )0+ m) + (@l + om)
Remember that DRE) = {s1, S, &, S5} and DR/(E) = {ss}. Hence,

V4 (0, 8¢(1 + M), x0(1 + M), x¢l, xy6m).

(1 + m) + x (ol + 6mM)
(1 + x)(I + M) + (ol + 6m)°

DT w(d = ws) + () + Y(sa) + u(ss) =

%DRy(E)
By Proposition 5.2, we have

_ 0d(L+x)(1+m)+x (sl +6m) _
@(s1) =0- H¢(Al/+m)+)((q§(|+6m) =0,

_ O¢(1+m) O0(1+x)(1+m)+x (gl +6m) _ O¢(1+m)
90(52) = ) I+m)x@+om)  ~ 0p(1+m)+y(pl+om)  Gp(I+m)+x (ol +6m) >
¢(ss) = 0,

(s) = X9 . 0o (I+m)+x(pl+om) _ X9l
¥ 0 (1+x)(1+m)+y (sl +6m) 0 (1+m)+yx (gl +6m) 0 (1+m)+yx (ol +6m) °

_ xom 0d(L+x)(1+m)+x(pl+6m) _ xom

(p(&,) = 01t ) (+m)tx(@l+om) ~  0p(+m)+y(pl+om) — Ogp(I+m)+x(pl+6m) *

Thus, the steady-state PMF for SNE} is

1
= 500 + ) + (@l + am) O 000+ ). Oxedl o).

This coincides with the result obtained in Example 5.1 withuse of/* and SJ.

¥

5.3. Analysis of the reduced DTMC

Let us now consider the method from [33, 75, 5, 7, 6] that elatés vanishing states from the EMC (EDTMC,
in our terminology) corresponding to the underlying SMC eéy GSPNN. The TPM for the resultingeduced
EDTMC (REDTMC) has smaller size than that for the EDTMC. Thetinod demonstrates that there exists a transfor-
mation of the underlying SMC dfl into a CTMC, whose states are the tangible markings.ofhis CTMC, which is
essentially theeducedunderlying SMC (RSMC) ofN, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and thelgtetate PMFs over the tangible marking$\bfin [33], the
program and computational complexities of sucteiminationmethod, based on the REDTMC, were evaluated and
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Figure 8: The DTMC of for E = [({al, ) * (({b}, x); ((({c}, b); (i}, ))[(({e), bm); (), 4)))) * Stop].

Performance evaluation

OO

Preservation Elimination

(RDTMC)
Embedding  Abstraction
(SMC) (DTMC)

Figure 9: Performance evaluation methods in dtsiPBC

compared with those of thereservatiormethod that does not eliminate vanishing states and basgtedtDTMC.
The preservation method for GSPNs corresponds in dtsiPBRetanalysis of the underlying SMCs of expressions
(embeddiny Note that the performance evaluation method based onaimplete DTMCs of the dtsiPBC expres-
sions @bstraction) has no prototype in the GSPN model, hence, it is a novel(ate to embedding) variant of the
preservation method. In Figure 9, a classification of thégoerance analysis techniques within dtsiPBC is presented.

The elimination method for GSPNs can be easily transfeweadtdiPBC, hence, for every dynamic expression
G, we can find a DTMC (since the sojourn time in the tangibleestdtom DR(G) is discrete and geometrically
distributed) with the states froBRr (G), which can be directly solved to find the transient and thady-state PMFs
over the tangible states. We shall demonstrate that suetitecedDTMC (RDTMC) of G, denoted byRDTMQG),
can be constructed froMTMC(G), using the method analogous to that designed in [75, 5, i, tBle framework of
GSPNs to transform EDTMC into REDTMC. Since the sojourn tim#he vanishing states is zero, the state changes
of RDTMQG) occur in the moments of the global discrete time associattdSMJG), unlike those cEDTMC(G),
which happen only when the current state changes to slifieeentone, irrespective of the global time. Therefore, in
our case, we can skip the stages of constructing the REDTME; dénoted byREDTMGG), from EDTMC(G), and
recovering RSMC of3, denoted byRSMGQG), (which is the sought-for DTMC) frolREDTMQG), since we have
RSMQG) = RDTMQG).

Let G be a dynamic expression aRde the TPM foDTMC(G). We reorder the states froBR(G) such that the
first rows and columns d? will correspond to the states froBRy(G) and the last ones will correspond to the states
from DRy (G). Let|DR(G)| = nand|DR(G)| = m. The resulting matrix can be decomposed as follows:

C D
p- ( c b ) |
The elements of then- m) x (n—m) submatrixC are the probabilities to move from vanishing to vanishirages,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n — m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m
submatrixF are the probabilities to move from tangible to tangibleestat
The TPMP° for RDTMQG) is them x m matrix, calculated as
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P° = F + EGD,

where the elements of the matfxare the probabilities to move from vanishing to vanishirzgest in any number of
state changes, without traversal of tangible states.

If there are no loops among vanishing states then for anyshiarg state there exists a value N such that every
sequence of state changes that starts in a vanishing stétis &onger tharl should reach a tangible state. Thus,
JdeNVk>I1Ck=0 and) 2, Ck = ZLzo Ck. If there are loops among vanishing states then all suchslaop
supposed to be of “transient” rather than “absorbing” tygiece the latter is treated as a specification error to be
corrected, like in [75, 6]. We have earlier required tBMQG) has a single closed communication (which is also
ergodic) class of states. Remember that a communicaties ofstates is their equivalence class w.r.t. communicatio
relation, i.e. a maximal subset of communicating statesomraunication class of states is closed if only the states
belonging to it are accessible from every its state. Thedicgdass cannot consist of vanishing states only to avoid
“absorbing” loops among them, hence, it contains tangitdées as well. Thus, any sequence of vanishing state
changes that starts in the ergodic class will reach a tamgiialte at some time moment. All the states that do not
belong to the ergodic class should be transient. Hence, emyesice of vanishing state changes that starts in a
transient vanishing state will some time reach either asteant tangible state or a state from the ergodic class [62].
In the latter case, a tangible state will be reached as welrgued above. Thus, every sequence of vanishing state
changes irBMQG) that starts in a vanishing state will exit the set of all wimg states in the future. This implies
that the probabilities to move from vanishing to vanishitages ink € N state changes, without traversal of tangible
states, will lead to 0 whek tends toco. Then we have lif,., CX = lim_.(I = (I = C))¥ = 0, hence] —Cis a
non-singular matrix, i.e. its determinant is not equal toozeThus, the inverse matrix ¢f— C exists and may be
expressed by a Neumann serieSys,(l — (I = C))X = T o C* = (I - C)~L. Therefore,

G i ck koo CX, A eN, vk> 1, Ck=0, noloopsamong vanishing states;
& (1 -0 limeeCk=0, loops among vanishing states;

where0 is the square matrix consisting only of zeros anglthe identity matrix, both of order— m.
Forl<i,j<mand 1<k | <n-m,letF; be the elements of the matrix Sy be those ok, Gy be those ofs
and®D,; be those oD. By definition, the elemem@fj of the matrixP° are calculated as

n—

Pio]—=7’~ij+

3

n-m n-m n-m n-m
SkGuDij = Fij + Z&k Z GuDij = Fij + ) Dy Z EikGis
P k=1

n-m
1 =1

=~
I

1l=

ie. P (1 <i, j < m)is the total probability to move from the tangible statéo the tangible stats; in any number
of steps, without traversal of tangible states, but poggibing through vanishing states.

Let s, 5§ € DRr(G) such thats = 5, 8 = s;. Theprobability to move from s t8 in any number of steps, without
traversal of tangible state@f such a movement is possible, i.e. its probability is fies) is

PM(s §) = .

Definition 5.3. Let G be a dynamic expression an@]L € DRr(G). Thereduced discrete time Markov chain
(RDTMC)of G, denoted bRDTM{G), has the state spafd¥Rr(G), the initial state ] and the transitions < §,
whereP = PM°(s, 9).

RDTMCs of static expressions can be defined as well FFerRegS tatE xpdet RDTMQE) = RDTMQE).

Let us now try to defin&RSMCG) as a “restriction” ofSMG) to its tangible states. Since the sojourn time in
the tangible states @MJG) is discrete and geometrically distributed, we can seeR&NG) is a DTMC with
the state spacBRr(G), the initial state ¢]. and the transitions whose probabilities collect all thas€EMJG) to
move from the tangible to the tangible states, directly dirigctly, namely, by going through its vanishing statesyonl
Thus,RSMCG) has the transitions <4 §, whereP = PM°(s, §), hence, we gRSMCG) = RDTMQOG).

One can see th&®DTMQG) is constructed fronDTMC(G) as follows. All vanishing states and all transitions
to, from and between them are removed. All transitions betwangible states are preserved. The probabilities of
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transitions between tangible states may become greatememadransitions between tangible states may be added,
both iff there exist moves between these tangible states in any mwhseps, going through vanishing states only.
Thus, for each sequence of transitions between two tangthtes inDTMC(G) there exists a (possibly shorter,
since the eventual passed through vanishing states areveeingequence between the same statd3Di MQG)
and vice versa. IDTMC(G) is irreducible then all its states (including tangible sheommunicate, hence, all states
of RDTMQG) communicate as well and it is irreducible. Since bB(RMC(G) and RDTMQG) are finite, they
are positive recurrent. Thus, in case of irreducibility®fMC(G), each of them has a single stationary PMF. Note
that DTMC(G) andor RDTMQG) may be periodic, thus having a unigue stationary distidoytout no steady-state
(limiting) one. For example, it may happen tiREMC(G) is aperiodic whileRDTMQG) is periodic due to removing
vanishing states from the former.

Let DRy (G) = {sy, ..., Sm} and [G]~ € DRy (G). Then the transienk{step,k € N) PMF
UIK] = (W°[KI(s1), - - -, ¥°[K](Sm) for RDTMQG) is calculated as

Y[kl = w°[0](P°),
wherey°[0] = (y°[0](sp), - - -, ¥°[0](Sm)) is the initial PMF defined as

X 1, s =[G]s;
¢°[01(s) ={ 0, otherwise

Note also that°[k + 1] = ¢°[K]P°® (k € N).
The steady-state PMF = (¥°(s1), ..., ¥°(Sn)) for RDTMQG) is a solution of the equation system

P =1)=0
{ lﬂolT -1 >
wherel is the identity matrix of ordem andO is a row vector omvalues Q 1is that ofmvalues 1.

Note that the vectap® exists and is unique, RDTMQG) is ergodic. ThelRDTMQG) has a single steady state,
and we have/® = limy_. ¥°[K].

The zero sojourn times in the vanishing states guaranteththatate changes BDTMQG) occur in the moments
of the global discrete time associated wWBMQG), i.e. every such state change occurs after one time uraydel
Hence, the sojourn time in the tangible states is the sanRDIGMQG) andSMJG). The state change probabilities
of RDTMQG) are those to move from tangible to tangible states in anybaurof steps, without traversal of tangible
states. ThereforRDTMQG) and SMQG) have the same transient behaviour over the tangible stites, the
transient analysis 8M{G) is possible to accomplish usiRDTMJG).

The following proposition relates the steady-state PMESIQG) andRDTMQG). It proves that the steady-
state probabilities of the tangible states coincide fonthe

Proposition 5.3. Let G be a dynamic expressiapnbe the steady-state PMF for SNI®) andy° be the steady-state
PMF for RDTMQG). ThenVs € DR(G),

_ | v°(9), seDRy(G);
#(s) = { 0. scDR/(G).

Proor. To make the proof more clear, we use the following unifiedatioh. | denotes the identity matrices of any
size.0 denotes square matrices and row vectors of any size andhlefigalues 0.1 denotes square matrices and row
vectors of any size and length of values 1.

Let P be the reordered TPM f®@TMC(G) andy be the steady-state PMF fDITMC(G), i.e. ¢ is a solution of the
equation system

y(P-1)=0
Yyl =1 :

Let IDR(G)| = nand|DR(G)| = m. The decomposeld, P — | andy are
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C D C-1 D
P:(E F),P—I:( E F_I)andw=(wv,wr),

whereyy = (¥1,...,¥n-m) is the subvector of with the steady-state probabilities of vanishing statedan =
(Yn-m+1, - - ., ¥n) is that with the steady-state probabilities of tangibégess.
Then the equation system fgris decomposed as follows:

Yyv(C-1)+yrE=0
l//vD+l//T(F—|) =0 .
l,b\/lT +l,DT1T =1

Further, letP® be the TPM foRDTMQG). Theny° is a solution of the equation system

v(P=1)=0

Yyl =1 ’
We have

P° = F + EGD,

where the matrixG can have two dferent forms, depending on whether the loops among vanisieétes exist, hence,
we consider the two following cases.

1. There exisho loops among vanishing statée havedl € N, Yk > |, CX = 0andG = ZL:o ck.
Let us right-multiply the first equation of the decomposedagipn system fog by G:

Uv(CG -G) +ytEG = 0.
Taking into account tha® = ¥ _, C¥, we get

| |
yv| D CreCH-CO- ) CH+yrEG =0,
k=1 k=1

SinceC'*! = 0 andCP° = |, we obtain

—yv +YTEG = 0andyy = ¢TEG.
Let us substitutgy with y+EG in the second equation of the decomposed equation system for

YTEGD +y1(F—1) =0andyt(F+ EGD - 1) = 0.
SinceF + EGD = P°, we have

yr(P* 1) =0.
2. There existoops among vanishing staté#/e have lim_., CX = 0andG = (I - C)™%.
Let us right-multiply the first equation of the decomposedagipn system fog by G:

-yv(l - C)G +yTEG = 0.
Taking into account tha® = (I — C)~%, we get

-y + l//TEG =0 andt//v = l,bTEG
Let us substitutg with ytEG in the second equation of the decomposed equation system for

l,DTEGD + l,DT(F - |) = OandxpT(F +EGD - |) =0.
SinceF + EGD = P°, we have

yr(P° ~1) =0,
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The third equationyy 1" + 71" = 1 of the decomposed equation systemiidmplies that ify, has non-zero
elements then the sum of the elementgpis less than one. We normalize by dividing its elements by their sum:

It is easy to check thatis a solution of the equation system
v(P°-1)=0
viT =1 ’
hence, it is the steady-state PMF RDTMJG) and we have
o V — 1
vevs Y1l v
Note thatYs € DRy (G), y¥1(S) = ¥(S). Then the elements @f are calculated as follow$'s € DRy (G),
v (S) = yr(s) _ ¥(9)
2sDrr@) ¥T(8)  Lsr,(e) ¥(9
i _ ¥(s)
By Proposition 5.2¥s € DRy (G), ¢(s) = m.
Thereforeys € DR (G),
S <
o9 = —2 s,

~ Ysorie ¥V
O

Thus, to calculate, one can just take all the elementsysf as the steady-state probabilities of the tangible
states, instead of abstracting from self-loops with prdigiess than 1 to geP* and theny*, followed by weighting
by SJand normalization. Hence, usiRDTMQG) instead ofEDTMC(G) allows one to avoid such a multistage
analysis, but constructinB°® also requires somefferts, including calculating matrix powers or inverse nes.
Note thatRDTMQG) may have self-loops with probability less than 1, unli@TMC(G), hence, the behaviour of
RDTMQG) may stabilize slower than that #BDTMC(G) (if each of them has a single steady state). On the other
hand,P° is generally smaller and denser matrix tHn sinceP° may have additional non-zero elements not only at
the main diagonal, but also many of them outside it. Theegfarmost cases, we have less time-consuming numerical
calculation ofy° with respect tas*. At the same time, the complexity of the analytical caldolabf ¢ with respect
to y* depends on the model structure, such as the number of vagistiites and loops among them, but usually it
is lower, since the matrix size reduction plays an importatd in many cases. Hence, for the system models with
many immediate activities we normally have a significantpdification of the solution. At the abstraction level of
SMCs, the elimination of vanishing states decreases tin@iact to the solution complexity while allowing immediate
activities to specify a comprehensible logical structursystems at the higher level of transition systems.

Example 5.4. Let E be from Example 3.6. Remember thatr(i:i ={s, S, %, S} and DR/(E) = {s3}. We reorder
the states from DEE), by moving the vanishing states to the first positionssss s, &4, Ss.
The reordered TPM for DTM(E) is

E

o

0 0 #n l+m
0 1-p p 0 0
Pr=| x 0 1-x 0 0
0 0 0 1-6 O
0 0 1) 0 1-¢

The result of the decomposiig are the matrices
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RDTMC (E)

1-6 1-¢

Figure 10: The reduced DTMC & for E = [({aJ. p) * (({b}. x); ((({c}. b); ({1}, ))[(({e). bm); (). 4)))) * Stop].

0 1-p p 0 0

o I m x| | 0o 1-x 0o o

L O - L I BRSO
0 0 ¢ 0 1-¢

SinceC! = 0, we havevk > 0, C* = 0, hence, k= 0 and there are no loops among vanishing states. Then

|
G=ZC"=C°=I.
k=0

Further, the TPM for RDTM(E) is

1-p »p 0 0
. ~ ~ | 0o 1, A
P =F+EGD=F+ED=F+ED=| PR

0 ¢ 0 1-¢
In Figure 10, the reduced DTMC RDTME) is presented. The steady-state PMF for RDTEs

o_ 1
01+ m) + (¢l + 6m) (0, 6¢(1 + m), xgl, xom).

Note thaty® = (°(s1), ¥°(S2), ¥°(s4), ¥°(Ss)). By Proposition 5.3, we have
¢(s1) =0,

)
2(%2) = GEmE

¢(ss) =0,
#(S0) = T
#(3) = gyt
Thus, the steady-state PMF for SNE} is
_ 1
0ol + m) + y (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

%) (0, 8¢(1 + m), O, x|, x6m).
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RSMC(E)

X|= D=

Figure 11: The reduced SMC &for E = [({a}, ) * (b}, x); ((({c}, t); ({d}, ) I(( (e}, tim); (), 4)))) * Stop].

Example 5.5. Let E be from Example 3.6. In Figure 11, the reduced undeghBVC RSM(E) is depicted. The
average sojourn times in the states of the reduced underi$MC are written next to them in bold font. In spite
of the equality RSM(E) = RDTMQE), the graphical representation of RSNE) differs from that of RDTM(E),
since the former is based on the REDT(&}; where each state is decorated with fhasitiveaverage sojourn time
of RSMCE) in it. REDTMQE) is constructed from EDTM(E) in the similar way as RDTM(E) is obtained from
DTMC(E). By construction, the residence time in each state of R@)G geometrically distributed. Hence, the
associated parameter of geometrical distribution is ueiguecovered from the average sojourn time in the state.

Let us now formally prove that RSMC coincides with RDTMC. #dugh this assertion is very intuitive, its proof
is rather involved. The relation betweBf MC andRDTMCis obtained using the transition functieMe (s, §), based
on PM(s, §). The relation betweeRDTMCand the embeddeddDTMC (ERDTMQ is obtained using the transition
function PM®)*(s, §), based orlPM°(s, §). The relation betweeEDTMC and the reduce&EDTMC (REDTMQ
is obtained using the transition functioRNI*)°(s, §), based orlPM*(s,5). Let G be a dynamic expression. We
shall prove that the TPMR®)* for the embedde®@DTMQG) (ERDTMGG)), (forwardly) constructed by reduction
(eliminating vanishing states) & TMC(G), followed by embeddingERDTMQG) into RDTMQG), coincides with
the (finally) embedded TPMR()°)*, (reversely) constructed by embeddiBBTMC(G) into SMQG), followed by
reductionREDTMGG) of EDTMC(G), and final embeddinEREDTMGG) into RSMCG). The final embedding in
the reverse construction is needed, since new self-loogsanise after reducingDTMC(G), i.e. REDTMQG) may
become not an EDTMC, but a DTMC featuring self-loops withiability less than 1. Note that f&x 3 € DRy (G),
we have PM°)*(s, 8 = SL°(s)PM°(s §) in ERDTMQG). HereS L°(9) is the self-loops abstraction factor in
RDTM{G). This corresponds to affierent expressiorPM*)°(s, §) = (S L: PM)°(s, §) in REDTMGG). In particular,
SL°(s) > SL(s) whenPM°(s, s) > PM(s, s), which is the reason for a new self-loop associated withRDTMQG).
As we shall see, in that casB°)*(s, 8 > (PM*)°(s, §. The following theorem relates those finally embedded
reduced embedded TPMR{()°)* (i.e. the TPM forEREDTMCG)) and embedded reduced TPR{* (the TPM for
ERDTMQG)).

Theorem 5.2. Let G be a dynamic expressiqR;’)* results from embedding the TP for RDTMQG), and((P*)°)*
results from reduction and final embedding the TPMor EDTMC(G). Then

((P))" = (P°)".

Proof. See Appendix Appendix A.2. O

Thus, reduction before embedding is more optimal compnatly for DTMCs of the process expressions.

By Theorem 5.2EREDTMGG) = ERDTMQG). The sojourn time in everg € DRy (G) is geometrically
distributed with the parametef—os ek stg WhereS L (s) = W_PMH(&S)’ while the sojourn time in every
se DRy(G) is equal to 0. Her& L (9) is the self-loops abstraction factor &for the submatridr (see Example 5.4),
PMy(s, 9) is the self-loop probability irs for the matrixH = EGD (see Example 5.4) arfd Ly, () is the self-loops
abstraction factor isin REDTMQG) (for the matrixH’, whose elements are the probabilities to move from tangible
to tangible states, via argositivenumber of vanishing states, without traversal of tangitdg¢es, iInEDTMC(G)).
Hence RSMGG) = RDTMQG), whereRSMGG) is the SMC with the EDTMEREDTMCG), such thatm
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is the geometrical distribution parameter of the sojoumetin everys € DRr(G) while the sojourn time is zero in
everys e DRy(G).

Example 5.6. Let E be from Example 3.6. The TPMs for RDT(#Fand ERDTMGCE) are

1-p »p 0 0 01 O 0
o 0 1-x &R oy | 00
P=l 0 ¢ 1T 0 |PV=lo 1T T
0 ) 0 1-9¢ 01 0 O
The TPMs for REDTM(E) and EREDTMGE) are
01 0 O 01 0 O
*\O O O % % LA T O O % %
PY=lg 1% "CL®E)=1g 1" "0
01 0 O 01 0 O

The self-loops abstraction subvectorBfor the submatrid (see Example 5.4) is &L= (% e %) The self-
loops abstraction vector dE in REDTMGE) (for the matrixH’, see below) i§SL*)° = Sk = (1,1,1,1). The
self-loops abstraction vector & in RDTMQE) is S I° = 1Diag(S Lg)Diag(S L) = (% e %) wherel is a row
vector of n valueg§.

The elements of the matrbt’ are the probabilities to move from tangible to tangible egtvia anypositive
number of vanishing states, without traversal of tangiltéges, in EDTMQG). We haveH’ = Diag(S Lg)H, where
elements of the matrid = EGD (see Example 5.4) are the probabilities to move from tamgibltangible states, via
anypositivenumber of vanishing states, without traversal of tangildges, in DTMQG). The matrice$! andH’ are

0 0 0 ©O 00 0O O
| |
0 0 0 ©O 0O 0 0 O

Then it is easy to check that
((P")*)" = Diag(SL°)(P° —I) + | = Diag(S Ly-)Diag(S Le)(P° — 1) + 1 = (P°)".

Note that our reduction of the underlying SMC by eliminatitsgvanishing states, resulting in the reduced DTMC,
resembles the method from [70] that removes instantandatsssof stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Markoaifs with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making theamédiate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SM@sgeometrically distributed or zero sojourn times in
the states. However, within dtsiPBC, we have decided to$\K€Es as the underlying stochastic process to be able in
the perspective to consider not only geometrically disteld and zero residence time in the states, but arbitrarg fixe
time delays as well.

6. Stochastic equivalences

Consider the expressioiis= ({a}, 3) andE’ = ({a}, $)a[l({a}, 3)2, for whichE # E’, sinceT S(E) has only one
transition from the initial to the final state (with probétyil%) while TS(E’) has two such ones (with probabiliti%}a
On the other hand, all the mentioned transitions are laliBtegttivities with the same multiaction pgag. Moreover,
the overall probabilities of the mentioned transitiond&(E) and T S(E’) coincide:3 = 7 + 1. Further,TS(E) (as
well asTS(E’)) has one empty loop transition from the initial state telitsvith probability% and one empty loop
transition from the final state to itself with probability The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilit@sT S(E’), takep = y = % in Example 3.5. Then you will see that
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the probability parts; and 3 of the activities {a}, 3)1 and (a}, 1), are “splitted” among probabilitie§ and J of the
corresponding transitions and the probabigtgaf the empty loop transition. Unlike.s, most of the probabilistic and
stochastic equivalences proposed in the literature doifferéntiate between the processes such as those specified by
E andE’. In Figure 13(a), the marked dtsi-boxes correspondingaalyjmamic expressiors andE’ are presented,

i.e. N = Boxysi(E) andN’ = Boxgsi(E).

Since the semantic equivaleneg is too discriminating in many cases, we need weaker equigal@otions.
These equivalences should possess the following necgasmgrties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, whichteerultiaction parts of the activities executed in steps
starting from the initial states of the processes. Secavdevery such sequence, its execution probabilities within
both processes must coincide. Third, the desired equivalgimould preserve the branching structure of computations
i.e. the points of choice of an external observer betweegrakgxtensions of a particular computation should be taken
into account. In this section, we define one such notion: stieghastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular poihthoice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisirnaras arequivalenceaelation that partitions the states of
the union of the transition system§S(G) and T S(G’) of two dynamic expressions andG’ to be compared. For
G andG’ to be bisimulation equivalent, the initial stat€3]] and [G’]. of their transition systems should be related
by a bisimulation having the following transfer property:two states are related then in each of them the same
multisets of multiactions can occur, leading with the ideadtoverall probability from each of the two statesthe
same equivalence clagsr every such multiset.

Thus, we follow the approaches of [56, 64, 50, 52, 14, 10, bai},we implement step semantics instead of
interleaving one considered in these papers. Recall addavilnuse the generative probabilistic transition systéikes,
in [56], in contrast to the reactive model, treated in [64ig ave take transition probabilities instead of transitiates
from [50, 52, 14, 10, 11]. Thus, step stochastic bisimuraéquivalence that we define further is (in the probabilistic
sense) comparable only with interleaving probabilistgiroulation one from [56], and our equivalence is obviously
stronger.

In the definition below, we considef(Y) € N for T € N'£, i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty as well. In this cag€Y’) contains the elemengs but it is not empty itself.

Let G be a dynamic expression afid C DR(G). Then, for anys € DR(G) andA € Nﬁn, we write s ip H,
whereP = PMa(s, H) is theoverall probability to move from s into the set of stafésia steps with the multiaction
part Adefined as

PMa(s H) = > PT(T, 9).

[Y3%H, 55 £(1)=A)

We write s fa Hif AP, s Ap H. Further, we writes - H if A, s o H, whereP = PM(s, H) is theoverall
probability to move from s into the set of stafésvia any stepslefined as

PM(sH)= > PT(T,s).

(T 35H, s5§

ForSe DR(G), we writes 5@ Sif s gp {8} ands 4 Sif AP s gp s

To introduce a stochastic bisimulation between dynamicesgonss andG’, we should consider the “compos-
ite” set of stateDR(G) U DR(G’), since we have to identify the probabilities to come frorg Bmo equivalent states
into the same “composite” equivalence class (with respdtid stochastic bisimulation). Note that, @k G’, transi-
tions starting from the states BIR(G) (or DR(G’)) always lead to those from the same set, SDB¥G)NDR(G’) = 0,
and this allows us to “mix” the sets of states in the definitdstochastic bisimulation.

Definition 6.1. Let G andG’ be dynamic expressions. AsguivalenceaelationR ¢ (DR(G) U DR(G))? is astep
stochastic bisimulatiobetweerG andG’, denoted byR : G G/, if:
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0,1—-6 0,1—-6

Figure 12: The multiaction transition systemfofor F = [({a}, p) * (({b}, x); ((({c}, ); ({d}, O)1)[(({c}, tim); ({d}, 6)2))) * Stop].

1. ([G][G1:) € R.
2. (s1,%) €R = YH € (DR(G) UDR(G)/#, YA€ Nf;

fin’

S H o 55, H.

Two dynamic expressiors andG’ arestep stochastic bisimulation equivaledénoted byco G, if IR : G G-

We now define the multiaction transition systems, whosesttimms are labeled with the multisets of multiactions,
extracted from the corresponding activities.

Definition 6.2. Let G be a dynamic expression. Tliabeled probabilistic) multiaction transition systeshG is a
quadruplel Sp(G) = (S, Ly, Tz, Sr), Wwhere

e S; = DR(G);
e L, =NZ x(0;1];

fin
o 7, ={(s (A PMa(s.{3)).9 | s 5 DRG), s &;
® Sy = [G]x

The transition § (A, P), 9 € 7 will be written ass Ap S.

The multiaction transition systems of static expressioas be defined as well. FdE € RegStatExpiet
TS,(E) = TS,(E).

LetG andG’ be dynamic expressions afit G G'. Then the relatiorR can be interpreted as a step stochastic
bisimulation between the transition systeS,(G) andT S,(G’), denoted byR : TS,(G)e« T S,(G’), which is
defined by analogy (excepting step semantics) with inteimggprobabilistic bisimulation on generative probalitis
transition systems from [56].

Example 6.1. Let us consider an abstraction F of the static expressionoenfExample 3.6, such that€ e, d =
f,0=2¢,li.e.

F = [({a}, p) = ({b}, x); ((({c}, n); ({d}, O))[1(({c}, bim); ({dl}, B)2))) + Stop].

Then DRF) = {s1, S, S, &4, S5} is obtained from DFE) via substitution of the symbols €, ¢ by ¢ d, 6,
respectively, in the specifications of the correspondiatgstfrom the latter set. We have mﬁ) ={s1, &, 4, S5} and
DRy(F) = {ss}. In Figure 12, the multiaction transition system F(&) is presented. For simplicity of the graphical
representation, the singleton multisets of multiactiores\varitten without outer braces.
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The following proposition states that every step stochadsiimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.

Proposition 6.1. Let G and G be dynamic expressions aftt Go  G'. Then
R < (DRr(G) U DRr(G")? w (DRy(G) U DRy(G))*.

Proor. By definition of transition systems of expressions, forgtangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing state
Further,R preserves empty loops. To verify this fact, first take 0 in its definition to get/(s1, &) € R,

VH € (DR(G) U DR(G"))/#, S1 gp H e s &p H, and then observe that the empty loop transition from a state
leads only to the same state. O

Let Rs{G,G") = U{R | R : G G’} be theunion of all step stochastic bisimulatiobstweenG andG’. The
following proposition proves th&ks{G, G') is also arequivalencandRs{G,G’) : G G’

Proposition 6.2. Let G and G be dynamic expressions and-6 G’. ThenRs{G, G’) is the largest step stochastic
bisimulation between G and’'G

Proor. See Appendix A.3. O

In [3], an algorithm for strong probabilistic bisimulatiam labeled probabilistic transition systems (a reformula-
tion of probabilistic automata) was proposed with time céexiy O(n’m), wheren is the number of states amdlis
the number of transitions. In [4], a decision algorithm flsoag probabilistic bisimulation on generative labeleolpr
abilistic transition systems was constructed with time ptaxity O(mlogn) and space complexit®(m+ n). In [31],
a polynomial algorithm for strong probabilistic bisimutat on probabilistic automata was presented. The mentioned
algorithms for interleaving probabilistic bisimulatioguivalence can be adapted for, using the method from [55],
applied to get the decidability results for step bisimwalatequivalence. The method takes into account that transiti
systems in interleaving and step semantid¢gedionly by availability of the additional transitions cosp®nding to
parallel execution of activities in the latter (which is @mase).

6.2. Interrelations of the stochastic equivalences
We now compare the discrimination power of the stochastiivedences.

Theorem 6.1. For dynamic expressions G and @e followingstrictimplications hold:
G~xG = G=sG = Go G

Proor. Let us check the validity of the implications.

e Theimplication=is= © . is proved as follows. Leg : G =5 G'. Thenitis easy to see th&t: G G’, where
R =1{(s8(9) | s€ DRG)}.

e The implication==s is valid, since the transition system of a dynamic formuldefined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. then@ones do not work, by the following counterexamples.

() LetE = ({a}, 3) andE’ = ({a}, 3)1[1({a}, 1)2. ThenEo E’, butE #s E’, sinceT S(E) has only one transition
from the initial to the final state whil& S(E’) has two such ones.

(b) LetE = ({a}, 3); ({a}, 3) andE’ = (({a}, 2); (&), 3)) sy & ThenE = E, butE # E’, sinceE andE’ cannot be
reached from each other by applying inaction rules. O

Example 6.2. In Figure 13, the marked dtsi-boxes corresponding to theadyin expressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e=NBoxytsi(E) and N' = Boxsi(E’) for each picture (a)—(b).
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Figure 13: Dtsi-boxes of the dynamic expressions from edence examples of Theorem 6.1.

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduséitarsystems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of grapked models, like transition systems, reachability ggaph
and SMCs, result in those with less states (the graph nodés)goal of the reduction is to decrease the number of
states in the semantic representation of the modeled systdimpreserving its important qualitative and quantitati
properties. Thus, the reduction allows one to simplify tebdvioural and performance analysis of systems.

7.1. Quotients of the transition systems and Markov chains

We now construct the quotient (By ) transition systems and Markov chains (SMCs, DTMCs and ROEM
An autobisimulationis a bisimulation between an expression and itself. For auiyo expressios and a step
stochastic autobisimulation onft: Ge G, let K € DR(G)/z andsy, s, € K. We haveVK € DR(G)/x, YA€ NZ

fin?
S fw K o S 5@ K. The previous equality is valid for adh, s, € K, hence, we can rewrite it & 5@ 7?, where
P = PMA(K, K) = PMa(s1, K) = PMa(s2, K).

We write K at K if IP, K —A>¢> K andK — K if A, K at K. The similar arguments allow us to write
K —p K, where? = PM(K, K) = PM(s1, K) = PM(s2, K).

By Proposition 6.1R < (DRy(G))? w (DRy(G))?. Hence YK € DR(G)/x, all states froniK are tangible, when

K € DRy (G)/g, or all of them are vanishing, wheki € DRy(G)/«.
Theaverage sojourn time in the equivalence class (with resigeg] of statesk is

1 .
v K € DRr(G)/x;
— 1-PM(K, %)
The average sojourn time vector for the equivalence classeth (@spect taR) of statesof G, denoted byS Xk,
has the elemenSk(K), K € DR(G)/x.
Thesojourn time variance in the equivalence class (with respeR) of stateskK is

VARK(K) = { wrugcr: K € DRrO)/x;
O, K e DRv(G)/R
Thesojourn time variance vector for the equivalence classdh (@spect toR) of statesof G, denoted bywARg,
has the elemeniAR(K), K € DR(G)/x.
Let RsG) = UIR | R : GG} be theunion of all step stochastic autobisimulatiomsG. By Proposition 6.2,
Rs{G) is the largest step stochastic autobisimulatiorGorBased on the equivalence classes with respeRt4(©s),
the quotient (by- ) transition systems and the quotient (&y,) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotiesd.sTdte average sojourn time in a quotient state is that in
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Figure 14: The quotient transition systemFofor F = [({a}, o) * (({b}, x); (({c}. i); ({d}, ©)1)[(({c}. bm); ({0}, 6)2))) * Stop].

the corresponding equivalence class. Every quotientitran$etween two such composite states represents af step
(having the same multiaction part in case of the transiti@tesn quotient) from the first state to the second one.

Definition 7.1. Let G be a dynamic expression. Theotient (by«~ ) (labeled probabilistic) transition systeof G
isaquadrupl§ S, (G) = (So_, Lo . To,. So ), Where

e So_ = DR(G)/z0);

o Lo =N x(0;1];

fin
o To, = (5, (A PMAK, %)), K) | K, K € DRG)/ruic), K > K;

e So_ = [[Clilro)-

The transition ¢, (A, ), K) € To., will be written ask Ap K.

The quotient (by~ ) transition systems of static expressions can be definectskor E € RegS tatExpriet
TSzSS(E) = TSiSS(E)-

Let G be a dynamic expression. We define the relaRen{G) = {(s K), (K. s) | s€ K € DR(G)/rc)}", where
* is the transitive closure operation. One can seeRia{G) C (DR(G)UDR(G)/=.())? is an equivalence relation that
partitions the seDR(G) U DR(G)/z.c) to the equivalence classés, . .., Ly, defined asf; = K U {Ki} (1 <i < n),
whereDR(G)/r.qc) = {1, ..., Ka). The relatiorR cs{G) can be interpreted as a step stochastic bisimulation legtwe
the transition system$S,(G) and TS,_(G), denoted byR,s{G) : TS,(G)< TS (G), which is defined by
analogy (excepting step semantics) with interleaving pbdlistic bisimulation on generative probabilistic tréios
systems from [56]. It is clear that from this viewpoif s{G) is also the union of all step stochastic bisimulations
and largest step stochastic bisimulation betw&&z(G) andT S.,_(G).

Example 7.1. Let F be from Example 6.1. Then BR/,,_g) = (K1, Kz, Kz, Ka), whereK: = {s1), Kz = {2}, Ka =
{s3), K = {1, S5). We also have DRE)/.RSS(E) = (K1, ¥, K4} and DR/(E)/RSS(E) = {%z}). In Figure 14, the quotient
transition system T§SS(E) is presented.

Thequotient (by— ) average sojourn time vectof G is defined aS1, = Sk.q)-
Thequotient (bye ) sojourn time variance vectaf G is defined a¥ AR, __ = VAR (c)-

Let X — K andkK # K, i.e. PM(K,K) < 1. Theprobability to move froniK to K by executing any set of
activities after possible self-loojis

PM(K. K) 52 PMOK, KO = (PMKK). - g¢ s o

PM*(K, K) = ?
( ) {PM(?(,‘K), otherwise
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The valuek = 0 in the summation above corresponds to the case when nispB-occur. Note thatK e
DRr(G)/z.e) With PM(%K,K) < 1, it holdsPM* (K, K) = SL,_(K)PM(K, K), since we always have the empty

loop (which is a self-loop) A K from every equivalence class of tangible statesEmpty loops are not possible
from equivalence classes of vanishing states, hefikes DRy(G)/z.(c) With PM(K, K) < 1, it holdsPM* (K, K) =

%, when there are non-empty self-loops (produced by itemafiom K, or PM* (%, ‘K) PM(%, ‘]~(), when

there are no self-loops frork.

Definition 7.2. Let G be a dynamic expression. Thaotient (by-_.) EDTMCof G, denoted b)EDTMC (G) has
the state spacBR(G)/RSS(G), the initial state [1_3] Jr.4c) and the transition& —p K, if K > K andk # 7( where
P = PM*(K, K); or K —»1 K, if PM(K, K) =

The quotient (by< ) underlying SMCof G denoted bySMC,,_(G), has the EDTMCEDTMC,, (G) and the
sojourn time in everyK € DRy (G)/zc) is geometrically distributed with the parameter PM(K,° 7() while the
sojourn time in every € DRy(G)/z.4c) is equal to zero.

The quotient (by« ) underlying SMCs of static expressions can be defined as Welt E € RegS tatExprlet
SMC.,_(E) = SMC,_(E).

The steady- -state PMis, forEDTMC,_(G) andy.,_for SMC,_(G) are defined like the corresponding notions
y* for EDTMC(G) andy for SMQG), respectlvely

Example 7.2. Let F be from Example 6.1. In Figure 15, the quotient undagysMC SMQSS(E) is presented. The
average sojourn times in the states of the quotient undegl$MC are written next to them in bold font.
The quotient average sojourn time vectoiFois

11 1
S\](—> ( s T 07 _) .
™ \ex 0
The quotient sojourn time variance vectorfofs

1-p 1- 1-6
VAR, = ( 2p’ 2X’O’ 2 )
- P X 6

The TPM for EDTMG,_(F) is

*

L=
—SS

I
cooo
ROoOopR
cor o
or oo

The steady-state PMF for EDTMC (F) is

The steady-state Pl\/hy;;ss weighted by SJ__is
1 I
(07 ay 09 E) .
It remains to normalize the steady-state weighted PMF biglidtig it by the sum of its components
6
sy, =AY
l//ﬁss Css 3/\/0
Thus, the steady-state PMF for SMQF) is
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Figure 15: The quotient underlying SMC Bffor F = [({a}, p) * (({b}, x); (({c}. bn); ({d}, ©)1)[(({c}. m); ({0}, 6)2))) * Stop].

1
o = 0, 9, O, .
Pou= 7 9( X)

The quotients of both transition systems and underlying Sii@ the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be usachfify analysis of system properties which are preserved
by & since potentially less states should be examined for ith$eduction method resembles that from [2] based
on place bisimulation equivalence for PNs, excepting thaformer merges states, while the latter merges places.

Moreover, the algorithms exist to construct the quotiefitsamsition systems by an equivalence (like bisimulation
one) [84] and those of (discrete or continuous time) MarKo&ies by ordinary lumping [37]. The algorithms have
time complexityO(mlogn) and space complexit®(m + n), wheren is the number of states amdis the number of
transitions. As mentioned in [102], the algorithm from [$4n be easily adjusted to produce quotients of labeled
probabilistic transition systems by the probabilistidimislation equivalence. In [102], the symbolic partitioffine-
ment algorithm on state space of CTMCs was proposed. Theitlgocan be straightforwardly accommodated to
DTMCs, interactive MCs, Markov reward models, Markov dasisprocesses, Kripke structures and labeled prob-
abilistic transition systems. Such a symbolic lumping usesnory dficiently due to compact representation of the
state space partition. The symbolic lumping is tinfidcéent, since fast algorithm of the partition representatiad
refinement is applied. In [38], a polynomial-time algorition minimizing behaviour of probabilistic automata by
probabilistic bisimulation equivalence was outlined thegults in the canonical quotient structures. One coulgtada
the above algorithms for our framework of transition syste(reduced) DTMCs and SMCs.

Let us also consider quotient (By,) DTMCs of expressions based on the state change probediikil(%, %).

Definition 7.3. Let G be a dynamic expression. Tlyeotient (by< ) DTMC of G, denoted byDTMC,,_(G), has
the state spadBR(G)/x.4c), the initial state [{5]+]z.qc) and the transition& —p %K, wherep = PM(%K, 7~().

The quotient (by=.) DTMCs of static expressions can be defined as well. FFarRegS tatE xpriet
DTMC,,_(E) = DTMC,_(E).
The steady-state PMF., for DTMC,,_(G) is defined like the corresponding notigrfor DTMC(G).

Example 7.3. Let F be from Example 6.1. In Figure 16, the quotient DTMC D'IL_MSCE) is presented.
The TPM for DTMG,_(F) is

The steady-state PMF for DTMC (F) is
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Figure 16: The quotient DTMC d for F = [({a}. p) * (({b}. x); (({c}. in); ({dl}, O)2)(({C}, bim); ({dl}, 6)2))) * Stop].

o = —0,0, 0, .
Vo, X+9+X9( X0, x)

Remember that DRF)/z.(r) = {K1, K2, Ka} and DR/(F)/z.(r) = {%3}. Hence,

x+0

Z W(K) = Y(KL) + W(Kz) + w(Ka) = P

KeDRr (F)/rssF)
By the “quotient” analogue of Proposition 5.2, we have

¢o (K1) =0- X6 _ o

x+0
_ 0 i X+0+x0 0
(,Oﬁss(Wz) T oxt+0+x0  x+0 T x+0°
‘)Oﬁss(?(\?v) = O’
_ X L xHOx0 _ x
‘piss((](‘l) T x+0+x0 x+0 T x+0°

Thus, the steady-state PMF for Sh_AgE) is

1
¢255 = 0(07 97 O’X)

X+
This coincides with the result obtained in Example 7.2 withuse Of/’*iss andSJ, .

Eliminating equivalence classes (with respecRtg(G)) of vanishing states from the quotient (by,) DTMCs
of expressions results in the reductions of such DTMCs.

Definition 7.4. Thereduced quotient (by>,) DTMC of G, RDTMGC,_(G), is defined likeRDTMQG) in Section 5,
butitis constructed fro®TMC,,_(G) instead oDTMC(G).

The reduced quotient (by> ) DTMCs of static expressions can be defined as well. Far RegS tatExprlet
RDTMC._(E) = RDTMC,_(E).
The steady-state PMF;SS for RDTMG,_(G) is defined like the corresponding notigh for RDTMJG).

Example 7.4. Let F be from Example 6.1. Remember thatrlliR /z_yr) = 1K1, Kz, Ka} and DR/(F)/z.F) = (Ka}.
We reorder the states from DR)/z.¢F), by moving vanishing states to the first positiofis; K1, Kz, Ka.
The reordered TPM for DTMG_(F) is

0 O 0 1
= 0 1-p p 0
"es X 0 1-y O

0 O 0 1-6



Figure 17: The reduced quotient DTMCBffor F = [({a}, p) * (({b}, x); ((({c}, &n); ({d}, 6)D)II(({c}, bm); ({d}, 6)2))) * Stop].

The result of the decomposiRg,,__ are the matrices

0 1-p »p 0
Co,.=0,Ds =(001),Ec_=| x |, Fo = 0 1-x 0 |.
0

” 0 06 1-6

SinceClﬁSS =0, we haverk > 0 Ckiss = 0, hence, E 0 and there are no loops among vanishing states. Then

Further, the TPM for RDTMG_(F) is

0 0 1-6

Zss —ss —ss —ss —ss —ss —ss —ss —=ss —-ss —=ss

1-p »p 0
P, =F, +E, G, D, =F, +E, ID, =F, +E, D, = 0O 1-x x |-

Let F be from Example 6.1. In Figure 17, the reduced quotieRvIQ RDTMC:SS(E) is presented. The steady-
state PMF for RDTMC,_(F) is

1
o= —=(0,6,x).
28 )c+9( X)

SS

Note thaty?, = (y2,_(Ku).¥2,_(K2). w2, (Ka)). By the “guotient” analogue of Proposition 5.3, we have

¥o (K1) =
‘P«—»SS( 2) = X+(.; >
Yo (K3) =
904—»55(7(4) XJrg

Thus, the steady-state PMF for SMQF) is

1
‘10 - m(ov 09 O:X)

This coincides with the result obtained in Example 7.2 withuse Of/’*ﬁss andSJ, .

Obviously, the relationships between the steady-state RMF, andz,bH o Po, andy.,_, as well asp, _ and
(//(_) o are the same as those determined between their “non- qtiol&rsmns in Theorem 5. 1, Proposmon 5.2 and
Proposmon 5.3, respectively.
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DTMC 5 >RDTMC, __
DTMC ~|~ RDTMC ‘

TSHSS% SMC,
e

TS — SMC

Figure 18: The cube of interrelations for the standard armafieut transition systems and Markov chains of the procegeessions.

7.2. Interrelations of the standard and quotient behavabstructures

In Figure 18, the cube of interconnections by the relatioonstructed from” is depicted for both standard and
quotient transition systems and Markov chains (SMCs, DTM@d RDTMCs) of the process expressions. The
relations betweeBMCandSMGC,_, betweerDTMCandDTMC,_, as well as betweeRDTMCandRDTMC,, , can
be obtained using the following correspondmg transitiamctions, defined by analogy with those already ir mtroduced:
PM*(K, ‘K), based oPM*(s, §), thenPM(K, 7(), based oPM(s, §), as well aPM° (K, ‘K), based oiPM*(s, §) (all
that to be proved below).

The relations betweeBMCandRDTMGC as well as betweeBMG,_ andRDTMC,, _, can be obtained using
the following corresponding transition functionBM°(s, §), based orPM* (s 9, through PM*)*(s ), as well as
PM?(K, ‘K), based olPM* (%K, ‘K), through PM®)*(K, 7() (by Theorem 5.2 and its “quotient” analogue).

In Figure 18, the relation (depicted by arrow) betwd#iMC and DTMC,,__ is obtained using the transition

functionPM(%, 7~<) based olPM(s, §). LetG be a dynamic expression. We shall prove that the (quotid?i) P.,

for DTMC,,_(G), (forwardly) constructed by quotienting (By ) T S(G), followed by extractind TMC,,_(G) from
TSo_(G), coincides withthe TPM P)o.., (reversely) constructed by extractibg MC(G) from T S(G), followed by
quotlentngTMC(G) The following proposmon relates those quotient extiedcTPM P).,_ and extracted quotient
TPM P,

Proposition 7.1. Let G be a dynamic expressid?,,_ be the TPM for DTMC,_ (G) and(P).__ results from quotient-
ing (by &) the TPMP for DTMC(G). Then

(Plo,, = Po

ss”

Prookr. Let?(,‘l? € DR(G)/rc) ands e K.

In DTMC..,_(G), we haveZ sz PMA(K, K) = Zpcnz PMa(S K) = Sacnz 3, PT(T,s) =

(135K 558 L£(T)=A)

L e by PT(T-9) = PM(s %) = PM(%, K).

In the quotient oDTMC(G), we haveloz PM(S §) = Sz X o1y PT(N. 9 = B o 7 14 PT(T.9) =
PM(s %) = PM(%, K).

Thus, P)o_ = Po_.. _

Hence, the quotienting and extraction are permutable &msition systems of the process expressions. Applying
extraction before the quotienting is useful to start from lvel of Markov chains in the proofs.

Example 7.5. Let F be from Example 6.1. The TPMs for DTER}and DTMG,,_(F) are

0 0

— p 0 ~
0 1-y y O 0 l=pp 0 0
Pzl 0 0o 0o & o |p, = 2 txx O
= Gm hm | Pes=| o o o0 1
0 6 0 1-6 O o 0 0 1.6
o 6 0 0 1-0
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The TPM for the quotient of DTME) is

1-p p 0 0
| 0 1-x x O
Pec=| o0 o 0 1
0 0 0 1-6
Then it is clear that
(P)o,, = Po,.

In Figure 18, the relation (depicted by arrow) betw&nCandSMC,__ is obtained using the transition function

PM*(K, 7?), based orPM*(s, §). LetG be a dynamic expression. We shall prove that the (quotiePkj P, for
EDTMC._(G), (forwardly) constructed by quotienting (By ) DT MC(G), followed by embeddin&DTMCz:S(G)
into SMG,_ (G), coincides witfthe (finally) embedded TPI\P(‘);SS, (reversely) constructed by embeddEQ TMC(G)
into SMQG), followed by quotientindEDTMC(G), and final embedding a new EDTMEDTMC (G) into the quotient
of EDTMC(G). The final embedding in the reverse construction is neexlade new self-loops may arise after quo-
tientingEDTMC(G), i.e. it may become not an EDTMC, but a DTMC featuring setigs with probability less than
1. Note that fork € DR(G)/.4e) ands € K, we havePM*(K, K) = S L, _(K)PM(K, K) = S L.,_(K)PM(s K) in
EDTMCﬁSS(G). This corresponds to a different expressjopz PM*(s, §) = ¥ %z SUPM(s §) =

SUS) Yz PM(s 9 = SL(s)PM(a7~<) in the quotient ofEDTMC(G). In particular,SL,_(K) > SL(s) when
PM(s K \ {s}) > 0, which is the reason for a new self-loop associated wiit the quotient oEDTMC(G). The
following proposition relates those finally embedded ceratembedded TPM():, (i.e. the TPM folEDTMC (G))
and embedded quotient TPRY, . _SS

Proposition 7.2. Let G be a dynamic expressid?, be the TPM for EDTMG,_ (G) and(P*)¢,_ results from quoti-
enting (byo,J and final embedding the TPRI for: EDTMC(G). Then

(P, = Pa,,
Proor. See Appendix A.4. O

Thus, the quotienting before embedding is more optimal adatipnally for DTMCs of the process expressions.
By Proposition 7.2EDTMC(G) = EDTMC,, (G) The sojourn time in ever € DRy (G)/z.yc) is geometrically

distributed with the paramet\gi(s)su(sq() SLH Xk whereSL(s K) = m, while the sojourn time in

everyX € DRv(G)/#.c) is equal to 0. HerSL’(s, K) is the self-loops abstraction factor in the equivalenessi
with respect to the statee K for the quotient oEDTMC(G). Hence, SMC(G) = SMG,_(G), whereSMC(G) is

the SMC with the EDTMEDTMC (G), such thatSST is the geometrical dlstrlbutlon parameter of the sojourn

time in everyX € DRy (G)/r.4c) While the sojourn t|me is zero in evey € DRy(G)/r.(c)-

Example 7.6. Let F be from Example 6.1. The TPMs for EDT{#gand EDTMC:SS(F) are

010 0 O 0100
001 0 O

¢ | m * 0010

PP=10 00 7 &% |'Po.=l 0 0 0 1

010 0 O 0100
010 0 O

The TPMs for the quotient of EDTME) and EDTMC of the quotient of EDTME) (EDTMC (F)) are

0100 0100

. |00 10 s |0 0 10

(Po,, = 0 00 1 e, = 0001

0100 0100
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Then itis clear that

Py =Pl
Let G be a dynamic expression. We now construct the quotientpy of the TPM forDTMC(G) using special

collector and distributor matrices. LBIR(G) = {s1, ..., S} andDR(G)/z.c) = (K1, ..., Ki}.
The elements®,_)rs (1 <r1,s<1)of the TPMP.,_ for DTMC,,_(G) are defined as

(7) ) _ PM(«I’»«S): 7(I' - 7(5;
21570, otherwise

Like it has been done for strong performance bisimulatiortatreled CTSPNs in [28], thex | TPM P, for
DTMC,_(G) can be constructed from thex n TPM P for DTMC(G) using then x | collector matrixV for the
largest step stochastic autobisimulati®g(G) on G and thel x n distributor matrixW for V. ThenW should be a
non-negative matrix (i.e. all its elements must be non-tieglawith the elements of each its row summed to one,
such thaWwV = |, wherel is the identity matrix of ordek, i.e. W is aleft-inverse matriXor V. It is known that for
each collector matrix there is at least one distributor maitn particular, the matrix obtained by transpos¥and
subsequent normalizing its rows, to guarantee that theezlesof each row of the transposed matrix are summed to
one. We now present the formal definitions.

The elementsV; (1 <i <n, 1 <r <) of thecollector matrixV for the largest step stochastic autobisimulation
Rs4G) onG are defined as

- _J 1 sek;
Vir _{ 0, otherwise
Thus, all the elements &f are non-negative, as required. The row element¢ afe summed to one, since for
eachs (1 <i < n) there exists exactly or&, (1 <r <) such thats € ;. Hence,
vit =17,
wherel on the left side is the row vector bfralues 1 whilel on the right side is the row vector ofvalues 1.
Thedistributor matrixW for the collector matri¥/ is defined as
W = (Diag(V'1")) VT,

wherel is the row vector ofi values 1. One can check thatV = |, wherel is the identity matrix of ordek.
The elements#V)is (1 <i <n, 1< s<1)ofthe matrixPV are

(PV)is = ZPij’Vjs = Z PM(s. 5j) = PM(s, %s).
=1

{ill<j<n, sjeKs}

As we know, for eacls (1 < i < n) there exists exactly or&; (1 <r <) such thats € K;. For alls € K; we
havePM(7G, Ks) = PM(s,Ks) (L<i<n, 1<r,s<I). Thenthe elementsfP,_)is (1 <i<n, 1<s<l)ofthe
matrixVP__ are

|
((Vpgss)is = Z Vi (Pgss)rs = Z PM(K:, Ks) = PM(s, Ks).
r=1 {ril<r<l, s€%;}

Therefore, we have

PV =VP, , WPV =P, .
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Example 7.7. Let F be from Example 6.1. The TPMs for DTER}and DTMG,,_(F) are

1-p p 0 0 0 1- 0 0
0 1-y y O 0 op 16){ v 0

P=[ © 0 0 = & |.P, = 0 o o 1
0 & 0 1-60 0 0 0 0 1.0
0 & 0 0 1-0

The collector matri®/ for RsF) and the distributor matrixV for V are

1000 1000 0
0 100 01000
V= 0 0 1 0 ,W:

0 01 0O
0 00 1 000 % 1
0 0 0 1 2 2

Then it is easy to check that
WPV =P,,_

In Figure 18, the relation (depicted by arrow) betwddTMCandRDTMC, _ is obtained using the transition
function PM° (%, 7() based orPM°(s, §). Let G be a dynamic expression. We shall prove that the TW
(forwardly) constructed by quotienting (by.) DTMC(G), followed by reduction (eliminating vanishing states)
of DTMC,_(G), coincides withthe TPM °)._, (reversely) constructed by reduction BTMC(G), followed by
quotlentngDTMQG) The following proposmon relates those quotient red¢lit®M (P°),__ and reduced quotient
TPM P,

Proposition 7.3. Let G be a dynamic expressm?i;s be the TPM for RDTMC_(G) and(P°).__ results from quoti-
enting (by< ) the TPMP° for RDTMQG). Then

Pe,, = P;ss.

Proor. See Appendix A.5. O

Thus, quotienting and reduction are permutable for DTMCthefprocess expressions. This may simplify the
performance evaluation when eliminating vanishing statekes the subsequent quotienting mofficient. The
reverse construction (reduction first) is particularlyfprable in case of small equivalence classes of vanishatgsst
when quotienting does not merge many of them before elinmgat

Example 7.8. Let F be from Example 6.1. The reordered TPMs for DTM)Cand DTMCiSS(E) are

|
0 0 0 T+m rom 0 0 1
0 1-p p 0 0 0 1-p 0
PP=lx O 1-x O 0 |.Po,. = o 1 0
0 0 6 1-6 0 S o0 1l
0 O 0 0 1-¢

The reordered collector matri¥, for RSS(E) and the reordered distributor matriw/, for V, are

1000 1000 0
0100 0100 0
Vi=|0 01 0fW=|02 710 o
000 1 oot 1
000 1 2 3
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Then it is easy to check that

WPV, =P, .

Example 7.9. Let F be from Example 6.1. The TPMs for RDT@#gand RDTMC, _(F) are

- 0 0
o 1L, 4 am 1-p p O
0 0 1-x x .

0 9 0 1-9 0 0 1-0

The result of the decomposing the reordered collector matrifor RsF) and the reordered distributor matrix
W, for V, are the matrices

Ve=1 Vg =

’\J“—‘o (@]

NFE &5 o
h ——

[eoNeNely
[oNel e}

Then it is easy to check that

(P*)o,. = WEPVE = P2,

The comprehensive quotient and reduction example will lbsgmted in Section 9.

In [26], the ordinary, exact and strict lumpability relat®on finite DTMCs are explored. It is investigated which
properties of transient and stationary behaviour of DTMf&smeserved by aggregation w.r.t. the three mentioned
kinds of lumping and their approximate “nearly” versionsisiproved that irreducibility is preserved by aggregation
w.r.t. any partition (or equivalence relation) on the stadé DTMCs. Since only finite irreducible DTMCs are
considered (with a finite number of states), these all argipesecurrent. Aggregation can only decrease the number
of states, hence, the aggregated DTMCs are also finite aritilypagcurrence is preserved by every aggregation. It
is known [90, 62] that irreducible and positive recurrentNdds have a single stationary PMF. Note that the original
and aggregated DTMCs may be periodic, thus having a unigiesary distribution, but no steady-state (limiting)
one. For example, it may happen that the original DTMC is iaplé while the aggregated DTMC is periodic due
to merging some states of the former. Thus, both finite ircdddle DTMCs and their arbitrary aggregates have a
single stationary PMF. Then the relationship betweenataty probabilities of DTMCs and their aggregates w.r.t.
ordinary, exact and strict lumpability is established i6][2n particular, it is shown that for every DTMC aggregated
by ordinary lumpability, the stationary probability of éeaggregate state is a sum of the stationary probabilitia$f of
its constituent states from the original DTMC. The inforinatabout individual stationary probabilities of the origl
DTMC is lost after such a summation, but in many cases, th@stay probabilities of the aggregated DTMC are
enough to calculate performance measures of the high+tevdel, from which the original DTMC is extracted. As
mentioned in [26], in some practical applications, the aggted DTMC can be extracted directly from the high-level
model. Thus, the aggregation techniques based on lumpéngf @ractical importance, since they allow one to reduce
the state space of the modeled systems, hence, the coropatatsts for evaluating their performance.

Let G be a dynamic expression. By definition ef_, the relationRs{G) on T S(G) induces ordinary lumping
on SMQQG), i.e. if the states of S(G) are related byRs4G) then the same states 8MQG) are related by ordinary
lumping. The quotient (maximal aggregate BMQG) by such an induced ordinary lumpingS#C._(G). Since we
consider only finite SMCs, irreducibility SMQG) will imply irreducibility of SMC.,_(G) and they both are positive
recurrent. Then a unique quotient stationary PMISMC., (G) can be calculated from a unique original stationary
PMF of SMQG) by summing some elements of the Iatter as described in &6jilar arguments demonstrate that
the same results hold f@TMC(G) andDTMC,_(G), as well as foRDTMQG) andRDTMC,,_(G).
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8. Stationary behaviour

Let us examine how the proposed equivalences can be usednjpace the behaviour of stochastic processes
in their steady states. We shall consider only formulasifgeg stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that thaiien operator does not guarantee infiniteness of behaviour
since there can exist a deadlock (blocking) within the baldg §econd argument) of iteration when the corresponding
subprocess does not reach its final state by some reasonsirticufar, if the body of iteration contains ttgtop
expression, then the iteration will be “broken”. On the othand, the iteration body can be left after a finite number
of its repeated executions and then the iteration ternn&s started. To avoid executing any activities after the
iteration body, we tak&top as the termination argument of iteration.

Like in the framework of SMCs, in LDTSIPNs the most commontegss for performance analysis aggodic
(irreducible, positive recurrent and aperiodic) ones. érgodic LDTSIPNSs, the steady-state marking probabilities
exist and can be determined. In [79, 80], the followindfisient (but not necessary) conditions for ergodicity of
DTSPNs are statedivenesqfor each transition and any reachable marking there eaisesjuence of markings from
it leading to the marking enabling that transitiobpundednesfor any reachable marking the number of tokens in
every place is not greater than some fixed number)reomtieterminisnithe transition probabilities are strictly less
than 1).

Consider dtsi-box of a dynamic expressi@n= [E = F * Stop] specifying a process for which we assume that it
has no deadlocks while (repetitive) running the b&dgf the iteration operator. If, starting inf[+ F = Stop]]~ and
ending in [[E = F « Stop]] », only tangible states are passed through then the thredieityaconditions are satisfied:
the subnet corresponding to the looping of the iteratiorydods live, safe (1-bounded) and nondeterministic (since
all markings of the subnet are tangible and non-terminalptiobabilities of transitions from them are strictly esart
1). Hence, according to [79, 80], for the dtsi-box, its utgiag SMC, restricted to the markings of the mentioned
subnet, is ergodic. The isomorphism between SMCs of exijoresand those of the corresponding dtsi-boxes, which
is stated by Proposition 5.1, guarantees 8QG) is ergodic, if restricted to the states betwedn f[F * Stop]] -
and [[E = F = Stop]] ~.

The ergodicity conditions above are not necessary, i.eretbrist dynamic expressions with vanishing states
traversed while executing their iteration bodies, such tihe properly restricted underlying SMCs are nevertheless
ergodic, as Example 5.1 demonstrated. However, it has bemmnsin [7] that even live, safe and nondeterministic
DTSPNs (as well as live and safe CTSPNs and GSPNs) may bergodie

In this section, we consider only the process expressiotis #at their underlying SMCs contain exactly one
closed communication class of states, and this class statsddbe ergodic to ensure uniqueness of the stationary
distribution, which is also the limiting one. The states befonging to that class do not disturb the uniqueness, since
the closed communication class is single, hence, theyaliransient. Then, for each transient state, the steatly-sta
probability to be in it is zero while the steady-state prdligtio enter into the ergodic class starting from that stist
equal to one.

8.1. Steady state, residence time and equivalences

The following proposition demonstrates that, for two dymaeaxpressions related By _, the steady-state prob-
abilities to enter into an equivalence class coincide. Gameatso interpret the result stating that the mean recuerenc
time for an equivalence class is the same for both expression

Proposition 8.1. Let G G’ be dynamic expressions with: G G’ andy be the steady-state PMF for SNI&), ¢’
be the steady-state PMF for SNI®). ThenVH € (DR(G) U DR(G"))/«,

o= > )
scHNDR(G) SeHNDR(G)

Proor. See Appendix A.6. O

Let G be a dynamic expression agdbe the steady-state PMF f&MQG), ¢, _be the steady-state PMF for
SMC.,_(G). By Proposition 8.1 (modified foR ;s{(G)), we haveVK € DR(G)/x.yq),
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o, (5) = " ¢(9).
seK

Thus, for every equivalence clagSe DR(G)/z.c), the value ofp,_ corresponding to( is the sum of all values of
¢ corresponding to the states froih
LetV be the collector matrix foRs{(G). One can see that

oV =po .

Hence, usingMC,,_(G) instead ofSMQG) may simplify the analytical solution, since we may haveslsttes, but
constructing the TPM foEDTMC,,_(G), denoted byP;, , also requires somdferts, including determinin®s{G)
and calculating the probabilities t to move from one equmamclass to other. The behaviourldTMC,, (G) may
stabilize quicker than that &DTMC(G) (if each of them has a single steady state), siﬁjge is generally denser
matrix thanP* (the TPM forEDTMC(G)) due to the fact that the former matrix is usually smalled #re transitions
between the equivalence classes “include” all the tramsitbetween the states belonging to these equivalenceslass
By Proposition 8.1¢>_ preserves the quantitative properties of the stationanpwieur (the level of SMCs). We
now intend to demonstrate that the qualitative propertigh@ stationary behaviour based on the multiaction labels
are preserved as well (the level of transition systems).

Definition 8.1. A derived step tracef a dynamic expressioB is a chain = Ay--- Ay € (me) whereds €

DR(G), s4 S .5 S L(Yi) = A (1 <i <n). Then theprobability to execute the derived step tréte sis

PT(S,s) = > ﬁ PT(Yi,s.1).

T e =1
(Y1 Cnls=So3 813Dy, L(T)=A (1<in)} '

The following theorem demonstrates that, for two dynamjaregsions related by
ities to enter into an equivalence class and start a derbegdisace from it coincide.

the steady-state probabil-

Sy

Theorem 8.1. Let G, G’ be dynamic expressions wigh: G« G’ andy be the steady-state PMF for SNI&), ¢’ be
the steady-state PMF for SMG’) andX be a derived step trace of G and.GhenvH € (DR(G) U DR(G"))/«,

D eIPTE.9 = > FS)PTES).

scHNDR(G) SeHNDR(G')

Proor. See Appendix A.7. O

Let G be a dynamic expressiow, be the steady-state PMF f@MQG), ¢.,_ be the steady-state PMF for
SMC,_(G) andX be a derived step trace Gf By Theorem 8.1 (modified faR ;s{G)), we have/K € DR(G)/z.g),

o (K)PTE,K) = Y o(IPT(E.9),
seK

whereVse K, PT(Z, K) = PT(Z, 9).

LetDR(G) = {s1, ..., Sn} andDR(G)/#r ) = {K1. ..., Ki} while V be the collector matrix foRs(G) andW be the
distributor matrix forv. We denotePT(Z) = (PT(Z, 1), ..., PT(Z, )) andPT,_ (%) = (PT(Z, K1), ..., PT(Z, K))).
One can see th@diag(PT(Z))V = VDiag(PT,,_ (X)) andWDiag(PT(%))V = Diag(PT._(X)). Then we have

¢Diag(PT(X))V = ¢VDiag(PTo_ (%)) = ¢ Diag(PT._ ().

We now present a result not concerning the steady-statapildles, but revealing very important properties of
residence time in the equivalence classes. The followinggsition demonstrates that, for two dynamic expressions
related by, the sojourn time averages in an equivalence class coirasdeell as the sojourn time variances in it.
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Proposition 8.2. Let G, G’ be dynamic expressions with: G- G'. ThenVH € (DR(G) U DR(G"))/x,
Sknpre) (H N DR(G)) = Skapre)(H N DR(G)),
VAR pRr@)2 (H N DR(G)) = VAR pr@)2(H N DR(G)).
Proor. See Appendix A.8. O
Example 8.1. Let
E = [({a), 3) = (({b}, 3); (({c}, 5):00({c), 3)2)) * Stop],

E’ = [({a}, 3) = ((({b}, 3)1; (), $)0)O(({b}, 3)2; ({c}, 3)2)) * Stop].

We haveEo E'.
DR(E) consists of the equivalence classes

s1 = [[({a}, 3) = (1}, 3); (e}, 3)all(fch. 3)2)) = Stop]]~.
s = [[({ah 3) = (b}, 2); (({ch, )a0({ch, 2)2)) * Stop]l~,
ss = [[({a}. 3) = (1), 3); (({c), $)all({ch. 3)2)) * Stop]] ~.

DR(E’) consists of the equivalence classes

s, = [[(fa}, 3) = (b}, 3)1: (feh, 3)1)O(({BY, 3)2; (fch, 3)2)) = Stop]]-,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY, )2 (fc), 3)2)) = Stop]] ~,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY, )2 (fc), 3)2)) = Stop]] ~,

s, = [[({a), 3) * (b}, 3)1; (feh, $)1)D((IbY, 3)2; ({c), 3)2)) = Stop]] ~.

The steady-state PMRsfor SMQEE) and¢’ for SMQEE’) are

I AT |
=\P22) T2
Consider the equivalence class (with respecRE, E")) H = (s, s, S;}. One can see that the steady-state

probabilities for# coincide: Y oypri) #(S) = 9(S8) = 3 = 1+ 7 = ¥'($) + ¢(S) = Zgenrore) ¢ (S)-
LetX = {{c}}. The steady-state probabilities to enter into the equivedeclassH and start the derived step

trace T from it coincide as well:p(s3)(PT({((c}h, )1} s3) + PT(I({ch 3)2h0)) = 3(3+3) =5 =3-3+5 3=

¢'(SPT(((ch 2)1). S5) + ¢ (S)PT(({ch 3)2) 5y).
Further, the sojourn tlme averages in the equwalence ciklssommde SJ S(EE)Q(DR(E))Z(?{ N DR(G))

1 _ _ _ _ —_
Sk eenoren(%) = Trmisey = Thues) = T = 2= 7T = TPREY - TPNES) - TPMEOST =

Sk genorE)y (S S = Sk_g&norE)y(H N DR(G)).
Finally, the sojourn time variances in the equivalence si&&coincide: VAI% EFnorE)(H NDR(G)) =
PM(ss.55) 2 PM(s;s)  _ _ PM(s,.s)

PM({s3).{s3)) -
VAR EEor@r(%) = Tomaiial? = Trvear = 1) = 2= @) - GPMGSR = TPE.S7

PM(S,.SS,.S) _ ,
(1—PM(|%,§;|,{%,§;|))Z - VARRSS(EE)n(DR(E))Z( gs’ 521}) - VARRSS(EE)m(DR(E))Z (H N DR(G)).
In Figure 19, the marked dtsi-boxes corresponding to theadyin expressions above are presented, i.e.
N = Boxitsi(E) and N = Boxgtsi(E')-
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Figure 19:<  preserves steady-state behaviour and sojourn time piepérithe equivalence classes.

8.2. Preservation of performance and simplification of italgsis

Many performance indices are based on the steady-statelglities to enter into a set of similar states or, after
coming in it, to start a derived step trace from this set. Tih@larity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence claBseposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the exgressielated by . Thus,< . (hence, all the stronger
equivalences we have considered) preserves performasteobfastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using arCSdith less states, since in this case the size of the
transition probability matrix will be smaller, and we shatilve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the follgwirethod of performance analysis simplification.

1. The investigated system is specified by a static expmress$idtsiPBC.

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similgyit step stochastic autobisimulation equivalence for the
expression is determined.

4. The quotient underlying SMC is constructed from the cqgrdttransition system.

5. Stationary probabilities and performance indices aleuzted using the SMC.

The limitation of the method above is its applicability oritythe expressions such that their underlying SMCs
contain exactly one closed communication class of statekitas class should also be ergodic to ensure uniqueness
of the stationary distribution. If an SMC contains sevetabed communication classes of states that are all ergodic
then several stationary distributions may exist, whichetepon the initial PMF. There is an analytical method to
determine stationary probabilities for SMCs of this kindaagdl [62]. Note that the underlying SMC of every process
expression has only one initial PMF (that at the time momgnihénce, the stationary distribution will be unique in
this case too. The general steady-state probabilitieharedalculated as the sum of the stationary probabilitiedl of
the ergodic classes of states, weighted by the probabititienter into these classes, starting from the initiatstat
passing through some transient states. It is worth appijiegnethod only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can fartreduce the quotient underlying SMC, using an analogue
of the deterministic barrier partitioning method from [4d} semi-Markov processes (SMPs), which allows one to
perform quicker the first passage-time analysis. Anoth&onjis the method of stochastic state classes from [54] for
generalized SMPs (GSMPs) reduction, allowing one to siyppinsient performance analysis (based on the transient
probabilities of being in the states of GSMPs).
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Figure 20: Equivalence-based simplification of perforneaeealuation.
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Figure 21: The diagram of the shared memory system.

Alternatively, the results at the end of Section 7 allow usitoplify the steps 4 and 5 of the method above by
constructing the reduced quotient DTMC (instead of the igmbtunderlying SMC) from the quotient transition sys-
tem, followed by calculating the stationary probabilitefghe quotient underlying SMC using this DTMC, and then
obtaining the performance indices. In more detail, the ignbtransition systerit Sﬁss(ﬁ) provides the information

both about the probabilities to move between the equivalefasses of statd3M(%K, K) and about the equivalence
classes of vanishing stat€Rv(E)/, - That information is used to construct the reordered qubi®M P, ,

from which the TPMPZ, for RDTMGC,_ (E) is further obtained.

We first merge the ¢ equwalent states in transition systerdaty then eliminate the vanishing states in Markov
chains. The reason is that transition systems, being a highel formalism than Markov chains, describe both
functional (qualitative) and performance (quantitatiaepects of behaviour while Markov chains represent only per
formance ones. Thus, eliminating vanishing states firstldvdestroy the functional behaviour (which is respected
by the equivalence used for quotienting), since the stefts different multiaction parts may lead to or start from
different vanishing states.

Figure 20 presents the main stages of the standard andaiteraquivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory systershaw how steady-state distribution can be used
for performance evaluation. The example also illustrdiesnethod of performance analysis simplification above.

9.1. The standard system

Consider a model of two processors accessing a common sim@radry described in [75, 5, 6] in the continuous
time setting on GSPNs. We shall analyze this shared memetgrsyin the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, &/hib two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation bétsystem (turning the computer on), two processors are
active, and the common memory is available. Each processorarjuest an access to the memory after which the
instantaneous decision is made. When the decision is mdaeaur of a processor, it starts acquisition of the memory
and the other processor should wait until the former one @adeemory operations, and the system returns to the
state with both active processors and the available comnssnary. The diagram of the system is depicted in Figure
21.

Let us explain the meaning of actions from the syntax of d@&iRexpressions which will specify the system
modules. The actiom corresponds to the system activation. The actipnd < i < 2) represent the common
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memory request of processiorThe actiongl; correspond to the (instantaneous) decision on the memimgasibn
in favour of the processar The actionsn represent the common memory access of procassidre other actions
are used for communication purposes only via synchromizasind we abstract from them later using restriction. For
a,..., an € Act(n € N), we shall abbreviatesy a; --- sya,rsa;--- rsayto sr(ay,..., an).

The static expression of the first processor is

Ex = [({xd}, ) ((ra}, —) ({da, ya}, ba); (e, z2}, —))*Stop]-

The static expression of the second processor is

Ez = [({x2}, ) ((fra}, )(dz)’2 b1); (Mg, 22}, —))*Stop].

The static expression of the shared memory is

Es = [({a, X1, X2}, ) (((tya}, b)s ({za}, —))[](( Y2}, 1) ({22}, —))) * Stop].

The static expression of the shared memory system with teogsisors is

E = (E1llE2lIEs) s (X1, X2, Y1, Y2, 1, Z2).
Let us illustrate anfeect of synchronization. As result of the synchronizatiomaiediate multiactions
({di, i}, b1) and {Vi}, b)) we obtain (di}, h2) (1 < i < 2). The synchronization of stochastic multiactiofrs(z}, %)
and (z}, 2) produces{m}, 4) (1 <i<2). The result of synchronization offe X1, X2}, 2) with ({x1}, 2) is ({a, X2}, 4),
and that of synchronization ofd, X1, Xz}, )Wlth ({x2}, )|s ({a, x1}, ) After applying synchronization td4, X3}, 4)
and (x2}, 3), as well as to{@, X3}, §) and ({xl L, 3), we obtaln the same activityaf, 3).
DR(E) consists of the equivalence classes

= [([({xa), 3) * (({ra}, 3); (11, ya), ba); ({1, 1), 3)) = Stop]|
[( %) (({r2}, 3); ({d2, y2b, by); (Imp, 22}, 3)) * Stop] |
[(fa, 1. 52}, 3) = (((1Y2). bn); (), 3)I(({Y2) Bn); (122}, 3))) * Stop])

ST (X1, X2, Y1, Y2, Z1, 22)] ~»

S = [([({xa}, 2) = ((fra), 3); (da, ya), Ba); ((mu, z2}, 3)) * Stop] |
[({%2}, 3) = (({r2}, 2); ({2, Y2}, Be); ({me, 22}, 2)) = Stop]|
[(fa, X1, 53}, 3) = (172}, ba); ({2, 3)(((Y2), he); (122}, 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

= [([({xa}, 3) * (({ra}, 2); ({0, yab by); (Imy, 22}, 3)) * Stop] |
[( X2}, 3) = (({r2}, 3); ({d2, Y2}, a); (M, 2}, 2)) = Stop] |
[(fa, X1, %3}, 3) = (172}, ba); (), 3)(({¥2), he); (122}, 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

se = [([(Ixa), 3) * ((rad, 2); (1de, ya), be); (fm, z2), 3)) * Stop]|
[((%2}, ) * (({r2}, 2); ({d2, Y2, Ba); (Ime, 22}, 3)) * Stop]|
[({a %1, %2, 3) = (172}, Bn); (1Z2) 2)OC(Y2) ba); (), 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

5 = [([({xa}, 2) = ((ra), 3); ((da, ya), Ba); (M, 1}, 3)) = Stop] |
[(1%2), 3) * (({r2), 2); (12, Y23, Be); ({me, 22}, 3)) * Stop]|
[({a, X1, %2}, 3) = (192}, bo); ({22}, SNO({Y2) ba); ({22}, 3))) * Stop])

St (X1, X2, Y1, Y2, 21, 22)] ~,
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o = [([({xa}, 2) = ((fra}, 3); ({da, ya}, Ba); (Imy, 21}, 2)) = Stop]|
[({%2}, ) * (({r2}, 2); ({d2, Y2b, Ba); (Ime, 22}, 3)) = Stop]|
[({a, X1, %2}, 3) = (((1Y2}, bo); ({22}, $NO({Y2) ba); (122}, 3))) * Stop])

Sr (X1, X2, Y1, Y2, Z1, 22)] ~»

s7 = [([({xa), 3) * ((rad, 2); (1w, ya), be); (fm, z2), 3)) * Stop]|
[((%2), ) * (({r2}, 2); ({d2, Y2}, ba); (Ime, 2}, 3)) * Stop]|
[({a, X1, %2}, 2) = (172}, bo); ({22}, 2NDO({Y2) 1) (122}, 3))) * Stop])

St (X1, X2, Y1, Y2, Z1, 22)] ~»

se = [([({xa), 3) * ((ra), 2); ({de, ya), be); (fm, z2), 3)) * Stop]|
[(1x2), 3) * ((fra), 2); (12, y2b, Ba); (g, 22), 3)) * Stop] |l
[({a %1, %2, 3) = (12}, Bn); (1Z) 202} ba); (), 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

o = [([({xa}, 3) = ((fra}, 3); ({da, ya}, Ba); (I, 21}, 2)) = Stop]|
[({x2}, 3) * (({r2h, 2); ({2, Y2}, Be); ({me, 22}, 3)) = Stop]|
[(fa, X1, 53}, 3) = (172}, bo); (), 3ND((IF2), he); (122}, 3))) * Stop])

ST (X1, X2, Y1, Y2, Z1, 22)] .

We haveDRr(E) = {s1, S, S5, S7, S8, So} andDRy(E) = {ss, 54, Sg}-
The states are interpreted as followsis the initial states,: the system is activated and the memory is not requested,
s3: the memory is requested by the first processgr,the memory is requested by the second processorthe
memory is allocated to the first processsr,the memory is requested by two processsrsthe memory is allocated
to the second processas, the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the mesn@quested by the first processor.

In Figure 22, the transition systeS(E) is presented. In Figure 23, the underlying SNSMQE) is de-
picted. Note that, in step semantics, we may execute thewflyy activities in parallel: {f1}, %), ({ra}, %), as well
as (ri}, 3), (Img}, 1), and {ra}, 3), (Ima), ;11). The statess only exists in step semantics, since it is reachable exclu-
sively by executing{f1}, 1) and {r2}, 1) in parallel.

The average sojourn time vectorBfis

4 8 8
SJ=18,-,0,0,-,0,-,4,4].
(73’ b ’5’ 75’ 7)
The sojourn time variance vector Bfis
4 24 24
VAR= (56,5,0,0,2—5,0,2—5,12,12).
The TPM forEDTMC(E) is
01 00 O0OO0OTOTPWO
ooi1ioloo0o0
0O 0 0OO1 00 0O
0O 0 OO0 O 1 o000
P =| 0 %} 0 %} 0O 0O "—% 0
0 000 O0OO03 é
0ot ifooo00o00:}3
0O 0 0O1 00 0O OO
0O 01 00 O0OTOTPWO

(o2}
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Figure 22: The transition system of the shared memory system
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Figure 23: The underlying SMC of the shared memory system.
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Table 7: Transient and steady-state probabilities for th&MC of the shared memory system.

[k JJOo] 5 [ 10 [ 15 | 20 | 25 [ 30 | 3 [ 40 | 45 [ 50 | o |
yIK 1] © 0 0 0 0 0 0 0 0 0 0
AR 0 0.0754| 0.0859| 0.0677| 0.0641| 0.0680| 0.0691| 0.0683| 0.0680| 0.0681| 0.0682
YKl || 0| 0.2444| 0.2316| 0.1570| 0.1554| 0.1726| 0.1741| 0.1702| 0.1696| 0.1705| 0.1707| 0.1705
Ye[Kl || 0] 0.2333| 0.0982| 0.1516| 0.1859| 0.1758| 0.1672| 0.1690| 0.1711| 0.1708| 0.1703| 0.1705
YelKl || 0] 0.0444| 0.0323| 0.0179| 0.0202| 0.0237| 0.0234| 0.0226| 0.0226| 0.0228| 0.0228| 0.0227
VALRIES 0 0.1163| 0.1395| 0.1147| 0.1077| 0.1130| 0.1150| 0.1139| 0.1133| 0.1136| 0.1136
1.(#-
—0— 1" [K]
o.s\ —m— 2 [K]
—o—Y3'[K]
0.6 e
—¥— Yg'[K]
0.4 .
—5— Yg'[K]
0.2 1
l ‘0‘” > .
'l‘ w‘~ 2 :‘3 SSCSSSSSSSSSSSSSSSSSSSSSSSSD
/ Y/
'Y5 ”5 PO T PP PPV PPV VIV VIV VPV VVVIVIVIVIVIVVIVIVIVIVIVIVIYIYIYPY k
0 0 40 0

Figure 24: Transient probabilities alteration diagramtfe EDTMC of the shared memory system.

In Table 7, the transient and the steady-state probabilitig] (i € {1,2, 3,5, 6, 8}) for the EDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = c are presented, and in Figure 24, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states,, 9, S3, S5, S, Ss only, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, S.

The steady-state PMF f@DTMC(E) is

44’ 88’ 88’ 88’ 44’ 88’ 44’ 44)°
The steady-state PMF* weighted bySJis
1 3 3 5 5
(0’ E? 0’ 07 E? 0’ E? ﬁ’ ﬁ) .

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

\ ( 3 151515 1 15 5 5)
v=lo o o e

17

ST =
v 11
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Figure 25: The DTMC of the shared memory system.

Thus, the steady-state PMF 8SMQ(E) is

0,0, —,0

(oL 3,355
=\t )

Otherwise, from T S(E), we can construct the DTMC & DTMC(E), and then calculate using it.
In Figure 25, the DTMMTMC(E) is depicted.
The TPM forDTMC(E) is

g%ooooooo
0 3 3032000
4 4 4 4
0 0001000O0TO
0 000O0OT1Q0O
ongoggoogo
oooooooié
03§ 30002320 3
0003200020
0 0% 0O0O0OTUOO0?:

In Table 8, the transient and the steady-state probabiliti] (i € {1, 2, 3,5, 6, 8}) for the DTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = c are presented, and in Figure 26, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states,, 9, S3, S5, S, Ss only, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@TMC(E) is

(15511155
v="218656 7847210 21)

Remember thaDRy (E) = {S1, S, S5, S7» S8, So} andDRy(E) = {ss, 4, Ss). Hence,

D9 = v(s0) + ) + U(S) + u(Sr) + U(Se) + () = ;_1

seDRy(E)
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Table 8: Transient and steady-state probabilities for thi&D of the shared memory system.

k

Tk o] 5 [ 10 [ 15 | 20 [ 2 [ 30 | 3 [ 40 [ 45 | 50 | = |
Yy1[K] || 1| 0.5129| 0.2631| 0.1349| 0.0692| 0.0355| 0.0182| 0.0093| 0.0048| 0.0025| 0.0013 0
Wo[K] || 0] 0.1161| 0.0829| 0.0657| 0.0569| 0.0524| 0.0501| 0.0489| 0.0483| 0.0479| 0.0478| 0.0476
W3[K] || 0] 0.0472| 0.0677| 0.0782| 0.0836| 0.0864 | 0.0878| 0.0885| 0.0889| 0.0891| 0.0892| 0.0893
Ws[K] || 0] 0.0581| 0.0996| 0.1207| 0.1315| 0.1370| 0.1399| 0.1413| 0.1421| 0.1425| 0.1427| 0.1429
YelK] || 0| 0.0311| 0.0220| 0.0171| 0.0146| 0.0133| 0.0126| 0.0123| 0.0121| 0.0120| 0.0120| 0.0119
WwglK] || 0| 0.0647| 0.1487| 0.1923| 0.2146| 0.2260| 0.2319| 0.2349| 0.2365| 0.2373| 0.2377| 0.2381
1.@
| —0— Y1[K]
0.8 —— yo[K]
—o—Y3lk]
0-Gf —4— Ys[K]
i —¥— YelK]
0.4
i —— yglK]
~ OO0 OOCTOTTOTTTTOTTTOOTT uuuuuuo
’7===-.-v
»5‘
-'5%‘ v v
Brars d i ‘.’Y""‘*‘.‘H gL
A ANt ] | |} 4 K

10

Figure 26: Transient probabilities alteration diagramtfe DTMC of the shared memory system.
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By Proposition 5.2, we have

QD(S[L):O%:O,

_ 1 21 _
90(52)—2—1'1—7—1—7,

¢(ss) =0,
¢(sa) =0,
o(s)=3-2=2
¢(ss) =0,
<P(S7)=%'%=%,
p(s)=2 5 =1
P(s0) =5 5=
Thus, the steady-state PMF 8SMQ(E) is
¢ = (O,%,0,0,%,O,%, 137,137 .

This coincides with the result obtained with the us¢ofindSJ

Alternatively , from T S(E), we can construct the reduced DTMCBfRDTMQE), and then calculate using it.

Remember thabR; (E) = {s1, S, Ss, S7, S8, So} andDRy(E) = {ss, 54, Ss}. We reorder the elements BIR(E), by
moving vanishing states to the first positioss: s, S, S1, S, S5, S7> 8> So-

The reordered TPM foDTMC(E) is

000O0O0OT1O0GO00O0
0 000O0OT1O0O0
000O0O0OGO0TO 013}
ooog%oooo
PP=|% 2 2032 0000
ogoo%gogo
$00030% 03
02 0000020
7 00000O0©O0O?3?
The result of the decomposiiy are the matrices
0 00 g%oooo
10101 1
00 0 001000 114 01909,
C=|000[D=/00010O0E=f; 8 JLF=| % 8 35283
11 8 8 8 8
000 00003 010 00002%0
00 0 0o0O0O0}$

SinceC! = 0, we havevk > 0, Ck = 0, hence) = 0 and there are no loops among vanishing states. Then

|
G:ZCkzcozl.
k=0

Further, the TPM foRDTMQE) is
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Figure 27: The reduced DTMC of the shared memory system.

Table 9: Transient and steady-state probabilities for tb&RC of the shared memory system.

| k JJo] 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 [ o |
y;[K ][ 1]05129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

y;[Kl || 0]0.1244] 0.0931] 0.0764| 0.0679| 0.0635| 0.0612[ 0.0600| 0.0594| 0.0591| 0.0590| 0.0588
y3[Kl || 0] 0.0863] 0.1307] 0.1530| 0.1644| 0.1703| 0.1733[ 0.1748] 0.1756| 0.1760| 0.1763| 0.1765
y:[K || 0]0.0951] 0.1912] 0.2413]| 0.2670| 0.2802] 0.2870[ 0.2905| 0.2922] 0.2932| 0.2936] 0.2941

210000

o0 11 1 1

4 4 3.8 8

o I 2 1 =0

P°=F+EGD=F+EID =F+ED = 8 5 B 8
0535 35 03

00041 20

0 0100?32

In Figure 27, the reduced DTMRDTMQE) is presented.

In Table 9, the transient and the steady-state probabilitigk] (i € {1, 2, 3,5}) for the RDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 28, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states, S, S5, Ss only, since the corresponding values coincidednis;, as well as forsg, So.

The steady-state PMF fRDTMQE) is

T ATV

Note that)® = (y°(s), ¥°(S2). ¥ (S5). ¥ (7). ¥ (6). ¥° (). By Proposition 5.3, we have

13355)

Yo

P(51) =0, ¢(2)=1, ¢(2)=0 @()=0 @)= @(S%)=0 ¢(s1)=5 @(s)=715 @)=
Thus, the steady-state PMF 8MQE) is

1 3 3 55
‘10_(091_7709071_77091_771_791_7 .
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Figure 28: Transient probabilities alteration diagramtfe RDTMC of the shared memory system.

This coincides with the result obtained with the us¢6findSJ
We can now calculate the main performance indices.

The average recurrence time in the statevhere no processor requests the memory, calledvibeage system
run-through is 2 = 17.

The common memory is available only in the stadgs;, 4, Ss. The steady-state probability that the memory
is available isps + @3+ @4+ g = 1i7 +0+0+0= %7 Then the steady-state probability that the memory is used

(i.e. not available), called thehared memory utilizatigris 1- % = 15,
After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgf Thus, therate with which the necessity of shared

memory emergemincides with the rate of leaving, calculated ags = & - § = &.

The parallel common memory request of two procesg¢rs, %), ({ra}, %)} is only possible from the stat. In

this state, the request probability is the sum of the exenygiobabilities for all multisets of activities contaigin

both (ry}, %) and (rz}, %). Thus, thesteady-state probability of the shared memory request freorprocessors
1 1

. 11
IS 2 Zpriqra drar e PTL %) = 15 - 3 = 55

The common memory request of the first proces(aqﬁ,(%) is only possible from the statess, s;. In each of
the states, the request probability is the sum of the exattiobabilities for all sets of activities containing

({ra}, %). Thesteady-state probability of the shared memory request franfirst processois

@2 Xprien. pyery PTOE S2) + 97 Zprey), pyery PT(Y, 87) = o (711 + %) + (% + %) = &.

In Figure 29, the marked dtsi-boxes corresponding to theuya expressions of two processors, shared memory
and the shared memory system are presentedii2.Boxsi(Ei) (1 < i < 3) andN = Boxsi(E).

9.2. The abstract system and its reduction

Let us consider a modification of the shared memory system alistraction from identifiers of the processors,
i.e. such that they are indistinguishable. For example, are jast see that a processor requires memory or the
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Figure 29: The marked dtsi-boxes of two processors, shasgdary and the shared memory system.

memory is allocated to it but cannot observe which proceissior We call this system the abstract shared memory
one. To implement the abstraction, we replace the actipdsm (1 < i < 2) in the system specification twyd, m,
respectively.

The static expression of the first processor is

Fi = [(0l )= (1), 3): (A, b); (m 1) 5)) = Stop.

The static expression of the second processor is

F2 = [(el. 3) = (1), 3); (A ¥2).b); (M 21, 5)) = Stop.

The static expression of the shared memory is

Fa = [((@ 5. 1. 3) » (931 2); (), Z)0(53).b); (173, 5)) = Stopl

The static expression of the abstract shared memory syst#mntwo processors is

F = (FallF2llF3) sr (X1, X2, Y1, Y2, 21, Z2).
DR(F) resemble®R(E), andT S(F) is similar toT S(E). We haveSMQF) ~ SMQE). Thus, the average sojourn
time vectors of andE, as well as the TPMs and the steady-state PMFEBRTMC(F) andEDTMC(E), coincide.
The first, second, third and fourth performance indiceslaestime for the standard and the abstract systems. Let
us consider the following performance index which is spetdithe abstract system.

e The common memory request of a process$oy; %) is only possible from the states, s5, ;. In each of the
states, the request probability is the sum of the executioipgbilities for all sets of activities containing; %).
The steady-state probability of the shared memory request faoprocessoris ¢, Zm«,),%)m PT(T, s) +

_1(1 1 1 3 (3 1 3 (3 1\ _ 15
@5 pri(iry. byer) PT(C S5) + 97 Zpyry. Hery PT(Y 87) = 55 (F+3+3)+5(B+8)+2(3+3)-%8
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Figure 30: The quotient transition system of the abstraateshmemory system.

e

The marked dtsi-boxes corresponding to the dynamic expressf the standard and the abstract two processors
and shared memory are similar, as well as the marked dtgshoarresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We haveDR(E)/RSS(E) = {K1, Ko, K3, Ka, Ks, K}, WhereKy = {1} (the initial state) K> = {s;} (the system is
activated and the memory is not requesté® = {s3, 4} (the memory is requested by one processkil) = {Ss, 7}

(the memory is allocated to a processdf}, = {ss} (the memory is requested by two processok&) = {Ss, So} (the
memory is allocated to a processor and the memory is requigtanother processor).

We also havdDRT(F)/RSS(E) = {7(1,7(2,7(4,7(6} andDRV(F)/RSS(E) = {(](3,7(5}.

In Figure 30, the quotient transition systé’rﬁ;ﬁss(f) is presented. In Figure 31, the quotient underlying SMC

SMC:SS(E) is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},
as well agr}, {m}. The stateKs only exists in step semantics, since it is reachable exalysby executingr} and{r}
in parallel.

The quotient average sojourn time vectoiFois

The quotient sojourn time variance vectorfofs
4 24
VAR =156,-,0,-—,0,12|.
0201
The TPM forEDTMC,,_(F) is
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Figure 31: The quotient underlying SMC of the abstract shanemory system.
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In Table 10, the transient and the steady-state probasiifi'[k] (1 < i < 6) for the quotient EDTMC of the
abstract shared memory system at the time momeat®, 5, 10, .. ., 50} andk = oo are presented, and in Figure 32,
the alteration diagram (evolution in time) for the transigrobabilities is depicted.

The steady-state PMF f&DTMC,,_(F) is

Table 10: Transient and steady-state probabilities fogthatient EDTMC of the abstract shared memory system.

[k JO[ 5 [ 10 [ 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | « |
v K |[1] O 0 0 0 0 0 0 0 0 0 0

y,'[ 0] 0 |0.0754] 0.0859] 0.0677| 0.0641| 0.0680| 0.0691 | 0.0683| 0.0680| 0.0681 | 0.0682
v,’[K] |[0 | 0.4889] 0.4633| 0.3140| 0.3108| 0.3452| 0.3482| 0.3404| 0.3392| 0.3409| 0.3413| 0.3409
v/, | 0] 04667 0.1964| 0.3031] 0.3719] 0.3517| 0.3344| 0.3380| 0.3422| 0.3417| 0.3407 | 0.3409
y.’[K | 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237] 0.0234| 0.0226] 0.0226| 0.0228| 0.0228] 0.0227
y K [[0] 0 |0.2325]0.2791] 0.2294| 0.2154] 0.2260| 0.2299| 0.2277| 0.2267] 0.2271] 0.2273
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Figure 32: Transient probabilities alteration diagramtfer quotient EDTMC of the abstract shared memory system.

o3 181515
Vs aa aa a0 an 22)
The steady-state PMF* weighted bySJ is
1 6 _ 10
(0’ ﬁv 0’ ﬁv 0’ ﬁ) .
It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

17

g 1T —
Y'SJ =1

Thus, the steady-state PMF 8MC,,_(F) is
) 1 6 10
¢ =(o3050.37)

Otherwise, from TS,,_(F), we can construct the quotient DTMC Bf DTMC,,_(F), and then calculatg’ using it.
In Figure 33, the quotient DTMOTMCﬂSS(E) is depicted.
The TPM forDTMC,,_(F) is

I 0000
011010
4 2 4
p_| 000100
- 3 3
0353 0 3
000 O0O01
0030032
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Figure 33: The quotient DTMC of the abstract shared memastesy.

In Table 11, the transient and the steady-state probasifif[k] (1 < i < 6) for the quotient DTMC of the abstract
shared memory system at the time moméats {0, 5, 10,...,50} andk = o are presented, and in Figure 34, the
alteration diagram (evolution in time) for the transiemlpabilities is depicted.

The steady-state PMF f@TMC,,_(F) is

/(o1 52110
v=\%2128 784 21)
Remember thabRr (F)/» & = (K1, Kz, Ka, Ko} andDRy (F) /) = (%3, Ks). Hence,
’ ’ ’ ’ , 17
D W) = WK + 0 () + 0 (Ka) + 0 (Ke) = 57

KeDRy (F) IsF)

By the “quotient” analogue of Proposition 5.2, we have

Table 11: Transient and steady-state probabilities fogthaient DTMC of the abstract shared memory system.

[k O] 5 [ 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 | o |
Y[kl ][ 1] 0.5129] 0.2631] 0.1349] 0.0692] 0.0355[ 0.0182[ 0.0093] 0.0048] 0.0025] 0.0013] 0

y,[Kl [0 0.1161] 0.0829] 0.0657| 0.0569] 0.0524] 0.0501] 0.0489| 0.0483] 0.0479| 0.0478| 0.0476
y,[K] [0 0.0944] 0.1353] 0.1564] 0.1672] 0.1727] 0.1756] 0.1770] 0.1778] 0.1782| 0.1784] 0.1786
y,[Kl [0 0.1162] 0.1992] 0.2414] 0.2630] 0.2740] 0.2797| 0.2826| 0.2841] 0.2849 0.2853| 0.2857
y/[Kl [0 0.0311] 0.0220] 0.0171] 0.0146] 0.0133] 0.0126] 0.0123] 0.0121] 0.0120| 0.0120] 0.0119
y.[Kl [0 0.1294] 0.2974] 0.3845| 0.4292] 0.4521| 0.4638] 0.4698] 0.4729] 0.4745| 0.4753] 0.4762
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Figure 34: Transient probabilities alteration diagramtfa quotient DTMC of the abstract shared memory system.

¢'(K)=0-%F=0,

1 21 _ 1
‘P'((K2)=2—1‘1—7:1—7,

¢’ (%) = 0,
Y(K)=2-2=&,
¢'(%Ks) = 0,
¢ =5 B =1

Thus, the steady-state PMF 8MC,,_(F) is
, 1 6 _ 10
¢ - (071_7’071_7’071_7 .
This coincides with the result obtained with the usg/6fandSJ. _ _
Alternatively, from TS,_(F), we can construct the reduced quotient DTMCRfRDTMG,_(F), and then

calculatey” using it. By Proposition 7.3, it coincides with the quoti&2TMC of F.
Remember thaDRT(F)/RSS(E) = {K1, K2, K4, K} and DRV(F)/RSS(E) = {K3, Ks}. We reorder the elements of

DR(E)/RSS(E), by moving the equivalence classes of vanishing statesetfirit positionsKs, Ks, K1, Kz, Ka, Ke.
The reordered TPM fobTMC,,_(F) is

BRoIENIF O O O
o OoOrrO OO
O®IRPNFRIR & o

OPwO O o
RUOI® O O 1 o

The result of the decomposiiij are the matrices
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Figure 35: The reduced quotient DTMC of the abstract sharemhony system.

Table 12: Transient and steady-state probabilities forédeced quotient DTMC of the abstract shared memory system.

[k O] 5 [ 10 [ 156 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 [ o |
v, "] [[ 1] 0.5129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

v,"[K] || 0] 0.1244] 0.0931] 0.0764 0.0679] 0.0635| 0.0612| 0.0600| 0.0594| 0.0591| 0.0590| 0.0588
v, °[K] || 0] 0.1726] 0.2614] 0.3060] 0.3289] 0.3406 0.3466 0.3497| 0.3513] 0.3521] 0.3525] 0.3529
v,°[K] || 0] 0.1901] 0.3824] 0.4826] 0.5341] 0.5605] 0.5740] 0.5810| 0.5845] 0.5863| 0.5872| 0.5882

0 0 g%oo
, (00, (0010 |2 2f_ J]OZ 00O
C‘(oo)’D‘(0001)’E‘%O’F‘oggg
10 0 0 0 :

SinceC’! = 0, we havevk > 0, C’k = 0, hence) = 0 and there are no loops among vanishing states. Then

|
G'=>Cc'=c=]
k=0

Further, the TPM foRDTMGC,,_(F) is

P°=F +EGD =F +EID'=F +ED =

O O Owi~N
O ®IFA[=oml-
ININ N Y e}
Blwolwbi- O

In Figure 35, the reduced quotient DTMRDTMG,,_ (F) is presented.

In Table 12, the transient and the steady-state probalsnh]‘.i’[k] (1 <i < 4) for the reduced quotient DTMC of
the abstract shared memory system at the time monkent®, 5, 10, . . ., 50} andk = « are presented, and in Figure
36, the alteration diagram (evolution in time) for the tiens probabilities is depicted.
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Figure 36: Transient probabilities alteration diagramtfa reduced quotient DTMC of the abstract shared memorgisyst

Then the steady-state PMF fRDTMC,,_(F) is

[0 L 6 10
yo= Y1717 17)°

Note thaty’® = (y/'° (K1), ¥ (K2), ¥'° (Ka), ¥'° (Ke)). By the “quotient” analogue of Proposition 5.3, we have

(K1) =0, ¢(K)=15 ¢(K)=0, ¢(Ki)=75 ¢(Ks)=0, ¢'(Ke)=713
Thus, the steady-state PMF 8MC.,_(F) is

, 1 6 _ 10
@ = (091_7>091_7>091_7)-
This coincides with the result obtained with the us@6fandSJ.
We can now calculate the main performance indices.

e The average recurrence time in the stilewhere no processor requests the memory, calledbeage system
run-throughis > = 47 = 17.
2

e The common memory is available only in the sta#és %, Ks. The steady-state probability that the memory
is available isp), + ¢5 + ¢f = 1% +0+0= 1% Then the steady-state probability that the memory is uised (
not available), called thehared memory utilizatioris 1- % = 2.

o After activation of the system, we leave the st&tefor ever, and the common memory is either requested or

allocated in every remaining state, with exceptior#/@f Thus, therate with which the necessity of shared
memory emergesoincides with the rate of leavird,, calculated a% =£-3=3
e The parallel common memory request of two procesg@is{r}} is only possible from the stat&>. In this
state, the request probability is the sum of the executiobailities for all multisets of multiactions con-
taining {r} twice. Thus, thesteady-state probability of the shared memory request from processorss
PMA(%2. K) = &5 - 3 = -
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e The common memory request of a procegspis only possible from the staté¢,, K. In each of the states, the
request probability is the sum of the execution probabsifor all multisets of multiactions containifig. The
steady-state probability of the shared memory request &@Tocessois ¢, 3, | PMa(%, K) +

79 PMAKLK) = £(3+ )+ & (3+1)=5

8/~ 68"

One can see that the performance indices are the same foorhy@ate and the quotient abstract shared mem-
ory systems. The coincidence of the first, second and thiribpeance indices obviously illustrates the results of
Proposition 8.1 and Proposition 8.2 (both modified®ai<F)). The coincidence of the fourth performance index is
due to Theorem 8.1 (modified f&R s{F)): one should just apply its result to the derived step tfgge{r}} of the
expression_ and itself. The coincidence of the fifth performance indetkie to Theorem 8.1 (modified f@,s{(F)):
one should just apply its result to the derived step trages {{r},{r}}, {{r},{m}} of the expressiofF and itself, and
then sum the left and right parts of the three resulting etiesl

(AKIrIeA, ToDK

AKI(r)eA, KaDS%K)

9.3. The generalized system

We now obtain the performance indices taking general vdiuesall multiaction probabilities and weights. Let
us suppose that all the mentioned stochastic multiactiane the same generalized probabifitg (0; 1), and all the
immediate ones have the same generalized weighR.o. The resulting specificatiod of the generalized shared
memory system is defined as follows.

The static expression of the first processor is

K1 = [({x1}, p) * (({re}, p); ({d1, y1}, br); ({ma, z1}, p)) * Stop].
The static expression of the second processor is

Kz = [({x2}, p) * (({r2}, p); ({d2, Y2}, &n); ({mp, 22}, p)) * Stop].
The static expression of the shared memory is

Kz = [({a, X1, %2}, p) = ({2}, bn); ({1z), e))((192), b); (1Z2), p))) * Stop].
The static expression of the generalized shared memorgraysith two processors is

K = (K1lIK2l[K3) sr (X1, X2, Y1, Y2, 21, Z2).

We haveDRr(K) = {51, %, %, %. %, %} andDRy(K) = {3, &, 5.
The states are interpreted as followsisthe initial states;: the system is activated and the memory is not requested,
§: the memory is requested by the first processgr,tie memory is requested by the second processorthe
memory is allocated to the first processsr, the memory is requested by two processsrstiie memory is allocated
to the second processas; the memory is allocated to the first processor and the memagguested by the second
processorsyg: the memory is allocated to the second processor and the mesn@quested by the first processor.

In Figure 37, the transition systemS(K) is presented. In Figure 38, the underlying SBMQK) is de-
picted. Note that, in step semantics, we may execute thewly activities in parallel: {f1}, o), ({r2}, p), as well
as (r.}. p), (Ima}, p?), and {rz}, p), (M1}, p?). The statesg only exists in step semantics, since it is reachable exclu-
sively by executing{f1}, o) and {r}, p) in parallel.

The average sojourn time vectorKfis

SJ=

_’ . > 0, N y . _’ -
% p(2-p) p(L+p=p?)" " p(l+p-p?) p? p?
The sojourn time variance vector Kfis
\7KR=(1‘P3 (1-p)? (1-p)2-p?) [ (L-p)1-p*) 1-p° 1—p2)
P8 T pP2-p) T PP+ p-p?)? T pA(L+p-p?)? ot T pt
The TPM forEDTMQ(K) is

~(1 1 1 1 11)
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({a}.p%).03
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Figure 37: The transition system of the generalized shamdony system.
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3

Figure 38: The underlying SMC of the generalized shared ngsystem.
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0 1 0O 0 0 0 O 0
0 0 ;—g ;—g 04 0 0 0
0 0 0 0 1 0 0 O 0
0 0 0 0O 0 0 1 o0 0
B+ (1-p) 2 1-p?
P={0 &2 0 £ 0 0 0 g% O
0 0 0 o 0 0 o0 1 :
— 12 —2
0 fii’_;)z 1"';_/32 0 0 0 0 0 li l—pz
0 1 0 0 0 © 0
0 0 1 0O 0 0 0 O 0

The steady-state PMF f&DTMQ(K) is

V" = s (0. 20(1=p)2 - p), 2= p)(L + p = p?), (2= p)(L + p = p?), (2= p)(L + p = p?), 20%(1 - p),
2-p)1+p=p%),2+p)L-p),(2+p)(L-p)).

The steady-state PM§ weighted bySJis

2026 + 3p i 97 + 209) (0,20%(1 - p), 0,0,p(2 - p), 0,p(2 = p), 2+ p)(L = p), (2 + p)(1 = p)).

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

2+p-p*-p°

o =T
*SJ = .
VSIS 6 30— 97+ 209)

Thus, the steady-state PMF 8MQK) is

1
22+ p-p?-p3)
Otherwise, from T S(K), we can construct the DTMC &, DTMC(K), and then calculate Using it.

In Figure 39, the DTMMTMC(K) is depicted.
The TPM forDTMC(K) is

¢= (0.20%(1 - p).0,0,p(2- p),0,p(2 - p). 2+ P)(L - p). (2+ p)(1 - p)).

1-p% P 0 0 0 0 0 0 0

0 (1-p? p-p) p(1-p) 0 o 0 0 0

0 0 0 0 1 0 0 0 0
B 0 0 0 0 0 1 0 0
P=| 0 p1-p) 0 P (1A-p@a-p») 0 0 p(1-p?) 0

0 0 0 0 0 0 0 : :

0 p(1-p P 0 0 0 (I-p)(1-p% 0 p(L-p?)

0 0 0 02 0 0 0 1-p? 0

0 0 02 0 0 0 0 0 1- p?

The steady-state PMF f@TMC(K) is

U = sy (0 20° (1= p).p%2 = p)(L +p = ), 052 = p)(L+ p = p%).p(2 = p). 20*(L = p). p(2 - p),
2 +p)1=p),(2+p)1~p)).

Remember thabRy (K) = {51, %, %, %, %. %} andDRy(K) = {5, &, %} Hence,
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(1-p)(1—p%) (1-p)(1—p*)

p(1—p%) p(1—p%)

Figure 39: The DTMC of the generalized shared memory system.

2+p-p*-p°
(L+p)2-p+20%-20%)

Z U(3) = g(51) + U(%) + P(3) + U(3) + (%) + U(%) =
&DR; (K)

By Proposition 5.2, we have

~r 1 2— 2_2p3

b - 0. Lalrarian
5(%) = p%(1-p)  (1+p)2—p+20%-20%) _ _p*(1-p)
$=2) = Toepr2r—29 2+p—p?—p? T 24p—p*—p*’
#(%) =0,

(%) =0,

SR\ p(2-p) 1+p)R—p+20°-20% _ _ p(2-p)
o(5) = 2(T+p)(2—p+207-20%) 2+p—p?—p* T 2(2+p—p2-p3)°
(%) =0,

SRy p(2-p) (1+p)(2=p+20°=20%) _ __ p(2-p)
o(8r) = 2(T+p)(2—p+207-20%) 2+p—p?—p° = 2(2+p—p2-pd)°

5(%) = (2+p)(1-p) - (14p)(2=p+202-20%) _ _(2+p)(1-p)
¢ T 2(1+p)(2-p+202-20%) 2+p—p2—p® 2(2+p—p®—p)°
5(%) = (2+p)(1-p) . (L) (@2-p+207-20%) _ _(2+p)(1-p)

L4 T 2(1+p)(2-p+202-2p%) 2+p—p2-p® 2(2+p—p?—p%)°

Thus, the steady-state PMF 8MQK) is

- 1
YT 22+ p-p2- P9
This coincides with the result obtained with the usé/ofindSJ
Alternatively , from T S(K), we can construct the reduced DTMCKOfRDTMQK), and then calculate Using it.
Remember thabRr(K) = {31, %, &, &, %, %} andDRy(K) = {%, &, %}. We reorder the elements BR(K), by
moving vanishing states to the first positioss: &, %, 51, £, &, 57, %, %.
The reordered TPM foDTMC(K) is

(0,20%(1 - p),0,0,p(2 - p),0,p(2 = p), 2+ p)(L - p), (2 + p)(1 - p)).

81



0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 o0 0 0 0 : :
B 0 0 0 1-p3 p° 0 0 0 0
Pr=| p(l-p) p(l-p) p* 0  (1-p)? 0 0 0 0
0 PP 0 0 p(l-p) (1-p)1-p?) 0 p(1-p%
p° 0 0 0 p(1-p) 0 (1-p)(2-p?) 0 p(1-p)
0 2 0 0 0 0 0 1- p? 0
02 0 0 o0 0 0 0 0 1- p?
The result of the decomposirﬁg are the matrices
0 0 0
00 0 001000 pA=p) p-p) ¢’
6:[000],5:[00010 o],’é: p03 " g ,
000 000011 0 2 0
0° 0 0
1-p° o 0 0 0 0
0 (1-p)? 0 0 0 0
E_| 0 Pl-p) (1-p)(1-p?) 0 p(1-p?) 0
0 p*(1-p) 0 (1-p(-p?) 0 p(1-p%
0 0 0 0 1~ p? 0
0 0 0 0 0 1- p?

Further, the TPM foRDTMQK) is

P =F+EGD=F+EID=F+ED =

1-p° o 0 0 0 0
0 (1-pp p(L-p) p(L-p) 5 5
0  p(1-p) (1-p)2-p?) o’ p(L-p? 0
0 p(1-p) o (1-p)1-p?) 0 p(1-p?)
0 0 0 P2 1-p? 0
0 0 o2 0 0 1-p?

In Figure 40, the reduced DTMRDTMQK) is presented.
Then the steady-state PMF BDTMK) is

lp(}

~202+p _1p2 — (0,20%(1 - p), p(2 - p), p(2 = p), (2+ P)(1 = p), (2+ p)(1 - p)).

Note that)® = (°(31), °(%), ¥° (%), ¥°(37), ¥° (%), ¥ (%)). By Proposition 5.3, we have

~ ~ 2(1- ~ ~ ~ (2—,
B3 =0, §(®) =25 §(%) =0, F(&) =0, #(%) = et
(&) — ~rx ) — __p2p) ~rxy _ _(2+p)(d-p) ~rxy _ _(2+p)(1-p)

%) =0, (&) =5 O3) = 35,705 %)= 5575
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Figure 40: The reduced DTMC of the generalized shared mesystem.

Thus, the steady-state PMF 8MQK) is

1
22+ p-p?-p3)

¢= (0.20%(1-p),0,0,p(2- p),0.p(2 - p). (2 + p)(1 - p), (2+ p)(1 - p)).

This coincides with the result obtained with the usé/ofindSJ
We can now calculate the main performance indices.

The average recurrence time in the statevhere no processor requests the memory, calledvibeage system

_ io 1 _ 24p—p?—p°
run-through is %=

The common memory is available only in the stadg$s, &4, &%. The steady-state probability that the memory

is available isp3 + Gz + (a + (e = % +0+0+0= % Then the steady-state probability that the

. . . . . 2(1— —202
memory is used (i.e. not available), called #wred memory utilizatigns 1 52 () _ Ztp-2p”
+p—p?—p 2+p—p?—p

After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgf Thus, therate with which the necessity of shared

memory emergesoincides with the rate of leavirg, calculated a% = zfgflf);{)[}3 - 2Ze) - P;(fp ;fggf;)g’),

The parallel common memory request of two procesférsg, p), ({r2}, p)} is only possible from the stat.In
this state, the request probability is the sum of the exenytiobabilities for all multisets of activities contaigin
both (r1}, p) and {r2}, p). Thus, thesteady-state probability of the shared memory request freorprocessors

.~ =y _ pA-p) 2 p*1-p)
IS G2 Xrigqra o) ira o) PT(Y, &) = 555F50% = 52k

The common memory request of the first procesgef, (o) is only possible from the stateg, 5;. In each of the
states, the request probability is the sum of the executiologbilities for all sets of activities containing{}, p).
Thesteady-state probability of the shared memory request fr@nfirst processois @z 3. v, p)er) PT(T, &)+

~ ~ 2(1-, 2—-p 2(2+p—2p2
&7 Xriepren PTO 8) = 2588 (0(1 - p) +p?) + st (o(1— p7) + %) = Stk

9.4. The abstract generalized system and its reduction

Let us consider a maodification of the generalized shared mgsystem with abstraction from identifiers of the
processors. We call this system the abstract generaliz@ddimemory one.
The static expression of the first processor is

L1 = [({xa), o) = (({r}, p); ({d, ya}, b1); (fm, 21}, p)) + Stop].

The static expression of the second processor is
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Lz = [({x2}, p) * (({r}, p); ({d, y21. b1); (Im, 22}, p)) = Stop].
The static expression of the shared memory is

Ls = [({a X1, X2}, p) = ((({Y1), |); ({z2), ) O((Y2), B); (1221, p))) * Stop].
The static expression of the abstract generalized sharatbnyesystem with two processors is

= (LallL2llL3) sr (X1, X2, Y1, Y2, 21, Z2)-
DR(L) resemblesDR(K) andT S(L) is similar toT S(K). We haveSMQL) =~ SMQR) Thus, the average sojourn
time vectors oL andK, as well as the TPMs and the steady-state PMFERTMC(L) andEDTMC(K), coincide.
The first, second, third and fourth performance indices lagesame for the generalized system and its abstract
modification. Let us consider the following performancearavhich is again specific to the abstract system.

e The common memory request of a process$oy; ) is only possible from the states, 55, ;. In each of the
states, the request probability is the sum of the executiolbgbilities for all sets of activities containing, p).
The steady-state probability of the shared memory request faoprocessorns o 3y pery PT(Y, %) +

~ ~ ~ ~ 2 (1-,
@5 2 riinpert PTOC 85) + 67 X ppery PT(Y, &) = £ p) s(o(1—p) +p(1-p) +p%) +

2+p—p?—p
2—0 2—0 H“(2—p)(1- )
o (p(1 - p?) + p%) + 5228 (o(1 - p?) + p°) = CEL)

We haveDR(E)/Rss(D = (K1, Ko, Kz, K, K, Ko}, WhereK; = {3} (the initial state),‘l?g = {%} (the system is
activated and the memory is not requegé@,z {5, &} (the memory is requested by one procigssﬁn); {5, 57}

(the memory is allocated to a processdf}, = {5} (the memory is requested by two processor&) = {3, S} (the
memory is allocated to a processor and the memory is reqlipgtanother processor).

We also haveDRT(L)/Rss(L) {51, Ko, Ko, Ko andDRy(L)/, Noks = (%, Ks).
In Figure 41, the quotient transition syste'l'nSisS(L) is presented. In Figure 42, the quotient underlying SMC
SMC:SS(D is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},

as well agr}, {m}. The statel~(5 only exists in step semantics, since it is reachable ex@lysby executingr} and{r}
in parallel. _
The quotient average sojourn time vectoiFois

.y 1 1 1 1
SJ = (_7 PR > 09 _)

PP p2-p) T p(l+p-p?) T p?
The quotient sojourn time variance vectorfofs

__, _ 3 _ )2 _ _ 2 _ 2
VARz(1 2 Gopr o Gopdop) o] 4’0).
P p*2-p)*  pA(l+p-p?) P

The TPM forEDTMC,,_(L) is

0 1 0 0 O 0
2(1-p)

0 0 35— ; 0 z%p 0

B 0 0 1 0 0
- (1-p) 2 1-p?
0 f+p—Z2 1+Z—p2 0 0 Fﬁpz

0 0 0 0 O 1

0 0 1 0 O 0

The steady-state PMF f@DTMC,,_(L) is

1
"~ 6+3p— 92 + 203

7 1

0.p(1-p)(2-p).2=-p)L+p=p). (2= p)(L+p - p).p°(L - p). (2+ p)(1 - p)).
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Figure 41: The quotient transition system of the abstraceg®ized shared memory system.
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Figure 42: The quotient underlying SMC of the abstract galiesd shared memory system.
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Figure 43: The quotient DTMC of the abstract generalizedeshenemory system.

The steady-state PMF* weighted by§j is
1

p?(6 + 3p — 92 + 203)

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

(0,0°(1 - p),0,p(2 - p), 0, (2+ p)(1 - p)).

2+p-p*-p°
p?(6+ 30 — 902 + 20%)

&/*ng —

Thus, the steady-state PMF 8MC,,_(L) is

- 1
§ = 5———5—=(0.0°(1=p).0,p(2- ), 0,(2+ p)(1 - p)).
2+p-p*—p
Otherwise, from TS,,_(L), we can construct the quotient DTMC bf DTMC,,_(L), and then calculatg’ Using it.
In Figure 43, the quotient DTMOTMC,,_(L) is depicted.

The TPM forDTMC,,_(L) is

1-p° o 0 0 0 0
0  (1-pP 2(1-p) 0 p° 0
5 0 0 0 1 0 0
0  p(l-p)  p° (1-p)A-p?) 0 p(1-p?
0 0 0 0 0 1
0 0 0° 0 0 1-p?

The steady-state PMF f@TMC,,_(L) is
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v ! 0.0%(1 - p).p*(2 - p)(1 + p = %), p(2= p). p*(L = p), 2+ p)(1 - p)).

T @+ p)2—p+202-209)

RememberthaDRT(E)/Rss(D = {K1, Ko, Ka, Ks) andDRV(E)/Rss(D = (%, Ks). Hence,

_ o o Lo o _2_ 3
D) =) <R+ ) + ) = it

KeDRr D)/ outy

By the “quotient” analogue of Proposition 5.2, we have

>

i Lip)(2—p+207—20°
¢'(K1) =0- ( +p)2(+pf;22fp3_2p ) =0

=~ () — £*(1-p) (1+p)(2-p+20%-20°) _ _p*(1-p)
¥ (752) T (1+p)(2—p+202-203) ’ 2+p—p2—p3 T 2+p—p?—p3°
¢'(K3) =0,

~1 (Y — p(2=p) (1+p)(2-p+20%=20°) _ _ p(2—p)

¥ (754) T (L+p)(2—p+202-203) ’ 2+p—p2—p3 T 2+p—p?—p3°
¢'(Ks) = 0,

=1 (G — (2+p)(1-p) (1+p)(2-p+20%=20%) _ (2+p)(1-p)
¢(Ke) = @) 2p+202-20%) 2+p—p?—p® T 24p—p?—p*”

Thus, the steady-state PMF 8MC.,_(L) is
~ 1
§ = =———5—=(0.p%(1-p).0.p(2-p),0,(2+ p)(1 - p)).
2+p-p*—p
This coincides with the result obtained with the uséz@fand§i. _ B
Alternatively, from TS,_(L), we can construct the reduced quotient DTMA.oRDTMC,_(L), and then cal-
culateg” using it. By Proposition 7.3, it coincides with the quoti&2TMC OLE. _
Remember thaDRT(E)/RSS(D = {K1, 9C, Ka, Ke) and DRV(E)/&S(E) = {3, Ks). We reorder the elements of
DR(D/RSS(E)' by moving the equivalence classes of vanishing statesttirst positionsﬂ?g,7~(5,7~<1,7~<2,7~<4,7~(6.

The reordered TPM foDTMC,,_(L) is

0 0 o0 0 1 0
0 0 o0 0 0 1
P 0 0 1-p° p° 0 0
"1 20(1-p) p* O  (1-p)? 0 0
P> 0 0 p¥(1-p) (1-pA-p?) p(1-p?)
o2 0 0 0 0 1-p?

The result of the decomposifRj are the matrices

0 0
~, (0 0\ = (00 10\ <= |20(@1-p p?
C‘(o o)’D‘(0001)’E‘ 2 o |

p° 0

1-p° oS 0 0

=_| 0 @-p? 0 0

| 0 pA-p) A-p)A-p) p(1-p%)
0 0 0 1- p?

SinceC'! = 0, we havevk > 0, C’* = 0, hence| = 0 and there are no loops among vanishing states. Then
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RDTMC._ ()

= P p) =
c< ( -
P IC4 /' 20(1 — p) | ICQ (1— p)?

G = Cll C/O |
k=0
Further, the TPM foRDTMC,,_(L) is
1-p° o 0 0
~/<> T'~A =4l e =4 e Y 0 (1 P)Z 2p(1 p) pZ
P +E'GD'=F +FID'=F +ED’ =
0 p(l-p) 1-p- p+2p3 p(L- p)
0 0 o2 1-p?
In Figure 44, the reduced quotient DTI\/RDTMC:SS(E) is presented.
Then the steady-state PMF fBDTMC,,_(L) is
. 1 )
s 1- 2-0),(2 1-p).
Y 2+p_pz_pg(O,p (1-p).p(2=p).(2+p)(1-p))

Note thaty’® = (J"°(Ky), ° (%), i (Ka), ¥° (Ks)). By the “quotient” analogue of Proposition 5.3, we have

P =0, F(K) = 58585 F(K) =0, §(Ke)= gty §(Ks)=0. §(Ke)= £

2+p—p?—p*’ 2+p—p?-p*’ 2+p—p?—p
Thus, the steady-state PMF 8MC,,_(L) is
y 1
¥ = 57 ———=(0.p(1-p).0,p(2-p).0,2+p)(1~p)).
+p—p?—p

This coincides with the result obtained with the uséz@fand§i.
We can now calculate the main performance indices.

e The average recurrence time in the stitewhere no processor requests the memory, calledbege system

_ i 1 _ 2+p—p?—p®
run-through is 5= )
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e The common memory is available only in the statés K, Ks. The steady-state probability that the memory

is available isg} + @ + &} = 25551,)3/?p3 +0+0= zfp(l"’) Then the steady-state probability that the memory

. . . ) _ 2
is used (i.e. not available), called tsleared memory utilizatigris 1— 2:/)(_12’1)[)3 = Zf;’jpffp3.

e After activation of the system, we leave the sfﬁ@foi ever, and the common memory is either requested or
allocated in every remaining state, with exceptior#@f Thus, therate with which the necessity of shared

p ~ 2 3
aDiNC i i 2 _ _p(1-p) . pC-p) _ p’(1-p)(2-p)
memory emergaesoincides with the rate of leavirfy,, calculated a%% ol T el v

e The parallel common memory request of two procesgois{r}} is only possible from the statﬁ’z. In this
state, the request probability is the sum of the executiabatilities for all multisets of multiactions con-
taining {r} twice. Thus, thesteady -state probability of the shared memory request fnom processorss

~ 41, *(1-p
%) PMA(Ke, K) = 202 2 = 000

AKLNICA, KooK}

e The common memory request of a procegspis only possible from the staté6, K. In each of the states, the
request probability is the sum of the execution probabsifor all multisets of multiactions containifig. The
steady-state probability of the shared memory request &g@rocessois ¢, ZIA%””EA AR PMa(%2, K) +

3 , K2

~y T ar 2(1-, H(2— 2(2—p)(L+p—p?
B S pieinen A7 PMAKL K) = 525205 (20(1 = p) + ) + 5285 (p(1 - p?) + p°) = S5 2G200,

2+p—p?—p 2+p—p*—p 2+p—p*—p*

One can see that the performance indices are the same footgete and the quotient abstract generalized
shared memory systems. The coincidence of the first, seaahthad performance indices obviously illustrates the
results of Proposition 8.1 and Proposition 8.2 (both modifiie R ss{(L)). The coincidence of the fourth performance
index is due to Theorem 8.1 (modified f8:s{(L)): one should just apply its result to the derived step t{fige(r}}
of the expressioh. and itself. The coincidence of the fifth performance indedus to Theorem 8.1 (modified for
Rrs{L)): one should just apply its result to the derived step 8@}, {{r},{r}}, {{r},{m}} of the expressioh and
itself, and then sum the left and right parts of the threeltiegpequalities.

Let us consider what is thdfect of quantitative changes of the parameterpon performance of the quotient
abstract generalized shared memory system in its steady ®amember that € (0; 1) is the probability of every
stochastic multiaction in the specification of the systerhe €loser is to 0, the less is the probability to execute
some activities at every discrete time tick, hence, theesystill most probablystand idle The closer ip to 1, the
greater is the probability to execute some activities atyedescrete time tick, hence, the system will most probably
operate

Sincey, = ¢, = ¢, = 0, only @, = Ziiflp‘zﬁ)ps, 7, = 2+’;‘f;§’3p3, Gy = g*”)p()l‘g) depend om. In Figure 45, the plots
of ¢, &}, & as functions op are depicted. Notice that, however, we do not allow 0 orp = 1.

One can see that),,” ¢, tend to 0 andpg tends to 1 whep approaches 0. Thus, whenis closer to 0, the
probability that the memory is allocated to a processor aediiemory is requested by another processor increases,
hence, we havmore unsatisfied memory requests

Further,¢,, ¢ tend to 0 andpj tends to 1 whem approaches 1. Thus, whenis closer to 1, the probability
that the memory is allocated to a processor (and not reqlibgtanother processor) increases, hence, we leage
unsatisfied memory requests

The maximal value @797 of¢), is reached whep ~ 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, ieemtiximal shared memory availability about 8%.

In Figure 46, the plot of the average system run-througlcutated as:, as a function op is depicted. One can
see that the run-through tendsstovhenp approaches 0 or 1. Its m|n|mal value.3216 is reached when~ 0.7433.

To speed up operation of the system, one should take the ptegntloser to 07433.

The first curve in Figure 47 represents the shared memoiyattdn, calculated as1 ¢, — &7, — ¢, as a function
of p. One can see that the utilization tends to 1 both whapproaches 0 and whenapproaches 1. The minimal
value 09203 of the utilization is reached when~ 0.7433. Thus, theninimal shared memory utilizatias about
92%. To increase the utilization, one should take the patemeloser to 0 or 1.

The second curve in Figure 47 represents the rate with whizheécessity of shared memory emerges, calculated

as%, as a function op. One can see that the rate tends to 0 both whapproaches 0 and whenapproaches 1.
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Figure 47: Some performance indices as functions of thenpetep.

The maximal value @751 of the rate is reached whenr: 0.7743. Thus, thenaximal rate with which the necessity of
shared memory emergiasaboutll3 To decrease the mentioned rate, one should take the pamnoétser to O or 1.
The third curve in Flgure 47 represents the steady-stateapibity of the shared memory request from two pro-
cessors, calculated a§¢”2 WhereP’25 Z(Am”” 1ICA AR PMA(7(2, 7() = PM(7(2,7(5) as function ofpo. One
can see that the probability tends to 0 both \ivbaﬁ)prbaches 0 and wherapproaches 1. The maximal valu@917
of the probability is reached when~ 0.8484. To decrease the mentioned probability, one shoutdttekparameter
p closerto O or 1.
The fourth curve in Figure 47 represents the steady-stateapility of the shared memory request from a proces-
sor, calculated a;s’ZZ’ + 9042’ whereZ’ = ZIM(H”% RAR PMa(%, K), i € {2,4}, as a function op. One can see

that the probability tends to 0 wherapproaches 0 and it tends to 1 wheapproaches 1. To increase the mentioned
probability, one should take the parameteroser to 1.

10. Related work

In this section, we consider in detailfirences and similarities between dtsiPBC and other welwkror similar
SPAs for the purpose of subsequent determining the spedifemgages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian TiReatesses for Performance Evaluation (MTIPP)
[50], Performance Evaluation Process Algebra (PEPA) [52] Bxtended Markovian Process Algebra (EMPA) [14].

In MTIPP, every activity is a pair consisting of the actiomm&(including the symbat for theinternal, invisible
action) and the parameter of exponential distribution efabtion delay (theate). The operations angrefix choice
parallel composition includingynchronizatioron the specified action set aretursion It is possible to specify pro-
cesses by recursive equations as well. The interleavingusices is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systeNwte that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultane@igon of any two activities has zero probability
according to the properties of continuous distributionBMCs can be derived from the mentioned transition systems
to analyze performance.

In PEPA, activities are the pairs consisting of action tyfiesluding theunknown unimportant typer) and
activity rates. The rate is either the parameter of expaaledistribution of the activity duration or it isnspecified
denoted byT. An activity with unspecified rate ipassiveby its action type. The set of operations inclugesfix
choice cooperation hiding and constants whose meaning is given by the defining eqsatictuding therecursive
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ones. The cooperation is accomplished on the set of acti@stfthe cooperation set) on which the components must
synchronizer cooperate. If the cooperation set is empty, the cooparajperator turns into thgarallel combinator.
The semantics is interleaving, it is defined via the extemsidabeled transition systems with a possibility to specif
activity rates. Based on the transition systems, the coatia time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the eltdd@ continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and raetions can beexternalor internal (denoted by
7) according to types. There are three kinds of actions atugtd rates:timedones with exponentially distributed
durations (essentially, the actions from MTIPP and PERAnediateones with priorities and weights (the actions
analogous to immediate transitions of GSPNSs) pasisiveones (similar to passive actions of PEPA). Timed actions
specify activities that are relevant for performance asialyymmediate actions model logical events and the aietvit
that are irrelevant from the performance viewpoint or mudtdr than others. Passive actions model activities wgaitin
for the synchronization with timed or immediate ones, anpregs nondeterministic choice. The set of operators
consist ofprefix functionalabstraction functionalrelabeling alternativecomposition angbarallel composition ones.
Parallel composition includes/nchronizatioron the set of action types like in TCSP [53]. The syntax alstuithes
recursivedefinitions given by means of constants. The semanticsesl@aving and based on the labeled transition
systems enriched with the information about action ratest the exponentially timed kernel of the algebra (the
sublanguage including only exponentially timed and pa&ssistions), it is possible to construct CTMCs from the
transition systems of the process terms to analyze the mpeaftce.

In dtsiPBC, every activity is a pair consisting of the mudtian (not just an action, as in the classical SPAs) as
a first element. The second element is either the probalfiliy the rate, as in the classical SPAS) to execute the
multiaction independently (the activity is called a stogtimmultiaction in this case) or the weight expressing how
important is the execution of this multiaction (the actnig called an immediate multiaction in this case). Immealiat
multiactions in dtsiPBC are similar to immediate action€MPA, but all the immediate multiactions in dtsiPBC
have the same priority 1 (with the purpose to execute therayawefore stochastic multiactions, all having the same
priority 0), whereas the immediate actions in EMPA can hatfexknt priority levels. Associating the same priority
with all immediate multiactions in dtsiPBC results in thenpiified specification and analysis, and such a decision
is also appropriate to the calculus. The reason is that, agioned in [46], weights (assigned also to immediate
actions in EMPA) are enough to denote preferences among diateemnultiactions (designating their advantages or
prescribing sub-priorities to them) and to produce the aonfble probabilistic behaviours when one has to make a
choice among several immediate multiactions executalderime state. There are no immediate actions in MTIPP and
PEPA. Immediate actions are available only in iPEPA [49]evehthey are analogous to immediate multiactions in
dtsiPBC, and in a variant of TIPP [43] discussed while cartiing the calculus PM-TIPP in [89], but there immediate
activities are used just to specify probabilistic brangrand they cannot be synchronized.

dtsiPBC has the sequence operation, in contrast to the jomediin the classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is morebfeexinan the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is agals to that in MTIPP and PEPA, as well as to the
alternative composition in EMPA, in the sense that the ahddgrobabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classicautial Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), kenthe situation in the classical SPAs where parallel
composition (combinator) has a synchronization capgbiRelabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. Theriggtin operation in dtsiPBC dfiers from hiding in PEPA
and functional abstraction in EMPA, where the hidden actiare labeled with a symbol of “silent” actian In
dtsiPBC, restriction by an action means that, for a givemesgion, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an eleargraction in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are condgiméhe multiactions from the synchronized activities. The
operation produces new activities such that the first el¢wfevery resulting activity is the union of the multiacton
from which all the mentioned pairs of conjugated actionsrareoved. The second element is either the product of
the probabilities of the synchronized stochastic mulienst or the sum of the weights of the synchronized immediate
multiactions. This diers from the way synchronization is applied in the classs¢¥\s where it is accomplished over
identical action names, and every resulting activity cetissof the same action name and the rate calculated via some
expression (including sums, minimums and products) onatesrof the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive diefiisi but it includes the iteration operation to specify
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infinite looping behaviour with the explicitly defined startd termination.

dtsiPBC has a discrete time semantics, and residence tithe tangible states is geometrically distributed, unlike
the classical SPAs with continuous time semantics and expt@lly distributed activity delays. As a consequence,
the semantics of dtsiPBC is the step one, in contrast to tieeléaving semantics of the classical SPAs. The per-
formance is investigated via the underlying SMCs and (reduy®TMCs extracted from the labeled probabilistic
transition systems associated with expressions of dtsiPB@e classical SPAs, CTMCs are usually used for per-
formance evaluation. In [40], a denotational semanticsE®A&has been proposed via PEPA nets that are high-level
CTSPNs with coloured tokens (coloured CTSPNSs), from whighunderlying CTMCs can be retrieved. In [13, 9], a
denotational semantics of EMPA based on GSPNs has beendldfioe which one can also extract the underlying
SMCs and CTMCs (when both immediate and timed transitioapegsent) or DTMCs (but when there are only im-
mediate transitions). dtsiPBC has a denotational senwintierms of LDTSIPNs from which the underlying SMCs
and (reduced) DTMCs can be derived.

10.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered amongMarkovian ones [60, 22]. The semantics of all
Markovian calculi is interleaving and their action delaywé exponential distribution, which is the only continuous
probability distribution with memoryless (Markovian) prerty.

In [24], Generalized Stochastic Process Algebra (GSPA)imtasduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event stes{GSESs) with non-Markovian stochastic delays of events
In that paper, no operational semantics or performanceatiah methods for GSPA were presented. Later, in [59],
generalized semi-Markov processes (GSMPs) were extréciedGSESSs to analyze performance.

In [86, 87], generalized Stochastiecalculus (&) with general continuous distributions of activity delayas
defined. It has a proved operational semantics with tramsitlabeled by encodings of their deduction trees. No
well-established underlying performance model for thisian of Sr was described.

In [21, 20], Generalized Semi-Markovian Process AlgebraNBA) was developed with an ST-operational se-
mantics and non-Markovian action delays. The performanea#ais in GSMPA is accomplished via GSMPs.

Again, the first fundamental fierence between dtsiPBC and the calculi GSPAaBd GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of simple Rréadgsbra (PA) from [24], B extendsr-calculus
[78] and GSMPA is an enrichment of EMPA. Therefore, both GBRA GSMPA haverefixing choice(alternative
composition),parallel composition,renaming(relabeling and hiding (abstractior) operations, but only GSMPA
permitsconstantsUnlike dtsiPBC, GSPA has neither iteration or recursioBMPA allows onlyrecursivedefinitions,
whereas $ additionally has operations to specifyobility. Note also that GSPA,7#Sand GSMPA do not specify
instantaneous events or activities while dtsiPBC has iniatednultiactions.

The second significant fierence is that geometrically distributed or zero delaysiaseciated with process states
in dtsiPBC, unlike generally distributed delays assigneévents in GSPA or to activities intfSand GSMPA. As
a consequence, dtsiPBC has a discrete time operationahtemallowing for concurrent execution of activities
in steps. GSPA has no operational semantics whilea®d GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleawingze simultaneous occurrence of any two events has zero
probability according to the properties of continuous prtaibty distributions. Therefore, interleaving traneits are
often annotated with an additional information to keep ecowrency data. The transition labels in the operational
semantics of B encode the action causality information and allow one tivdehe enabling relations and the firing
distributions of concurrent transitions from the tramsitsequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semanfiescalculus. The ST-operational semantics of GSMPA is
based on decorated transition systems governed by t@msities with rather complex preconditions. There are two
types of transitions: the choice (action beginning) andtémmination (action ending) ones. The choice transitions
are labeled by weights of single actions chosen for executitile the termination transitions have no labels. Only
single actions can begin, but several actions can end illg@larBhus, the choice transitions happen just sequentiall
while the termination transitions can happen simultankgouss a result, the decorated interleavingtep transition
systems are obtained. dtsiPBC has an SPN-based denotagomantics. In comparison with event structures, PNs
are more expressive and visually tractable formalism, lolepaf finitely specifying an infinite behaviour. Recursion
in GSPA produces infinite GSESs while dtsiPBC has iteratfweration with a finite SPN semantics. Identification of
infinite GSESs that can be finitely represented in GSPA wasdeh future research.
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10.3. Discrete time

In [1], a class of compositional DTSPNs with generally digited discrete time transition delays was proposed,
called dts-nets. The denotational semantics of a stochadinsion (we call it stochastic ACP or SACP) of a subset
of Algebra of Communicating Processes (ACP) [8] can be cootd via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones, with zero delayd,teme ones, whose delays are random variables having
general discrete distributions. The top-down synthesidtefnets consists in the substitution of their transitibps
blocks (dts-subnets) corresponding to the sequence,ehmcallelism and iteration operators. It was explained ho
to calculate the throughputtime of dts-nets using the semine (defined as holding time or delay) of their transiion
For this, the notions of service distribution for the traiasis and throughput distribution for the building blockene
defined. Since the throughput time of the parallelism bloéls walculated as the maximal service time for its two
constituting transitions, the analogue of the step semmaafiproach was implemented.

In [71, 72], an SPA called Theory of Communicating Processa#sdiscrete stochastic tim@ CP*sY) was intro-
duced, later in [69] called Theory of Communicating Proesssith discrete real and stochastic tinTeCP'sY). It
has discrete real time (deterministic) delays (includiagpbzdelays) and discrete stochastic time delays. The agebr
generalizes real time processes to discrete stochastatiras by applying real time properties to stochastic tinte an
imposing race condition to real time semantit€ Pst has an interleaving operational semantics in terms of s®ch
tic transition systems. The performance is analyzed vierelis time probabilistic reward graphs which are essdytial
the reward transition systems with probabilistic statesdrtafinite number of outgoing probabilistic transitionsdan
timed states having a single outgoing timed transition. eationed graphs can be transformed by unfolding or
geometrization into discrete time Markov reward chains MRICs) appropriate for transient or stationary analysis.

The first diference between dtsiPBC and the algebras sACPT&RiFst is that dtsiPBC is based on PBC, but
SACP andT CP'st are the extensions of ACP [8]. SACP has taken from ACP selyuencechoice parallelism
anditeration operations, whereas dtsiPBC has additionally relabet#gjriction and synchronization ones, inherited
from PBC. InNTCPSt, besides standard actimefixing alternativg parallel compositionencapsulatior{similar to
restriction) andrecursivevariables, there are alsioned delay prefixingdependent delays scopad themaximal time
progressoperators, which are new both for ACP and dtsiPBC.

The second dierence is that dtsiPBC, SACP al€P*s!, all have zero delays, however, discrete time delays in
dtsiPBC are zeros or geometrically distributed and assetiaith process states. The zero delays are possible just
in vanishing states while geometrically distributed dslaye possible only in tangible states. For each tangihie,sta
the parameter of geometric distribution governing the yligldahe state is completely determined by the probabilities
of all stochastic multiactions executable from it. In SAQGRIZ CP'St, delays are generally distributed, but they are
assigned to transitions in SACP and separated from act@apting zero delays) MCP'St. Moreover, a special
attention is given to zero delays in SACP and determinigtiaybs inT CP?St. In SACP, immediate (timeless) transitions
with zero delays serve as source and sink transitions oftdisubnets corresponding to the choice, parallelism and
iteration operators. I CP'S,, zero delays of actions are specified by undelayable actiefixps while positive
deterministic delays of processes are specified with timedydprefixes. Neither formal syntax nor operational
semantics for SACP are defined and it is not explained how tivel®&arkov chains from the algebraic expressions
or the corresponding dts-nets to analyze performancentitistated explicitly, which type of semantics (interlewyi
or step) is accommodated in SACP. In spite of the discrete tipproach, operational semanticsTa Pt is still
interleaving, unlike that of dtsiPBC. In addition, no deat@minal semantics was defined fb€ Pst,

Let us mention other SPAs with discrete time and interlegpg@mantics. Those without immediate actions are:
Weighted Synchronous Calculus of Communicating Systen&Q@5) [99, 100] and discrete-time variant of stochas-
tic Concurrent Constraint Programming (we call§CCH [18].

That with immediate actions is: Interactive Probabili€itains (IPC) [34, 47].

The three SPAs are rather specific: unlike standard appyeagghts in WSCCS, rates (weights) in dsCCP and
probabilities in IPC are not associated with actions. In@B(robabilities are calculated using rates (weightd) tha
are assigned to operations. In IPC, actions are executshtageously while probabilistic choices take one unietim

Table 13 summarizes the SPAs comparison above and that fotio8 1 (the calculi sPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time,piressence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denabsemantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specifigthrentheses near the name of the corresponding SPA.
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Table 13: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions
Continuous No MTIPP (CTMC),PEPA (CTMP), GSPA (GSMP), 8, GSMPA (GSMP)
sPBC(CTMC)
Yes EMPA (SMC, CTMC),gsPBC(SMC) —
Discrete No WSCCS (DTMC), dsCCP (DTMC) dtsPBC (DTMC)
Yes TCPSY(DTMRC), IPC (DTMC) sACP, dtsiPBC (SMC, DTMC)

11. Discussion

Let us now discuss which advantages has dtsiPBC in compasith the SPAs described in Section 10.

11.1. Analytical solution

An important aspect is the analytical tractability of thelarlying stochastic process, used for performance eval-
uation in SPAs. The underlying CTMCs in MTIPP and PEPA, ad a®ISMCs in EMPA, are treated analytically,
but these continuous time SPAs have interleaving semar@&A, & and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is construcked for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, wheneagerformance model forsSis defined. sACP and
TCPst are the discrete time models with the associated analytiesods for the throughput calculation in SACP
or for the performance evaluation based on the underlyinylRTs in TCP*S!, but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non{gdgmng semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model iprapriate as a framework for the analytical solution
towards performance evaluation then one has a choice betiveeontinuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones SACPC 'St Otherwise, if one needs a non-interleaving model with #s@aiated analytical
methods for performance evaluation and the discrete tirpeoagh is feasible then dtsiPBC is the right choice.

The existence of an analytical solution also permits torpret quantitative values (rates, probabilities, weights
etc.) from the system specifications as parameters, whitlbeadjusted to optimize the system performance, like
in dtsPBC and dtsiPBC. The DTMCs whose transition probiddsliare parameters were introduced in [35]. The
parameters can also be adjusted in parametric probabiiiatisition systems (i.e. DTMCs whose transition proba-
bilities may be real-valued parameters) [63]. ParametfiMCs with the transition rates treated as parameters were
investigated in [45]. On the other hand, no parameters imfiteis of SPAs were considered in the literature so far.
In dtsiPBC we can easily construct examples with more paterséhan we did in our case study. The performance
indices will be then interpreted as functions of severaialdes. The advantage of our approach is that, unlike of the
method from [63], we should not impose to the parameters pagial conditions needed to guarantee that the real
values, interpreted as the transition probabilities, gwée in the interval [0;1]. To be convinced of this fact, jus
remember that, as we have demonstrated, the positive glitpainctions PF, PT, PM, PM*, PM? define proba-
bility distributions, hence, they always return valuesogiing to (0; 1] for any probability parameters from (0; 1¥an
weight parameters frorR.¢. In addition, the transition constraints (their probalg, rates and guards), calculated
using the parameters, in our case should not always be polgateoover variables-parameters, as often required in the
mentioned papers, but they may also be fractions of polyatsiike in our case study.

11.2. Concurrency interpretation

One can see that the stochastic process calculi proposkd literature are based on interleaving, as a rule, and
parallelism is simulated by synchronous or asynchronoaswgion. As a semantic domain, the interleaving formal-
ism of transition systems is often used. However, to prgpgupport intuition of the behaviour of concurrent and
distributed systems, their semantics should treat pdisaiie@s a primitive concept that cannot be reduced to nondete
minism. Moreover, in interleaving semantics, some impurpaoperties of these systems cannot be expressed, such
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as simultaneous occurrence of concurrent transitionsdBijcal deadlock in the spatially distributed processé$.[8
Therefore, investigation of stochastic extensions forempressive and powerful algebraic calculi is an important
issue. The development of step or “true concurrency” (shahparallelism is considered as a causal independence)
SPAs is an interesting and nontrivial problem, which haseted special attention last years. Nevertheless, not so
many formal stochastic models of parallel systems were e@fivhose underlying stochastic processes are based on
DTMCs. As mentioned in [39], such models are morgidilt to analyze, since several events can occur simulta-
neously in discrete time systems (the models have a stems$ies)aand the probability of a set of events cannot be
easily related to the probability of the single ones. Thenefparallel executions of actions are often not consitlere
also in the discrete time SPAs, suchTa8 s, whose underlying stochastic process is DTMCs with rewépdsvi-
RCs). As observed in [54], even for stochastic models withegally distributed time delays, some restrictions on the
concurrency degree were imposed to simplify their analggisniques. In particular, the enabling restriction reegii
that no two generally distributed transitions are enahtedny reachable marking. Hence, their activity periods do
not intersect and no two such transitions can fire simultasigothis results in interleaving semantics of the model.

Stochastic models with discrete time and step semantiesthavfollowing important advantage over those having
just an interleaving semantics. The underlying Markov ohaif parallel stochastically timed processes have the
additional transitions corresponding to the simultanesxecution of concurrent (i.e. non-synchronized) acteiti
The transitions of that kind allow one to bypass a lot of intediate states, which otherwise should be visited when
interleaving semantics is accommodated. When step sersastiused, the intermediate states can also be visited
with some probability (this is an advantage, since somerateve system’s behaviour may start from these states),
but this probability is not greater than the corresponding im case of interleaving semantics. While in interleaving
semantics, only the empty or singleton (multi)sets of iy can be executed, in step semantics, generally, the
(multi)sets of activities with more than one element canxeeated as well. Hence, in step semantics, there are more
variants of execution from each state than in the interfegaease and the executions probabilities, whose sum should
be equal to 1, are distributed among more possibilities. réfoee, the systems with parallel stochastic processes
usually have smaller average run-through. In case the lymigMarkov chains of the processes are ergodic, they
will generally take less discrete time units to stabilize Biehaviour, since their TPMs will be usually denser because
of additional non-zero elements outside the main diagoHahce, both the first passage-time performance indices
based on the transient probabilities and the steady-statermance indices based on the stationary probabilitias c
be potentially computed quicker, resulting in mostly fagpeantitative analysis of the systems. On the other hand,
step semantics, induced by simultaneous firing severasitrans at each step, is natural for Petri nets and allows
one to exploit full power of the model. Therefore, it is imtaott to respect the probabilities of parallel executions of
activities in discrete time SPAs, especially in those witPedri net denotational semantics.

Example 11.1. In Figure 48, the interleaving transition system of the gatized shared memory systenfK$ from
Section 9 is presented. The transition systefi{ tss constructed from the (step) one {KS in Figure 37 as follows.
First, all the transitions due to executing more than one\étgt are removed. Second, the states that become non-
reachable (from the initial state) in the absence of suchrgbel” transitions are deleted, together with all the
transitions from these states. Third, for each of the stégéisthe remaining outgoing transition probabilities are
normalized. Formally, the probabilities of the remainirrgrtsitions are defined as follows. Let G be a dynamic
expression, &€ DR(G), T € Exeds) and|Y| < 1. Theprobability to execute the multiset of activiti®sn s, when only

zero-element steps (i.e. empty loops) or one-element ategdlowedis pt(Y, s) = %. As aresult, one can

see many serious fitrences between(#§) and TSK), i.e. between the system’s behaviour in the interleavirdy an
step semantics. One can define interleaving stochastimbiation equivalences,, analogously ta-_, but using the

interleaving transition systems of expressions insteati@&tandard (step) ones. Then, frgr(ﬁ)s the interleaving
quotient (byo, ) transition system of the abstract generalized shared mgsystem ts_(L) can be constructed,
depicted in Figure 49. Again, there exist substantigledences betweenﬁ([) and TS:SS(E) in Figure 41. Next,
from tsiis(f), the interleaving reduced quotient DTMC of the abstractagalized shared memory system rdgp(f)
can be obtained, shown in Figure 50. Clearly, there are sedifferences between rdt@g(f) and RDTM%SS(E)
in Figure 44. Then the steady-state PMF for rdtm¢L) is ¢ = m(o,pz(l +0),20(1+ p + p%),2(1+ p)),
whereas the steady-state PMF for RDTMGL) is ¢° = 5——(0.0%(1 - p),p(2 - p). (2 + p)(L - p)). From

2+p—p?—p
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Figure 48: The interleaving transition system of the gelimd shared memory system.

tsﬁis(f), the interleaving quotient SMC of the abstract generaligkdred memory system sggst([) can also be
extracted, depicted in Figure 51. There are serioyfeténces between SD_;lIgE) and SMCJSS(E) in Figure 42. Then
the steady-state PMF for smc(L) is 5&’ = WW(O P2(1+p),0,20(1+ p +p?),0,2(1+ p)), whereas the steady-

state PMF for SM(;SS([) isg = v p T F R (0,0%(1 = p),0,p(2 = p),0,(2 + p)(1 — p)). In Figure 52, the plots of

&'2, &;, &g as functions op are depicted. One cane see substantigedénces between plots in Figure 52 and those
in Figure 45. The dferences indicate that whertends tol, the increase of performance (treated as the time fraction
when the memory is allocated to a processor and not requisedrimther one) is much quicker in step semantics
(the functiong}) than in the interleaving semanticéAO Moreover, whemp = 1, the memory is allocated and not
requestedg;) with probability 1 in the step case while all the three variants exist with pasiprobabilities in the
interleaving case: the memory is not allocated and not retpda(bz) with probablllty6 or the memory is allocated
and not requestedﬁg) with probability & 5 or the memory is allocated and requeste:g)(wnh probability & 5- Onthe
other hand, the dependence of the steady-state PMgismore complex and interesting in step semantics than in
interleaving one, since the functio@$, ¢,. ¢ have local extremes and more inflections tﬁénq?;l, (}g.

Example 11.2. Let us takep = % and | = 1in the interleaving transition systems and Markov chainsfiExample
11.1. Then we obtain the interleaving transition syste(),gjuotient transition systemds (F) and reduced quotient
DTMC rdtmciis(f) of the concrete and abstrastandardshared memory system, specified in Section 9 by the static
expressions E and F, respectively. In Table 14, the tramsietithe steady-state probabilitig§ [k] (1 < i < 4)for the
interleaving reduced quotient DTMC of the abstract sharesmory system at the time moments{0, 5, 10, ... ., 50}

and k = « are presented, and in Figure 53, the alteration diagram (etron in time) for the transient probabil-
ities is depicted. The steady-state PMF for rdtm@F) is ¢ = (0, . 33, 33), whereas the steady-state PMF for
RDTMG,_(F) is ¢’ = ( L, 2, 17) One can see that with k growing;,°[k] = ¢°[K](s) stabilizes slower (es-
pecially for the small values of k) thag,°[K] = ¢"°[K](%e) from Table 12 and Figure 36, since rdt@lgf) has

no transition from%. to K5, unlike RDTMG, (E) For instance, the absolute relativeffdirences for k= 5 are

[ f¢ °[5] A ¢ °[5] . 0. .
11D = | Q5850437 - OIS o 07644 (about76%) and |X—2t ' = [0588204901 _ 03981 . 6768 (about
68%, i.e.8%less).
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Figure 49: The interleaving quotient transition systemhefabstract generalized shared memory system.
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Figure 50: The interleaving reduced quotient DTMC of theti@as generalized shared memory system.

Table 14: Transient and steady-state probabilities foirttezleaving reduced quotient DTMC of the abstract sharechory system

[k O] 5 | 10 | 15 | 20 | 25 [ 30 [ 35 | 40 | 45 | 50 | o |
¢/°[KI | 1 [ 0.5129] 0.2631] 0.1349] 0.0692] 0.0355[ 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

¢,°[K || 0 ] 0.1499] 0.1155] 0.0950| 0.0844] 0.0789] 0.0761| 0.0747] 0.0739] 0.0736] 0.0734] 0.0732
¢.°[KI || 0 [ 0.1992] 0.2722] 0.3061 | 0.3233] 0.3322] 0.3367 0.3390] 0.3402 0.3408| 0.3411] 0.3415
¢,°[KI [| 0| 0.1379] 0.3493] 0.4640] 0.5231] 0.5534] 0.5690| 0.5770] 0.5811] 0.5832] 0.5842| 0.5854
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11.3. Application area

From the application viewpoint, one considers what kind ysfteams are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited forithterleaving continuous time systems such that the
activity rates or the average sojourn time in the statesraoevk in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can Isedito model the mentioned systems with the activity
delays of dfferent duration order or the extended systems, in which pprelbabilistic choices or urgent activities
must be implemented. GSPA and GSMPA fit well for modeling thietimuous time systems with a capability to keep
the activity causality information, and with the known &it§i delay distributions, which cannot be approximated
accurately by exponential distribution, whiler 8an additionally model mobility in such systemBCPstis a good
choice for interleaving discrete time systems with detaistic (fixed) and generalized stochastic delays, whereas
SACP is capable to model non-interleaving systems as wadllit loffers not enough performance analysis methods.
dtsiPBC is consistent for the step discrete time systents that the independent execution probabilities of actsiti
are known and geometrical distribution approximates viidtate residence time distributions. In addition, dt§€}PB
can model these systems featuring very scattered actiglgyd or even more complex systems with instantaneous
probabilistic choice or urgency, hence, dtsiPBC can batakea non-interleaving discrete time counterpart of EMPA.

11.4. Advantages of our approach

The main advantages of dtsiPBC are the flexible multiactbels, immediate multiactions, powerful operations,
as well as a step operational and a Petri net denotationalrg@s allowing for concurrent execution of activities
(transitions), together with an ability for analytical apdrametric performance evaluation. The uniqueness of our
approach consists in applying a parallel semantics for thegss expressions and preserving the concurrency level
in the extracted performance models (SMC, DTMC and RDTM@)ufgh their state changes corresponding to the
simultaneous executions.

12. Conclusion

In this paper, we have proposed a discrete time stochaséasrn dtsiPBC of a finite part of PBC enriched with
iteration and immediate multiactions. In the presentediverof dtsiPBC, we have used positive reals as the weights
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of immediate multiactions, with a goal to enhance its speatifbn capabilities. The calculus has a concurrent step
operational semantics based on labeled probabilistisitian systems and a denotational semantics in terms of a
subclass of LDTSIPNs. A method of performance evaluatiotihéframework of the calculus has been presented.
Step stochastic bisimulation equivalence of process ssmas has been defined and its interrelations with other
equivalences of the calculus have been investigated. Wedxplained how to reduce transition systems and Markov
chains (SMCs, DTMCs and RDTMCs) by building their quotiewtth respect to the introduced equivalence. We
have studied anfect of the quotienting to extraction, embedding and reduacin terms of the transition probability
matrices (TPMs) of the quotient DTMCs, EDTMCs and RDTMCs. Ne#we demonstrated that for DTMCs of the
process expressions, the quotienting is permutable (cde)mith both extraction and reduction, whereas an addi-
tional embedding of the quotient embedded DTMC is neededititle with the embedded quotient DTMC. Thus,
making extraction before the quotienting permits to staaspning from the Markov chain level. Applying reduction
before the quotienting simplifies quantitative analysisase of many non-equivalent vanishing states. The quetient
ing before embedding requires less computations. We hawegdthat the mentioned equivalence guarantees identity
of the stationary behaviour and the sojourn time properdied thus preserves performance measures. A case study of
the shared memory system has been presented as an exammdading, performance evaluation and performance
preserving reduction within the calculus. Finally, we hdegermined the advantages of dtsiPBC by comparing it with
other SPAs. In particular, by examining the interleaviramnsition system of the generalized shared memory system,
we have demonstrated that step semantics is preferable totétleaving one for the specification and analysis, as in
our context, as within other discrete time SPAs.

The advantage of our framework is twofold. First, one carcgpén it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in sleal Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allowoaygpty syntactic transformations and comparisons.
Process algebras are compositional by definition and tipeirations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a @mpbdel in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in theditere demonstrates that it is not straightforward to con-
struct such PNs directly from the system specificationsiP&6 is well suited for the discrete time applications,
whose discrete states change with a global time tick, sutlisiness processes, neural and transportation networks,
computer and communication systems, timed web servicdd,[&46 well as for those, in which the distributed archi-
tecture or the concurrency level should be preserved whildaeling and analysis (remember that, in step semantics,
we have additional transitions due to concurrent execs}ion

Future work will consist in constructing a congruence failBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible caneida stronger version et __defined via transition systems
equipped with two extra transitiorskip andredo, like those from [66]. We also plan to extend the calculuswit
deterministically timed multiactions having a fixed timdale(including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calcullitcaextend application area of the associated analysis tech
nigues. The resulting SPA will be a concurrent discrete time&logue of SM-PEPA [19], whose underlying stochastic
model is a semi-Markov chain. Moreover, recursion coulddieal to dtsiPBC to increase further specification power
of the algebra.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 4.2

At some points, the present proof for dtsiPBC goes alongittes lfrom the respective proofs for PBC [17, 16]
and sPBC [66].

Let N = Boxysi(E). We define a mapping : DR(E) — RS(N) so that3([G].) = Mg iff [G]. € DR(E) and
(N, Mg) = Box4tsi(G). Then, like in PBC [17, 16], one can see tjdas a bijection, since for each dynamic expression
G, its structural equivalence clasS][. defines a single corresponding markig in the dtsi-boxBoxysi(G) and vice
versa.

Clearly, [E]~ € DR(E) andBoxs(E) = Boxusi(E) = N = (N,°N) = (N, Mg). Hence8([E].) = Mz. Thus,3
binds the initial states of the transition syst@8(E) and the corresponding reachability grapG(N).

Let [G]. € DR(E) andB([G].) = Mg € RS(N). We now prove prove by induction on the structure of dynamic
expressions and corresponding dtsi-boxes Ehad[G].) and Fire(Mg) are isomorphic. This means that for every
T € Exed[G].) there existd) € Fire(Mg) such that) consists of the transitiorrrespondindo the activities from
T and vice versaid,«), € T & t, € U, whereAn(t,) = ow.9. Thus, thecorrespondingactivities and transitions have
the same probabilities (in case of stochastic multiactérstransitions) or weights (in case of immediate multaagi
and transitions), as well as the same multiaction labelsnameberings. We can writd = U(Y) andY = T(U), to
indicate such a correspondence.

Actually, eachY and thecorresponding Uare completely defined by the sets of their numberiNgs(Y) =
{t| (@,k), € T} = {¢ |t € U} = Num(U), since each activity and transition have a unique numpgerivioreover,
Exe¢[G].) andFire(Mg) are completely defined by the sets of their numberMge{Exe¢[G]~)) = {(Num(Y) | Y €
Exedq[G].)} = {NumU) | U € Fire(Mg)} = Num(Fire(Mg)).

o If final(G) thenG = E, tang[G].) andExeq[G].) = Exeq[E].) = {0}. On the other handBoxsi(G) =
Boxis(E) = N = (N,N°) = (N, Mg) andFire(Mg) = Fire(Mg) = {0} = Exe¢[G]~).

o If G = (@,p), andp € (0; 1) thentang[G]~.) andExe¢[G]~) = {0, {(a,p).}}. On the other handBoxsi(G) =
(Nep),» °t), whereAn(t,) = o(p), andFire(Mg) = Fire(*t,) = {0, {t,}}, which is isomorphic td xe¢[G].).

o If G =(a, h|°)z andl € R.q thenvanisi{[G].) andExed[G].) = {{(«, h,O)L}}. On the other handBox4si(G) =
(N(a,h.‘))n °t,), whereAn(t) = O i) andFire(Mg) = Fire(*t,) = {{t,}}, which is isomorphic td xe¢[G].).

e If G =H;E, whereH € OpRegDynExprE € RegS tatExprthen
) _ [ Exeq[H].), -final(H);
Exed[H; El.) = { Exed[El.) final(H).
On the other handBoXxytsi(G) = Boxitsi(H; E) = (Boxutsi(LH]; E), My.g), and for
Boxitsi(H) = (Boxusi(LH 1), Mi), Boxisi(E) = Ne = (Ng, °Ne) = (N, Mg), we have
. _ | Fire(My), My #Ng;
Fire(Mp:g) = { Fire(ME), My = Nﬁ;
which is isomorphic tde xeq[H; E]..).
e If G = E; H, whereE € RegStatExprH € OpRegDynExprthen

Exeq[E; H].) = Exeq[H].).
On the other hanBoxsi(G) = Boxisi(E; H) = (Boxgsi(E; LH1), Me.w), and for
Boxisi(H) = (BoXisi(LH 1), My), we have
Fire(Mg.n) = Fire(My);
which is isomorphic t&E xed[ E; H].).
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e If G = H[]E, whereH € OpRegDynEXxprE € RegS tatExprthen

Exed[H].), —init(H)Vv
(init(H) A vanishi{[H].) A tang([E]~));
Exed[H[]E].) ={ Exed[E].), (init(H) A tang([H]-) A vanisi[E].));

Exed[H].) U Exed[E].), (init(H) A tang([H]~) A tang([E].))V
(init(H) A vanisi{[H].) A vanisk[E].)).

On the other handBoxsi(G) = Boxutsi(H[] E) = (Boxtsi(LHI[] E), Mupe), and for
Boxitsi(H) = (Boxusi(LH 1), Mi), Boxisi(E) = Ne = (Ng, °Ne) = (N, Mg), we have

Fire(MH), My # °NpV
(My = °Ny A vanisi{Mu) A tang(Mg));
Fire(Mupge) =¢ Fire(Mg), (My = °Ny A tang(My) A vanisiMg));

Fire(My) U Fire(Mg), (Mu = °Ny A tang(My) A tang(Mg))Vv
(My = °Ny A vanisi(Mu) A vanisi{Mg));
which is isomorphic t&Exed[H[] E].).
If G = E[]H, whereE € RegStatExprH € OpRegDynE xprthen the constructions are similar.

e If G = H||Z, whereH, Z € OpRegDynExprthen

Exed[H]~), (vanisi[H]x) A tang[Z].));
Exe¢[Z].), (tang[H]x) A vanisi{([Z].));
Exed[HIIZ]~) = { Exed[H].) U Exeq[Z]-)U
(Exeq[H]:) © Exe¢[Z]+)). (tand[H].) A tang([Z].))V
(vanisi[H]~) A vanisi[Z].)),
whereExeq[H].) © Exeg[Z].) = {T + @ | T € Exedq[H].), ® € Exed[Z].)}.

On the other handBoxysi(G) = Boxutsi(H11Z) = (Boxitsi(LH]I1Z), Muz), and forBoxgtsi(H) = (Boxgtsi(LH]), M),
Boxisi(Z) = (Boxtsi(LZ1), Mz), we have

Fire(My), (vanisiMy) A tang(Mz));

Fire(Mz), (tang(My) A vanisi{Mz));

Fire(My) U Fire(Mz)u

(Fire(My) @ Fire(Mz)), (tang(Mu) A tangMz)) Vv (vanisiiMy) A vanisiMz)),

whereFire(My)oFire(Mz) ={UUT | U € Fire(My), T € Fire(Mz)}; which is isomorphic tde xeq[H||Z] ).

Fire(Myz) =

e If G = H[f], whereH € OpRegDynExprthen

Exeq[H[f]]+) = {f(") | T € Exeq[H]~)}.

On the other hanBoxts(G) = Boxitsi(H[ f]) = (Boxusi(LHI[ 1), Muf1), and for
Boxjisi(H) = (Boxysi(LHI), My), we have

Fire(Mus) = {f(U) | U € Fire(My)},
wheref(U) = {t, € U | Au(t) = 0.9, Ana(t) = 0(f@).0 ) Which is isomorphic t&Exed[H[ f]] ).
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e If G=Hrsa, whereH € OpRegDynExprthen

Exec¢[Hrs al.) = {T - T, | Y € Exe¢[H].)},
whereT, = {(a,x), € T | (a€ a) vV (&€ a)}, ac Act
On the other hanBoXsi(G) = Boxytsi(H rs @) = (Boxysi(LH] rs @), My 1s a), and for

Boxusi(H) = (Boxysi(LHJ), My), we have
Fire(My s a) = {U \ Ua | U € Fire(My)},
whereUa = {t, e U | Au(t) = 0.0, (8 € @) V (&€ )}, ac Act which is isomorphic tExed[H rs a].).
e If G =H sya, whereH € OpRegDynE xprthen

EXEC([H]x) U {T + {(a ®aﬂ7p 'X)(Ll)(tz)} |

T+ {(@.p),} +{(B. ).} € Exeq[H]:), aca, acp}, tang[H].);
Exed[H]-) U {T + {(@ ®a B B2, 1))} |

T+ {(@ )} + {(B.52),} € Exed[H]:), ac e, &€ p), vanisi[H].).

On the other hanBoxitsi(G) = Boxitsi(H sy &) = (Boxutsi(LH] sy &), Mu sy a), and for
Boxitsi(H) = (Boxtsi(LH]), Mu), we have

Exe¢[H sy a].) =

Fire(Mu) U {U U {t)w)} | An sy altw)w) = Qeewson:

U U {v,,wW,} € Fire(Mu), Au(Vy) = 0@p)» An(W,,) = 0@,

aca, acpl, tang(My);
Fire(Mu) U{U U {te)i)} | A sy altie) = Qe )»

U U{v,,w,} € Fire(Mu), An(v,) = O i) An(W,) = 04405

aca, acpl, vanisiMg);

Fire(My sy a) =

which is isomorphic t&Exed[H sy a].).
e If G=[H = E = F], whereH € OpRegDynEXxprE, F € RegS tatE xprthen

Exe¢[H]~), - final(H);
Exe¢[E].), (final(H) A vanisi[E].) A tang[F].));
Exeq[[H * E*F]].) = Exed[Fl.), (final(H) A tang([E].) A vanish([F].));

Exed[E].) U Exed[F].), (final(H) A tang([E]~) A tang([F].))V
(final(H) A vanisi[E].) A vanisi[F].)).

On the other handBoxtsi(G) = BoXusi([H * E * F]) = (Boxusi(LH * E * F), Min.e.r)), and forBoxsi(H) =
(Boxgtsi(LHI), Mu), Boxsi(E) = Ne = (Ng, °Ne) = (Ng, Mg), Boxisi(F) = Nr = (Nr, °Ng) = (N, Mg), we
have

Fire(My), Mu # Nf;
Fire(Mg), (My = N2, A vanisi{Mg) A tangMg));
Fire(Mn.e/)) = Fire(Mg), (My = Nj, A tangMg) A vanisiMg));

Fire(Mg) U Fire(Mg), (My = N3, A tang(Mg) A tangMg))v
(My = N2, A vanisi{Mg) A vanisi{Mg));

which is isomorphic t&Exeg[[H = E = F]] ).
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e If G=[E=xH x*F], whereE, F € RegStatExprH € OpRegDynExprthen

Exed[H]~), (=init(H) A =final(H))v
((init(H) v final(H)) Avanisi[H].) Atang([F].));
Exed[[E « H * F]].)={ Exed[F].), ((init(H) v final(H)) Atang([H]~) Avanisi{[F].));

Exed[H].)UExed[F].), ((init(H)V final(H)) Atang([H].) Atang([F].))V
((init(H) v final(H)) Avanish[H]-) Avanisi{[F].)).

On the other handBoxtsi(G) = Boxitsi([E * H * F]) = (Boxusi(E * [H] * F), Me.n.Fy), and forBoxgsi(H) =
(Boxatsi(LH1), M), Boxtsi(F) = N = (Nr, °Ne) = (Nr, Mg), we have

Fire(Mu), (My # °Ny A My # NV
((My =°Ny v My = Np)) A vanisiMy) A tang(Mg));
Fire(M[e.H:F)=y Fire(Mg), ((Mu = °Ny vV My = N;)) A tang(My) A vanisiMg));

Fire(My)UFire(Mg), ((My =°NyVvMy = N2) A tang(My) A tang(Mg)) v
((My = °Ny vMy = Np) AvanisiMp) AvanisiMg));

which is isomorphic t&Exe¢[[E = H = F]] ).

e If G=[E=«F «H], whereE, F € RegStatExprH € OpRegDynExprthen

Exed[F].), (vanish([F].) A init(H) A tang([H]));
Exed[H].), —init(H)Vv
Exedq[[E = F =« H]]+) = (tang([f]z) A init(H) A vanisi[H]));

Exed[F].) U Exed[H].), (tang[F]-) A init(H) A tang([H].))V
(vanish([F]) A init(H) A vanisi[H].)).

On the other handBoxs(G) = Boxsi([E * F * H]) = (BoXusi(E * F * [H1), Mig.r.)), and forBoxusi(F) =
Nr = (N, °Ng) = (Ng, Mg), Boxitsi(H) = (Boxtsi(LH]), Mu), we have

Fire(Mg), (vanisiMg) A My = °Ny A tang(My));
Fire(MH), My # °NpV
Fire(Mie.rsr]) = (tangdMg) A My = °Ny A vanisiMy));

Fire(Mg) U Fire(My), (tangMg) A My = °Ny A tang(My))v
(vanisiMg) A My = °Ny A vanisi{Mn));

which is isomorphic teExeg[[ E = F = H]] ).

Thus, we have proved th&xe¢[G].) and Fire(Mg) are isomorphic. It remains to check the homomorphism
property, stating that for alig]., [G]. € DR(E) and for allcorrespondingl’ € Exeq[G].), U € Fire(Mg) it holds
[Gl. 55 [l & Me = A(GL-) = A(Cl.) = Ms.

Note that the probability functionBF(Y, [G].) and PT(Y,[G].) depend only on the structure &xed[G].),
as well as on the probabilities of stochastic multiactiond @eights of immediate multiactions from its elements.
Analogously,PF(U, Mg) andPT(U, Mg) depend only on the structure &ire(Mg), as well as the probabilities of
stochastic transitions and weights of immediate transitibpom its elements. Furthd?F(T,[G].) andPT(Y, [G]~)
are respectively defined in the same way (using the same fasrand cases) &F(U, Mg) andPT(U, Mg), for each
pair of thecorrespondingmulti)set of activitiesy' and transition set). Obviously, the isomorphism @& xed¢[G].)
andFire(Mg) guarantees coincidence of their structure as well as thiomed probabilities and weights. Hence, if
U correspondgso T thenPF(T, [G].) = PF(U, Mg) andPT(Y, [G].) = PT(U, Mg).
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We also haveL(T) = L(U), where L(U) = Yicuacst=ow. @ IS the multiaction partof a set of transitions

U C Tn. Thus, each transitiord] . I)p in T S(E) has a corresponding ofdg E)p M in RG(N) with £(7) = £L(U)
and vice versa. Observe that the structure of the plain aedatqr dtsi-boxes in dtsiPBC is similar to that of the
plain and operator boxes in PBC. Hence, like in PBC [17, 16},can prove thas = [G]. andM = Mg with

(N,Mg) = Boxysi(G) for the dynamic expressio® such thatG LG Therefore, by construction ¢, we get
B(Cl-) = Ms. O

Appendix A.2. Proof of Theorem 5.2

Let P, be the reordered (by moving vanishing states to the firstipas) TPM forDTMC(G). Like in Section 5,
we reorder the states froBR(G) so that the first rows and columns®f will correspond to the states froBRy(G)
and the last ones will correspond to the states fBiR} (G). Let [DR(G)| = n and|DRy(G)| = m. Then the reordered
TPM for DTMC(G) can be decomposed as

C D

The elements of then(— m) x (n — m) submatrixC are the probabilities to move from vanishing to vanishiregest,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n— m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m
submatrix are the probabilities to move from tangible to tangibleesat

The TPMP° for RDTMQG) is them x m matrix, calculated as

P° = F + EGD,

where the elements of the mati& = >, C* are the probabilities to move from vanishing to vanishiragest in
any number of state changes, without traversal of tangthtes, inDTMC(G). We define the matriid = EGD. For
s, §e€ DRy (G), let PMg(s, ) andPMy(s, §) be the probabilities to change froso §for the submatri¥ and matrix
H, respectively.

In a similar way, the reordered TPM f&DTMC(G) can be decomposed as

. _(C D
o -(S %)
The elements of the submatricesRjfare described like those of the submatriceBof
The TPM £*)° for REDTMQG) is them x m matrix, calculated as

(P*)O — F* + E*GlD*’
where the elements of the mat®& = Zﬁ‘;o(c*)k are the probabilities to move from vanishing to vanishiragest in
any number of state changes, without traversal of tangthtes, inEDTMC(G). We define the matriki’ = E*G’D*.
Fors, §e€ DRr(G), let PMy (s, 8) be the probability to change frosito §for the matrixH’.

From the proof of Theorem 5.1, we hal? = Diag(S L;)(Pr — ) + |, whereS L; is the reordered (by moving
vanishing states to the first positions) self-loops abstrawector ofG in DTMC(G). Let S Lc andS L be the self-
loops abstraction subvectors @ffor the submatrice€ andF, respectively, i.e. the “head” of length— m and the
“tail” of length m, taken from the vecto8 L;, with the following elements¥s € DRy(G) S Lc(s) = SL(s) and
V¥se DRr(G) S Le(s) = SL(s). Then we have

. [ Diag(Sle) 0 cC-1 D 0
Pf‘( 0 Diag(SL,:))( E F—I)+( |)‘

|
0
Diag(SLe)(C 1) +1 Diag(S Lc)D
( Diag(S Lg)E Diag(SLe)(F-1) +1 ) ‘

Hence,C* = Diag(SLc)(C - 1) + 1, D* = Diag(S Lc)D, E* = Diag(S Lr)E, F* = Diag(SLe)(F-1) + 1.
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Then P*)° = F* + E*G’D* = Diag(S Lg)(F — 1) + | + Diag(S Lr)EG’Diag(S Lc)D = Diag(S Le)((F +
EG’Diag(S Lc)D)-1)+1. Let us explore the matri®’ Diag(S Lc). The matrixG’ can have two dierent forms, depen-
ding on whether the loops among vanishing states exBDMMC(G), hence, we consider the two following cases.

1. Tt]ere exisho loops among vanishing statess EDTMC(G). We havedl € N Vk > | (C*)X = 0 andG’ =
Theo(CE.
Then there are no loops amodifferentvanishing states iDTMC(G) (but self-loops may exist in vanishing
states), since no loop amomljferentstates is removed and all self-loops (in the non-absorhiags) are
removed inEDTMC(G), with respect tdTMC(G).
Let there are no self-loops in vanishing state®IFMC(G). In such a case{se DTy(G) SLe(s) =S L(s) =1
andDiag(S Lc) = I. We haveC* = Diag(S Lc)(C—1)+1 = I(C—1)+1 = CandG’ = 3} _,(C*)* = ¥} _,C*=G.
Thus,G’'Diag(SLe) = Gl = G.
Let there are self-loops in vanishing state®IMC(G). In such a casés = (I — C)~. Note thatC # | # C*,
since there exist no absorbing vanishing stateBTMC(G). It is easy to prove by induction dne N that
G'(1 - C) = (Zieo(CI) (1 = C*) = 1 = (C")*L. Since C)*! = 0, we getG'(l —C*) = 1 -0 = I.
In a similar way, we show that (- C*)G’ = |I. We have lim_.(C*)* = 0. Hence,G’ = (I - C*)™ =
(I - Diag(SLc)(C - 1) = 1)7! = (Diag(SLe)(I - C))™t = (I — C)"'Diag(SLc)™ = GDiag(SLc)™. Thus,
G’Diag(S Lc) = GDiag(S Lc)*Diag(S Lc) = G.

2. There existoops among vanishing statessEDTMC(G). We have lim_..(C*)* = 0andG’ = (I - C*)™™.
Then there are loops among vanishing stat&TiMC(G), since no loop among states is removed and self-loops
are possibly added iDRTMC(G), with respect tEDTMC(G). Hence, lim_.(C)* = 0andG = (I - C)L.
We haveG’ = (I - C*)™ = (I - Diag(S Lc)(C - 1) - 1)7! = (Diag(S Le)(I - C)) ™t =
(I - C)"'Diag(S Lc)™* = GDiag(S Lc)™*. Thus,G’Diag(S Lc) = GDiag(S Lc)'Diag(S Lc) = G.

In the both cases above, we g&tDiag(S Lc) = G. Hence, P*)° = Diag(S Lr)((F + EG’Diag(SLc)D) - 1) + 1 =
Diag(S Lg)((F + EGD) — 1) + | = Diag(S Lg)(P° — 1) +1.

Lets §e€ DRr(G). The EDTMC forRDTM{G) is denoted bERDTMG) and has the probabilitie®M°)*(s, §)
to change fronsto 8. The RDTMC forEDTMC(G) is denoted b\REDTMQG) and has the probabilitie®M*)°(s, §)
to change froms to 8 The EDTMC for REDTMJG) is denoted byEREDTMCQG) and has the probabilities
((PM*)*)*(s, §) to change fronsto .

Further, letS Ly and S Ly be the self-loops abstraction vectors@ffor the matricedH andH’, respectively.
We have P*)° = F* + H" = F* + Diag(SL)EGD = F* + Diag(S Lr)H. Hence,H’ = Diag(SLs)H andVs,§ €
DRy (G) PMy: (s, 8) = SL(PMy(s §). Since there are no self-loopshi, we conclude thaty L*)® = S Ly, is the
self-loops abstraction vector G'in REDTMQG).

o LetPMg(s, 9)+PMy(s s) = PM°(s, 9) < 1andPMk(s, s), PMy(s, 9) > 0, i.e. sis hon-absorbingiRDTMQG)
and there exist self-loops associated veith DTMC(G) andextraself-loops (in addition to those inherited from
DTMC(G)) in RDTMQG).

PM°(s3)

In ERDTMAG), we have PM)'(s 9 = SL(JPM (s 9 = Thrsy = romesomes = - oy

1- 1T-PME(s9

S Le(s)PM° : s : S Sle
e, Then the self-loops abstraction factor $nin RDTMQG) is SL() = rsogrireg =
SLe(9)S Ly (s), whereS Ly (s) = m is the self-loops abstraction factoréin REDTMGG). Thus,
(PM°)(s,§) = SLe(9S L (9PM°(s, 9).
In EREDTMGG), we have (PM*)°)*(s, 8) = (SL)°(s)(PM*)°(s,8) = S Ly () (PM*)°(s, §) =
SLu (S Le(9)PM°(s, §) = (PM)*(s, ).
The other three cases (no self-loops associated svith DTMC(G), no extra self-loops associated wigh
in RDTM{G), or no any self-loops associated within RDTMQG)) are treated analogously, by replacing
PMkg(s, s) orfandPMy(s, s) with zeros.

e Let PMg(s, 5) + PMu(s s) = PM°(s s) = 1 andPME(s, ), PMy(s s) > 0, i.e. sis absorbing irRDTMJG)
and there exist self-loops associated wstimn DTMC(G) and extra self-loops (in addition to those inherited
from DTMC(G)) in RDTMQG).
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In ERDTMQG), we have PM°)*(s, s) = 1 by definition of the EDTMC, sinceM°(s, s) = 1.

In REDTMQG), the probability of a self-loop associated wilis (PM*)°(s, s) = PMy/ (S, S) =

_ _PMu(ss) _ 1-PMe(ss) _
SLe(9PMu(S 9) = 1pp (59 = TPM(s9 — T

In EREDTMCG), we have (PM*)°)(s, s) = 1 = (PM°)*(s, s) by definition of the EDTMC, since

(PM")°(s,9) = 1.

The other three cases (no self-loops associated svith DTMC(G), no extra self-loops associated wigh
in RDTMJG), or noany self-loops associated within RDTMQG)) are treated analogously, by replacing
PMkg(s, s) orfandPMy(s, s) with zeros.

Thus, (P)°)" = (P°)* andEREDTMQG) = ERDTMAG). O

Appendix A.3. Proof of Proposition 6.2

Like it has been done for strong equivalence in Propositi@rirom [52], we shall prove the following fact about
step stochastic bisimulation. Let us hatee 7, R : G G’ for some index sef. Then the transitive closure of
the union of all relation® = (UjcsR;j)* is also an equivalence all: G G'.

SinceVj € 7, R;is an equivalence, by definition &, we get thaiR is also an equivalence.

Letj € 7, then, by definition oRR, (s1, s2) € R; implies (51, ) € R. HenceVHjx € (DR(G)UDR(G"))/x;, IH €
(DR(G) U DR(G"))/», Hjx € H. MoreoverdJ’, H = Uxeg Hik.

We denoter(n) = (UjegRj)". Let (s1, S2) € R, then, by definition ok, In > 0, (s1, %) € R(n). We shall prove
thatR : Go G’ by induction om.

It is clear thatvVj € 7, Rj : G G impliesVj € J, ([G]s,[G']x) € Rj and we have (].,[G]z) € R by
definition ofR.

It remains to prove thass(, s;) € R impliesVH € (DR(G) U DR(G"))/x, YA € N& | PMa(sy, H) = PMa(s2, H).

e N= 1
In this case, §, %) € R implies3dj € J, (s1,%) € R;. SinceR; : G G, we getVH ¢ (DR(G) U
DR(G'))/#, YA e N£

fin?

PMa(s, H) = > PMa(s1, Hj) = ) PMa(2, Hig) = PMa(z, H).

keg’ keg”’
en—>n+1
Suppose tha¥m < n, (s, ) € R(M) impliesVH € (DR(G) U DR(G"))/x, YA € N | PMa(s,, H) =
PMa(s2, H).

Then 61, ) € R(n+1)impliesdj € T, (s1, ) € RjoR(n), i.e. Is3 € (DR(G)UDR(G")), such that$;, s3) € R;
and (s, ) € R(n).

Then, like for the cas@ = 1, we getPMa(si, H) = PMa(ss, H). By the induction hypothesis, we get
PMa(sz, H) = PMa(sz, H). Thus,YH € (DR(G) U DR(G'))/z, YA€ N

fin?
PMa(s1, H) = PMa(ss, H) = PMa(Sz, H).

By definition, Rs{G, G’) is at least as large as the largest step stochastic bigiolbetweenG andG’. It fol-
lows from the proved above th&4G, G’) is an equivalence anls{G,G’) : G G’, hence, it is the largest step
stochastic bisimulation betwe&handG’. O
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Appendix A.4. Proof of Proposition 7.2

Let %K, K € DR(G)/zc) ands € K. The EDTMC for the quotient EEDTMC(G) is denoted bfeDTMC(G) and
has the probabilitieB M’ (%K, K) to change fron¥ to K.

e LetPM(s, ) + PM(s, K\ {s})) = PM(s,K) < 1 andPM(s, s), PM(s, K \ {s}) > 0, i.e. s, K are non-absorbing
and there exist self-loops associated véiin DTMC(G) andX in the quotient ocEDTMC(G).

In EDTMC,., (G), we havePM" (K, K) =S Lo, (K)PM(K. K) = hixity = T-PRek) = TPWES PISHTS) =

PM(sK)
1-PM(ss) —

SKYPM(sK) _ SIE) _ , ’ _
retrEm = siopmerm: 1N Sey ) = remmemsrs = SUISL(SK), whereSL(s %) =

m is the self-loops abstraction factor in the equivalencesilé with respect to the statee K
for the quotient oEDTMC(G).

e T SagPW(SY  _ S.pSUIPM(SY | SU9N.ePMEY  _
In EDTMC (G), we havePM (K, K) = =55 Thiss) = T5seers SHPMES) — T5L9 Ly g PMES) =
SL)PM(s,K) ) — PM*(q( (]?)

1-SU)PM(sK\{s}
The other three cases (no self-loops associated siittDTMC(G), with K in the quotient oEDTMC(G), or
with both) are treated analogously, by replaciid(s, s) or/fandPM(s, K \ {s}) with zeros.

e Let PM(s s) + PM(s, K \ {s}) = PM(s,'K) = 1 andPM(s, s), PM(s,K \ {s}) > 0, i.e. K is absorbing in
DTMC,_(G) and there exist self-loops associated véth DTMC(G) and’X in the quotient cEDTMC(G).

In EDTMC,,_(G), we havePM* (K, K) = 1 by definition of the EDTMC, sinceM(K, K) = PM(s, K) = 1.
In the quotient ofEDTMC(G), the probability of a self-loop associated wilki is Y gcx\( PM* (S S) =
Vseryis SUIPM(S S) = SU) Ts ey PM(S S) = SUYPM(S K \ {s)) = SUS)(L - PM(s 9) = Thies =

1. INEDTMC(G), we havePM' (%X, K) = 1 = PM*(%, k) by definition of the EDTMC, since in the quotient
of EDTMC(G), the probability of a self-loop associated wikhis 1.

The other two cases (no self-loops associated ithDTMC(G) or with K in the quotient oEDTMC(G)) are
treated analogously, by replacidM(s, s) with zero or takingK' = {s} whenPM(s, K \ {s}) = 0.

Thus, @°);,_ = P,_andEDTMC(G) = EDTMC,, _(G). O

Appendix A.5. Proof of Proposition 7.3

Let P, be the reordered (by moving vanishing states to the firstipas) TPM forDTMC(G). Like in Section 5,
we reorder the states froBR(G) so that the first rows and columns®f will correspond to the states froBRy(G)
and the last ones will correspond to the states fBiR (G). Let [DR(G)| = n and|DRy(G)| = m. Then the reordered
TPM for DTMC(G) can be decomposed as

C D
o2 2)

The elements of then(— m) x (n — m) submatrixC are the probabilities to move from vanishing to vanishiregest,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n — m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m
submatrixF are the probabilities to move from tangible to tangibleestat

The TPMP° for RDTMQG) is them x mmatrix, calculated as

P° = F + EGD,

where the elements of the mat@= Y;>, C are the probabilities to move from vanishing to vanishirages in any
number of state changes, without traversal of tangiblestat

By the note after Proposition 6.Rs{(G) € (DRr(G))? & (DRy(G))?. Hence YK € DR(G)/z.(c), all states from
K are tangible, whetk € DRy (G)/z.yc), or all of them are vanishing, wheii € DRy(G)/.
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Let V, be the reordered (by moving vanishing states and their atprice classes to the first positions) collector
matrix for Rs{F) andW, be the (accordingly) reordered distributor matrix Y6t We reorder the states froBR(G)
and the equivalence classes fr@R(G)/z.(c) as follows. The first rows o¥/, will correspond to the states from
DRy(G) and the first columns o, will correspond to the equivalence classes flDR(G)/z.(c), Wwhereas the last
rows ofV, will correspond to the states fro®Rr(G) and the last columns &f, will correspond to the equivalence
classes fronDRr(G)/z.yc). The first rows oW, will correspond to the equivalence classes flR, (G)/z.4c) and
the first columns ofV, will correspond to the states froDRy(G), whereas the last rows &¥, will correspond to
the equivalence classes frddiRy (G)/z.(c) and the last columns &, will correspond to the states froBDRr (G).
Let|DR(G)/z.yc)l=! and|DRr(G)/#.(c)|=k. Note that tangible (vanishing) states can only belongecetiuivalen-
ce classes of tangible (vanishing) states. Then the resuidmilector and distributor matrices can be decomposed as

(Ve © (We 0
VI'_( O VF )’WI'_( 0 WF )7

where0 are the matrices consisting only of zeros, all those marafehe appropriate sizes. The elements of the
(n—m)x(I-Kk) submatrixV/ ¢ are the probabilities to move from vanishing states to thevMadpnce classes of vanishing
states, and those of thex k submatrixV g are the probabilities to move from tangible states to thévadgnce classes
of tangible states. The elements of theK) x (h—m) submatriXW¢ are the probabilities to move from the equivalence
classes of vanishing states to vanishing states, and tfidselox m submatriXW g are the probabilities to move from
the equivalence classes of tangible states to tangibkesstat

We have

[ WeVe 0 )
WI'VI' - 0 WFVF ) - |9

henceWcVe =1 andWgVe = 1.

Since tangible and vanishing states always belong to thieaquoce classes of the same kind, the quotienting (by
© g and reordering (by moving vanishing states and their edence classes to the first positions) are permutable.
The quotiented reordered TPM may onlyfdr from the reordered quotiented TPM up to the order of thévatpnce
classes of tangible states and the order of the equivaléasses of vanishing states. To avoid suchfedénce, we
rearrange the equivalence classes of the same kind in siogearder of the smallest indices of the states from them
while keeping the equivalence classes of vanishing stathe dirst positions.

ThenP,V, = V,PrHss andP,(_)ss =W,P;V,. We have

by _(C D)[(Ve 0 \_{CVc DVe
"TTTVE F 0 Vg ) | EVc FVg )’
V. P, = VC 0 Ciss Diss — VCCiss VcDiSS
Tt 00 Ve N Eo, Fo. )\ VEEo, VEFo, )
HenceCVc = Vcciss, DV = VCDiss’ EVc = VFEiss’ FVe = VFFiss'
Let us show thaGVc = VcG.,, . SinceG = Y2, CX, itis sufficient to prove(3_o C*) Ve = Ve Bjo CL, by
induction onl € N and then take a limit — co.
[ ) I = 0
We have(zﬁzo ck) Ve =C%c =IVe=Ve = Vel =VcC?, =Ve IR, CY .
el >1+1
Suppose thgf,_, C¥) Ve = Ve 2o C, . Then(35 C) Ve = (1 + € 4o CX) Ve = Ve+CVe X4, CK, =
Ve +VeCo, FioCl_ =Ve (1 +Co B0 CY )= Ve S,
Next,P°Ve = (F + EGD)V¢ = FVg + EGDVE = VeFo,_ + EGVcDo,_ = ViFo_ +EVcGo Do = ViFo_ +
VrEo Go Do = VE(Fo + Eo Go Do) = VEPL . After left-multiplying by We the resulting equality

S:

P°Vg = _Fsﬁ”i_,swe finally get
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(P)o,, = WEPVE = P2,

Appendix A.6. Proof of Proposition 8.1

By Proposition 6.1,DR(G) U DR(G"))/% = ((DR(G) U DR (G"))/=) ¥ ((DRy(G) U DRy(G'))/). Hence¥VH €
(DR(G) U DR(G"))/«, all states fron¥ are tangible, whett{ € (DRr(G) U DRy (G"))/«, or all of them are vanishing,
whenH € (DRy(G) U DRy(G))/«.

By definition of the steady-state PMFs for SM@s, € DRy (G), ¢(s) = 0 andvs € DRy(G’), ¢’(s) = 0. Thus,
VH € (DRV(G)UDRV(G))/r, Xscrinprc) $(S) = Zsernory@) $(S) = 0= Xscrinpry(@) ¢ (S) = Lsernore) ¢’ (S)-

By Proposition 5.2Ys € DRr(G), ¢(S) = % andvs € DRy (G’), ¢'(S) = % wherey andy’

are the steady-state PMFs 9TMC(G) andDTMC(G’), respectively. Thus{H, He (DR (G) U DRy (G)) /=,

w(s) Yserrorr @) ¥(S) _ Xsernpry (@) ¥(S)
2 se1nDR©G) P(S) = XsetnDR;(6) () = XsetnDR;(0) (ZSEDRT(@ w(g)) ey Rl e y—"rc d

V() Zeernorr @) ¥ (S) _ Xeennprr@) ¥'(S)
2Zsernor@) ¢ (§) = Lsernory @) ¢ (S) = Lsernori(@) (ZS’EDRT(G)lP (g)) EE Y I Rl v=b yo— O R

It remains to prove thatH € (DRr(G) U DR (G'))/», X scrinpry(c) ¥(S) = Lsernpry(e) ¥’ (S)- Since DR(G) U
DR(G"))/# = ((DRr(G) U DRr(G"))/xr) W ((DRy(G) U DRy (G"))/®), the previous equality is a consequence of the
following: YH € (DR(G) U DR(G"))/, Xscrnprie) ¥(S) = Zsernpre) ¥'(S)-

Standard proof continuation.

It is sufficient to prove the previous statement for transient PMPg, simicey = limy_,., ¢[K] andy’ = limy_. ¥’[K].
We proceed by induction dn

e k=0
The only non-zero values of the initial PMFs BTMC(G) andDTMC(G’) are ¢[0]([G]~) andy[0]([G’]~
Let Ho be the equivalence class containiitg]{ and [G']~. Then ¥ e ~pre) ¥I01(S) = ¢[0l([G]:) = 1
' [0([G]x) = Xseronpree) ¥’ [01(S).

As for other equivalence class&i{ € ((DR(G) U DR(G'))/z) \ Ho, we have} o.4~pree) ¥[01(S) = 0 =
Ysernore) ¥'[01(S).

e k—ok+1

LetH € (DR(G)UDR(G"))/% ands, s, € H. We have/H e (DR(G)UDR(G")/%, YA€ an, S —>p H o
A —_— —_—

s —p H. ThereforePM(sy, H) = ZlTlele'H o5 PT(Y, 1) = ZAeNﬁn D PT(T, s1) =

2ZAeNE, PMa(sy, H) = 2ZAeNE, PMa(s,, H) = ZAeNE X

ZI‘I’BSzeH 58]
PM(H, H) = PM(s., H) = PM(s,, H). Note that transitions from the statesDR(G) always lead to those
from the same set, henceés e DR(G), PM(s, 7{) = PM(s(H N DR(G)). The same is true fdDR(G’).

By induction hypothesisy. ¢.4/npree) YIKI(S) = Xsernpre) ¥'[KI(S). Further,

ZSE(]—{(]DR(G [k + 1](5) Zse‘l—{nDR( ZSEDR(G) l/’[k](S)PM(S, §) ZseDR(G) Zse‘l—{nDR(G) l//[k](S)PM(S, §) -

Y ooy KIS 77 ore PME D = St 3-ecsinon@ KIS Zeproomc PM(S 9 =

2 Zserinor) YIKI(S) Xeiinprio) Z ST PT(T S) = X Lsernore) Yl ](S)Z(TBSE?—MDR(G) F)T(T s =

2 Lserrore) YIKI(PM(s H) = Sy Zserrpre) YIKI(S)PM(H, H) =

> PM(H, '7’() 2 scHNDR(G) 1//[k](s) = Yu PM(H, '7’() YseHnDRG) ¥ [k](sl)

Y Lsernore) ¥ [KI(S)PM(H, H) = S Ssere nor@) ¥ [KI(S)PM(S, H) =

Y Dsernore) ¥ IKI(S )Z (3% FINDRE), ¥58) PT(Y,s) =

Z’H ZS’E(/'(ODR(G’) l//[k](S') Zg:gﬁnDR(G/) Zl'I’Bs’ AN T(T S/) =

Z’H ZS’E(/'(ODR(G’) ':V[k](sl) Zg'evmeR(G/) PM(S' 5') ZS’EDR(G /) ':0 [k](S') Zg'evmeR(Gr) PM(S’, §/) =
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(Y138eH, s18, LIT)=A]

.~ T PT(T, &) =
(T13%eH, 5%, L(T)=A}
PT(T,s) = PM(s, 7{) Since we have the previous equality forall s, € H, we can denote



Zs’eDR(G’) ZglequDR(G/) ~l//’[k](Sl)PM(S', §/) = Z§'e‘f{mDR(G/) ZS'EDR(G’) l//’[k](S')PM(S’, §/) =
Lgernore) ¥ [K+ 11(8). u
Alternative proof continuation.
Thus, we should now prove thé# € (DR(G) U DR(G'))/&, Xjiisernpr@) ¥i = Z“wieﬂmDR(G,), )
The steady-state PMF = (1, .. ., ) for DTMC(G) is a solution of the linear equation system

yP =y
ylh =1 -
Then, for alli (1 <i < n), we have
{ Y Pivi =i
2?:1‘/’] =1

By definition of?;; (1 <, j < n) we have
{ Y0 PM(sj, s)yj = ¢i
Z?:l yi=1
Let H € (DR(G) U DR(G'))/x andsy, s, € H. We have/H € (DR(G) UDR(G'))/x, YA€ NE 5 Bp H o
A —_— —_—
s, —p H. ThereforePM(s;, H) = Zl‘l’\iéle'ﬁ o5 PT(Y,s) = ZANE 2 PT(Y,s) =

Zaent, PMa(s1, H) = Zpenz PMa(S2, H) = Zpens, 2 masef 555, £(0)=A) PT(Y,s) =

(TA8eH 5158, L(1)=A)
PT(T, %)= 2 et 5,5
PM(s,, 73). Since we have the previous equality for sll s, € H, we can denotePM((H,(f{) = PM(SL(}?) =
PM(sz, H). Note that transitions from the statesR(G) always lead to those from the same set, hence,
V¥se DR(G), PM(s,H) = PM(s, H n DR(G)). The same is true fdDR(G’).

LetH € (DR(G) U DR(G))/=. We sum the left and right sides of the first equation from §fgtesn above for all
i such thats € ‘H N DR(G). The resulting equation is

ZPM(SJ',S)% = Z i

{ilseHNDR(G)} j=1 {ilseHNDR(G)}
Let us denote the aggregate steady-state PMBTWC(G) by Ywnpre) = X(iisernpre) ¥i- Then, for the left-
hand side of the equation above, we get

2ilseHNDR(G)) Z?:l PM(sj, s)yj = Z?d ¥i Xiiisernore)y PM(S), s) = ?:1 PM(sj, H)yj =
2 71¢(DRG)UDRG )/ Z:usie;ﬁmDR(e)} PM(sj, H)yj = 2 77¢(DRG)UDRG')/ Z{j\sjegﬁDR(G)} PM(H, H)yj =
Z(ﬁe(DR(G)UDR(G’))/R PM(H, H) Z: jls;eHNDR(G)) yj= Z(ﬁe(DR(G)UDR(G’))/R PM(H, ﬂﬁp(f{ﬁDR(G)'

For the left-hand side of the second equation from the syatsmae, we have

ny= 3~ _ oy _
2;‘:1 Y= Z'HE(DR(G)UDR(G’))/R stjewnDR(G)) g = Z'HE(DR(G)UDR(G’))/K ‘/’meR(G)'
Thus, the aggregate linear equation systenDfoMC(G) is

2 d1erGUDRG )/« P MH H)gipre) = YHnoRE)
Z(ﬁe(DR(G)UDR(G’))/R YFinore) = 1
Let us denote the aggregate steady-state PMFOIMC(G’) by WHHDR(G,) = 2y jls;eHNDRG)) vl Then, in a

similar way, the aggregate linear equation systenDfeMC(G’) is

{ Ecoreuore ) PMILFWG ooy = Yroore)

~ ’
2. F<(DRG)UDRG))/x ‘/’(,%DR(G,)

Let (DR(G) U DR(G"))/» = {H1, ..., Hi}. Then the aggregate steady-state PMs\pr) andy, ADR(G) Q<
k < ) satisfy the same aggregate systen-efl linear equations withindependent equations ahdnknowns. The
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aggregate linear equation system has a unique solutiom wlengle aggregate steady-state PMF exists. This is
the case here, since in Section 5 we have demonstrateDTME(G) has a single steady staté SMQG) has, and
aggregation preserves this property [26]. Hewegorc) = zp;{mDR(G,) A<k<. O

Appendix A.7. Proof of Theorem 8.1
Let?{ € (DR(G) U DR(G"))/% ands, s H. We havevH e (DR(G) U DR(G"))/x, VA€ N

A —_—
fln’ S—)p?‘{ =4

s —>p H. The previous equality is valid for al, s € H, hence, we can rewrite it a&l —>¢> H and denote

PMa(H, H) = PMa(s H) = PMa(S H). Note that transitions from the statesDR(G) always lead to those from
the same set, hencés € DR(G), PMa(s, 'H) = PMA(a?{ N DR(G)). The same is true fdDR(G’).

LetT = A;--- A, be a derived step trace & andG’. Then3aH,...,H, € (DR(G) U DR(G"))/z, Ho A—1>P1

H 52% i'lpn H,. We now intend to prove that the sum of probabilities of all pfaths starting in eversy € Hp
and going through the states fraM, . . ., H,, is equal to the product &, . .

Ll

Z HPT(TI»S 1) = HPMA.((Hl 1, Hi).
-1

(1 YolSo3 -5, L(T)=A, s€H, (1<i<n)
We prove this equality by induction on the derived step ttangthn.
e N= 1

PT(T1, %) = PMa, (S0, H1) = PMa. (Ho, Hy).
s, £0tny sery 1O 1) (S0, 1) n (Ho. Hi)

en—>n+1
n+l
PT(Yi,S_1) =
(1Y Yt ]S 001, L(T)=A S€H, (1<i<neD)] [Tz PTG, 5-0) "

. N PT(Yi S_1)PT(Tne1, S0) =
Z‘Tl ,,,,, TH‘SOE"”"SH, L(Yi)=Ai, seH; (1<i<n)} Z{Tmﬂsn E15r1+1 L(Tne1)=Ans1, S€Hn, Sir1€Hn+1) l—Lil ( : S 1) ( n+l S«l)

T nLPT(T, s- PT(Yhi1, =
Z‘Tl ,,,,, TH‘SOE"”T‘”’SH’ L(Ti):Ai» Sell{i (lﬁign)’ l—Lil ( : S 1) Z‘Tn+1‘31 n‘tlsml L(Tml) An+1 3157'{11 Sr|+1€l"{n+1’ ( n+l Sﬂl)
% Ty , l—lin 1 PT(Ti, 5-1)PMa,,, (Sh, Hni1) =

{(T1,.... TnlSo—=-—sn, L(Ni)=A;, seH; (1<i<n)) PT ¢ PM H H,
(o Tolso s, £(T)=A, et (1<i<n)) (Ti. 8-1) A’”( Hnet) =

PMawi (i, o) 2 o L(T)=A. seH, (1<i<n)) -1 PT(Ni, §-) =

PMa,., (Hn, Hne1) TTL1 PMa (Hio1, Hi) = [T PMa (Hi- 1,74.)
Let 59, S . We havePT(A;--- - N PT(Ti.s 1) =
et s, S € Ho. We havePT(A; - - Ay, S0) m """ " ‘SO_) _}Sn £ryen. asip) [Tt PT(i, S-1)

T1 Tn oo Lj=1 Y Y\ -1 T AH,,.
{Y1,.... TnlSo—=—Sn, L(Yi)=Ai, seH,; (1<i<n)}

Y, y T T '— PT T-’ S*l =
2. H”Zm ..... 40235, oy, Ger iy |11 10

[T, PT(Yi, §-1) = PT(A- - Ay, ).
{T1.... Tn\SOH "31 L(T)=A, (1<i<n)) _ B
Slnce we have the previous equality for sll 55 € Ho, we can denot@T(A; - - - Ay, Ho) = PT(Ar- - An, Q) =
PT(Ar- - An, S0).
By Proposition 8.13 «/npr) $(S) = Zsernpre) ¢ (S)- We now can complete the proof:
2 se+roRrE) P(OPT(Z, 9) = Y scrinprie) P(SPTE, H) = PT(Z, H) Xsctirore) ¢(S) =
PT(E, H) Lsernpre) ¢'(S) = Zsernore) ¢ (S)PTE, H) = Xsennpre) ¢’ (S)PT(E, S). O

Appendix A.8. Proof of Proposition 8.2
Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, IR(G) U DR(G"))/% = ((DRr(G) U DRr(G"))/#) w ((DRy(G) U DRy(G))/%). Hence,
YH € (DR(G) U DR(G"))/«, all states frony{ are tangible, whefH{ € (DR (G) U DR (G"))/«, or all of them
are vanishing, whet{ € (DRy(G) U DRy(G"))/x.
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2. LetH € (DR(G) UDR(G'))/x andsy. s, € H. We have/H e (DR(G) UDR(G))/z, YAe NE s Bp H o
A —_— —_—
s, —p H. ThereforePM(sy, H) = ZlTleleﬂ oy P10 80) = Zaent B it 6.5, 2eryeny T 1CL> S =
Zaent, PMa(sy, H) = Zaent, PMa(s2, H) = 2AeNE, ZIT\Hézeﬁ, 5%, L1)=A PT(T,s) =
Z‘TB%(H 55 PT(T, ) = PM(s,, ?{) Since we have the previous equality forall s, € H, we can denote

PM(H, H) = PM(s1, H) = PM(s,, 7{) The transitions from the statesBR(G) always lead to those from the

same set, henc¥s € DR(G), PMLS(H) = PI\/ILS,?'( N DR(G)). The same is true fdDR(G’). Hence, for all
s € HNDR(G), we obtainPM(H, H) = PM(s, H) = PM(s, HNDR(G)) = PM(H NDR(G), HNDR(G)). The
same is true foDR(G’). Finally, PM(HNDR(G), HNDR(G)) = PM(H, H) = PM(HNDR(G’), HNDR(G")).

Let us now prove the proposition statement for the sojoume tverages.

o LetH € (DR\/(G) U DRv(G/))/-R.

Then we have N DR(G) = H N DRy(G) € DRy(G)/% andH N DR(G") = H N DRy(G’) € DRy(G')/x.
By definition of the average sojourn time in an equivalenessbf states, we g8z pre)2 (H N DR(G)) =
SIknpr@)(H N DRy(G)) = 0 = Sknpre)2(H N DRY(G)) = Skapre)z(H N DRG)).

o LetH e (DRT(G) U DRT(G'))/R.
Then we haveH N DR(G) = H N DRy (G) € DRy (G)/z andH N DR(G’) = H N DRy (G’) € DRy (G')/.
By definition of the average sojourn tlme in an equwalenaesbf states, we gSURm(DR(G))z (HNnDR(G)) =
S‘kﬂ(DR(G))Z('Hm DRr(G)) = 1- PM(HnDRT(G) HNDRr(G)) — 1I- PM(HnDR(G) HNDR@G)) — 1- PM(H H) —
- PM(‘HmDR(G’)'HmDR(G’)) - PM(‘HmDRT(G’)'HmDRT(G’)) = SknEre ))Z(WQDRT(G ) = Skn(prRE ))Z(WQDR(G’))

Thus,YH € (DR(G) U DR(G’))/'R we haveSJRm(DR(G))Z (7’{ N DR(G)) = S‘]RO(DR(G’))2 (7’{ N DR(G’))
The proposition statement for the sojourn time variancesdsed similarly to that for the averages. O
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