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Abstract

Last decade, a number of stochastic enrichments of process algebras was constructed to facilitate the
specification of stochastic processes based on the the well-developed framework of algebraic calculi. In
[56], a continuous time stochastic extension of finite PBC was proposed called sPBC. Algebra sPBC has
interleaving semantics due to the properties of continuous time distributions. At the same time, PBC has
step semantics, and it could be natural to propose its concurrent stochastic enrichment. We construct a
discrete time stochastic extension dtsPBC of finite PBC. Step operational semantics is defined in terms
of labeled transition systems based on action and inaction rules. Denotational semantics is defined in
terms of a subclass of labeled DTSPNs (LDTSPNs) called discrete time stochastic Petri boxes (dts-boxes).
An accordance of both the semantics is demonstrated. In addition, we define a variety of probabilistic
equivalences that allow one to identify stochastic processes with similar behaviour that are differentiated
by too strict notion of the semantic equivalence. The interrelations of all the introduced equivalences are
investigated. Some of the relations could be later considered as candidates for the role of congruence.

Keywords: Stochastic Petri nets, stochastic process algebras, Petri box calculus, discrete time, transition
systems, operational semantics, dts-boxes, denotational semantics, empty loops, probabilistic equivalences.

1 Introduction

Stochastic Petri nets (SPNs) are a well-known model for quantitative analysis of discrete dynamic event systems
proposed in [45, 46, 26]. Essentially, SPNs are a high level language for specification and performance analysis
of concurrent systems. A stochastic process corresponding to this formal model is a Markov chain generated
and analysed by well-developed algorithms and methods. Firing probabilities distributed along continuous or
discrete time scale are associated with transitions of an SPN. Thus, there exist SPNs with continuous and
discrete time. Markov chains of the corresponding types are associated with the SPNs. As a rule, for SPNs
with continuous time (CTSPNs), exponential or phase distributions of transition probabilities are used. For
SPNs with discrete time (DTSPNs), geometric or combinations of geometric distributions are usually used.
Transitions of CTSPNs fire one by one at continuous time moments. Hence, the semantics of this model is
interleaving one. In this semantics, parallel computations are modeled by all possible execution sequences of
their components. Transitions of DTSPNs fire concurrently in steps at discrete time moments. Hence, this
model has step semantics. In this semantics, parallel computations are modeled by sequences of concurrent
occurrences (steps) of their components. In [18, 19], a labeling for transitions of CTSPNs with action names
was proposed. Labeling allows SPNs to model processes with functionally similar components: the transitions
corresponding to the similar components are labeled by the same action. Moreover, one can compare labeled
SPNs by different behavioural equivalences, and this makes possible to check stochastic processes specified by
labeled SPNs for functional similarity. Therefore, one can compare both functional and performance properties,
and labeled SPNs turn into a formalism for quantitative and qualitative analysis.

Algebraic calculi hold a special place among formal models for specification of concurrent systems and
analysis of their behavioral properties. In such process algebras (PAs), a system or a process is specified by an
algebraic formula. A verification of the properties is accomplished at a syntactic level by means of well-developed
systems of equivalences, axioms and inference rules. One of the first PAs was CCS (Calculus of Communicating
Systems) [44]. Process algebras has been acknowledged to be very suitable formalism to operate with real
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time and stochastic systems as well. In the last years, stochastic extensions of PAs called stochastic process
algebras (SPAs) became very popular as a modeling framework. SPAs do not just specify actions that can
happen (qualitative features) as usual process algebras, but they associate some quantitative parameters with
actions (quantitative characteristics). The papers [31, 17, 29, 23, 62, 11] propose a variety of SPAs. Process
algebras allow one to specify processes in a compositional way via an expressive formal syntax. On the other
hand, Petri nets provide one with an ability for visual representation of a process structure and execution.
Hence, the relationship between SPNs and SPAs is of particular interest, since it allows to combine advantages
of the both models. For this, a semantics of algebraic formulas in terms of Petri nets is usually defined. In the
stochastic case, the Markov chain of the stochastic process specified by an SPA formula is built based on the
state transition graph of the corresponding SPN.

As a rule, stochastic process calculi proposed in the literature are interleaving. As a semantic area, the
interleaving formalism of transition systems is used. For example, an extension of CCS with probabilities and
time called TPCCS was defined in [28]. An enrichment of BPA with probabilistic choice, prBPA, as well
as an extension of prBPA with parallel composition operator named ACP+

π have been proposed in [1]. A
standard way for probabilistic extension of process algebras into the calculi of probabilistic transition systems
was described in [32]. The most famous SPAs proposed so far are PEPA [29], TIPP [31] and EMPA [10]. It is
worth to mention the stochastic process calculus PPA constructed in [59, 61] as well. Therefore, an investigation
of a stochastic extension for more expressive and powerful algebraic calculi is very important. At present, the
development of step or “true concurrent” (such that parallelism is considered as a causal independence) SPAs
is in the very beginning. One can mention a concurrent SPA of finite processes StAFP0 with step semantics
proposed in [16]. At the same time, there still exists no algebra of infinite concurrent stochastic processes.

Petri box calculus (PBC) is a flexible and expressive process algebra based on calculi CCS [44] and AFP0

[36]. PBC was proposed more than 10 years ago [3], and it was well explored since that time [2, 14, 20, 35,
37, 12, 13, 21, 22, 24, 30, 4, 5, 33, 6, 7, 8, 9]. It was intended to become a tool for description of a Petri
net structure and relationships between nets. Its goal was to propose a compositional semantics for high level
constructs of concurrent programming languages in terms of elementary Petri nets. Thus, PBC serves as a
bridge between theory and applications. Formulas of PBC are combined not from single actions (including the
invisible one) and variables only, as in CCS, but from multisets of actions called multiactions (basic formulas)
as well. In contrast to CCS, concurrency and synchronization are different operations (concurrent constructs).
Synchronization is defined as a unary multi-way stepwise operation based on communication of actions and
their conjugates. The other fundamental operations are sequence and choice (sequential constructs). The
calculus includes also restriction and relabeling (abstraction constructs). To specify infinite processes, refinement,
recursion and iteration operations were added (hierarchical constructs). Thus, unlike CCS, algebra PBC has
an additional iteration construction to specify infiniteness in the cases when finite Petri nets can be used as
the semantic interpretation. For PBC, denotational semantics in terms of a subclass of Petri nets equipped
with interface and considered up to isomorphism was proposed. This subclass is called Petri boxes. Calculus
PBC has step operational semantics in terms of labeled transition systems based on structural operational
semantics (SOS) rules. Pomset operational semantics of PBC was defined in [37] such that the partial order
information was extracted from “decorated” step traces. In these step sequences, multiactions were annotated
with an information on the relative position of the expression part they were derived from. Last years, several
extensions of PBC were presented.

A time extension of PBC called time Petri box calculus (tPBC) was proposed in [38]. In tPBC, timing
information is added by combining instantaneous multiactions and time delays. Denotational semantics was
defined in terms of a subclass of labeled time Petri nets (tPNs) called time Petri boxes (ct-boxes). tPBC has
interleaving time operational semantics in terms of labeled transition systems. Another time enrichment of PBC
called Timed Petri box calculus (TPBC) was defined in [42, 43]. In contrast to tPBC, multiactions of TPBC
are not instantaneous but have time durations. Additionally, in TPBC there exist no “illegal” multiaction
occurrences unlike tPBC. The complexity of “illegal” occurrences mechanism was one of the main intentions
to construct TPBC though the calculus appeared to be more complicated than tPBC. Denotational semantics
was defined in terms of a subclass of labeled Timed Petri nets (TPNs) called Timed Petri boxes (T-boxes).
Algebra tPBC has step timed operational semantics in terms of labeled transition systems. Note that tPBC
and TPBC differ in ways they capture time information, and they are not in competition but complement
each other. The third time extension of PBC called arc time Petri box calculus (atPBC) was constructed
in [60]. In atPBC, multiactions are associated with time delay intervals. Denotational semantics was defined
on a subclass of arc time Petri nets (atPNs) called arc time Petri boxes (at-boxes). atPBC possesses a step
operational semantics in terms of labeled transition systems.

A stochastic extension of PBC called stochastic Petri box calculus (sPBC) was proposed in [56, 57, 58, 47,
52, 53, 54, 41]. In sPBC, multiactions have stochastic durations that follow negative exponential distribution.
Each multiaction is instantaneous and equipped with a rate that is a parameter of the corresponding exponential
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distribution. The execution of a multiaction is possible only after the corresponding stochastic time delay. Just
a finite part of PBC was used for the stochastic enrichment. This means that sPBC has neither refinement or
recursion or iteration operations. Denotational semantics was defined in terms of a subclass of labeled continuous
time stochastic Petri nets (CTSPNs) called stochastic Petri boxes (s-boxes). Calculus sPBC has interleaving
operational semantics in terms of labeled transition systems. Note that we have interleaving behaviour here
because of the fact that a simultaneous firing of any two transitions has zero probability in accordance to
the properties of continuous time distributions. Current research in this branch has an aim to extend the
specification abilities of sPBC and to define an appropriate congruence relation over algebraic formulas. Recent
results on constructing iteration for sPBC were reported in [49, 50]. In the papers [48, 51], a number of new
equivalence relations were proposed for regular terms of sPBC to choose later a suitable candidate for a
congruence. In [55] special multiactions with zero time delay were added to sPBC. Denotational semantics of
such a sPBC extension was defined via a subclass of labeled generalized SPNs (GSPNs). The subclass is called
generalized stochastic Petri boxes (gs-boxes).

An ambient extension of PBC called Ambient Petri box calculus (APBC) was proposed in [25]. Ambient
calculus is used to model behaviour of mobile systems. Ambient is an named environment delimited by a
boundary. The ambients can be moved to a new location thus modeling mobility. Algebra APBC includes
ambients and mobility capabilities. Hence, it could be interpreted as an extension of the Ambient Calculus
with the operations of PBC. Basic actions of APBC are capabilities defined over ambient names and stan-
dard multiactions of PBC. Only finite part of PBC was taken for the ambient enrichment. Moreover, just
concurrency and sequence were transferred into APBC from the set of PBC operations in [25]. This reduced
algebra was called Simple Ambient Petri box calculus (SAPBC). Denotational semantics was defined in terms
of Elementary Object Systems (EOSs) that are two-level net systems composed from a system net and object
nets. Object nets could be interpreted as high-level tokens of the system net modeling the execution of mobilie
processes. Calculus SAPBC has step operational semantics in terms of labeled transition systems.

Nevertheless, there is still no stochastic extension of PBC with step semantics. It could be done with the use
of labeled DTSPNs as a semantic area, since discrete time models allow for concurrent action occurrences. The
enrichment based of DTSPNs would be natural because PBC has step denotational and operational semantics.

A notion of equivalence is very important in formal theory of computing processes and systems. Behavioural
equivalences are applied during verification stage both to compare behaviour of systems and reduce their struc-
ture. At present time, there exists a great diversity of different equivalence notions for concurrent systems, and
their interrelations were well explored in the literature. The most famous and widely used one is bisimulation.
Unfortunately, the mentioned behavioural equivalences take into account only functional (qualitative) but not
performance (quantitative) aspects of system behaviour. Additionally, the equivalences are often interleaving
ones, and they do not respect concurrency. SPAs inherited from untimed PAs a possibility to apply equivalences
for comparison of specified processes. Like equivalences for other stochastic models, the relations for SPAs have
special requirements due to the probabilities summation. The states from which similar future behaviours start
have to be grouped into equivalence classes. The classes form elements of the aggregated state space, and
they are defined a posteriori while searching for equivalences on state space of a model. In [11], a notion of
interleaving stochastic bisimulation equivalence for process terms was introduced. The authors proved that the
equivalence is preserved by formula composition within SPAs considered in the paper, i.e., the relation is a
congruence. At the same time, no appropriate equivalence notion was defined for concurrent SPAs so far. Thus,
it is desirable to propose an equivalence relation for parallel SPAs that relates formulas specifying processes
with similar behavior and differentiates those having non-similar one from a certain viewpoint. It would be
fine to find a relation that is a congruence with respect to the algebraic operations. In this case, the formulas
combined by algebraic operations from equivalent subformulas will be equivalent as well. This is very helpful
property while bottom-up design of processes.

We did some work on the development of concurrent discrete time SPNs and SPAs as well as on defining
a variety of concurrent probabilistic equivalences. In [15], a new net class was proposed called discrete time
weighted SPNs (DTWSPNs) that is a modification of DTSPNs by transition labeling and weights. Transitions
of DTWSPNs are labeled by actions that represent elementary activities and can be visible or invisible to an
external observer. For this net class, a number of new probabilistic τ -trace and τ -bisimulation equivalences
were defined that abstract from invisible actions (denoted by τ) and respect concurrency in different degrees
(interleaving and step relations). In addition, probabilistic relations that require back or back-forth simulation
were introduced. An application of the probabilistic back-forth τ -bisimulation equivalences to compare sta-
tionary behaviour of the DTWSPNs was demonstrated. In [65, 67], a logical characterization was presented
for interleaving and step probabilistic τ -bisimulation equivalences via formulas of the new probabilistic modal
logics. The characterization means that two DTWSPNs are (interleaving or step) probabilistic τ -bisimulation
equivalent if they satisfy the same formulas of the corresponding probabilistic modal logic. Thus, instead of
comparing DTWSPNs operationally, one have to check the corresponding satisfaction relation only applying
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standard verification techniques. The new interleaving and step logics are modifications of that called PML
proposed in [39] on probabilistic transition systems with visible actions. In [16, 67], a stochastic algebra of
finite nondeterministic processes StAFP0 was proposed with semantics in terms of a subclasses of DTWSPNs
called stochastic acyclic nets (SANs). The calculus defined is a stochastic extension of algebra AFP0 intro-
duced in [34]. Calculus StAFP0 specifies concurrent stochastic processes. Another feature of the algebra is a
net semantics allowing one to preserve the level of parallelism, since Petri nets is a classical “true concurrent”
model. Usually, transition systems are used for this purpose, but they are not able to respect concurrency
completely. An axiomatization for the semantic equivalence of StAFP0 was proposed. It was proved that any
algebraic formula could be reduced to the “fully stratified” one with the use of the axiom system. This simplifies
semantic comparison of formulas. In [66], we considered different classes of stochastic Petri nets. We explored
how transition labeling could be defined to compare SPNs by equivalences. An suitability of the SPN classes
for modeling and analysis of different kinds of dynamic systems was investigated.

In this paper, we propose a discrete time stochastic extension of finite PBC called dtsPBC. The work
consists of the following stages. First, we present syntax of dtsPBC. Each multiaction of the initial calculus
PBC is associated with a conditional probability. Such a pair is called stochastic multiaction or activity. Second,
we propose semantics of dtsPBC. Step operational semantics is constructed in terms of labeled transition
systems based on action and inaction rules. The complexity here is a careful elaboration of step probabilities
for formulas with parallelism and synchronization as well as the conflict resolving mechanism related to the
probabilistic choice. Denotational semantics is defined in terms of a subclass of labeled DTSPNs (LDTSPNs)
called discrete time stochastic Petri boxes (dts-boxes). An accordance of operational and denotational semantics
is proved. At last, we define a number of probabilistic equivalences in the algebraic setting based of transition
systems without empty behaviour. These relations are weaker than the semantic equivalence of dtsPBC.
They are used to identify stochastic processes with similar behaviour which are differentiated by the semantic
equivalence that is too strict in many cases. The interrelations diagram of all the introduced equivalences is
built. Moreover, the proposed equivalences could be used to construct later a congruence relation based on one
of them. In the best case, a complete and correct finite axiomatization of the congruence could be constructed.
The hard task here would be to find a congruence that is not too distinctive, i.e., it should differentiate formulas
with really different behaviour only in accordance to our needs. Moreover, the relation is to be axiomatizable
and easy to check.

The paper is organized as follows. In the next Section 2 a syntax of calculus dtsPBC is presented. Then, in
Section 3 we construct operational semantics of the algebra in terms of labeled transition systems. In Section 4
we propose denotational semantics based on a subclass of LDTSPNs. Section 5 is devoted to the construction
and the interrelations of probabilistic algebraic equivalences based on transition systems without empty loops.
The concluding Section 6 summarizes the results obtained and outlines research perspectives in this area.

2 Syntax

Petri box calculus PBC was proposed in [3]. Its formulas specify Petri boxes (PBs), a special class of labeled
Petri nets. In this section we propose a syntax of discrete time stochastic extension of finite PBC called
discrete time stochastic Petri box calculus dtsPBC with semantics in terms of discrete time stochastic Petri
boxes (dtsPBs), a special class of LDTSPNs.

First, we recall a definition of multiset that is an extension of the set notion by allowing several identical
elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that
|{x ∈ X | M(x) > 0}| < ∞, i.e., it can contain finite number of elements only.

We denote the set of all finite multisets over X by INX
f . When ∀x ∈ X M(x) ≤ 1, M is a proper set. The

cardinality of a multiset M is defined as |M | =
∑

x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′ if
∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}.

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} be the set of conjunctive actions
(conjugates) such that a 6= â and ˆ̂a = a. Let A = Act∪ Âct be the set of all actions, and L = INA

f be the set of
all multiactions. Note that ∅ ∈ L, this corresponds to an internal activity, i.e., the execution of a multiaction
than contains no visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of
multiaction α. Let SL be the set of all activities. Let us note that the same multiaction α ∈ L may have
different probabilities in the same specification. The alphabet of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). For
(α, ρ) ∈ SL, we define its multiaction part as L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.
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Activities are combined into formulas by the following operations: sequential execution ;, choice [], parallelism
‖, relabeling [f ], synchronization sy and restriction rs.

Relabeling functions f : A → A are bijections preserving conjugates, i.e., ∀x ∈ A f(x̂) = f̂(x). Let α, β ∈ L
be two multiactions such that for some action a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then
synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =
{

α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Static expressions specify structure of a system. As we shall see, they correspond to unmarked SPNs.

Definition 2.2 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is defined as

E ::= (α, ρ) | E; E | E[]E | E‖E | E[f ] | E rs a | E sy a.

Let StatExpr denote the set of all static expressions of dtsPBC.
Dynamic expressions specify current state of a system. As we shall see, they correspond to marked SPNs.

Definition 2.3 Let (α, ρ) ∈ SL and a ∈ Act. A dynamic expression of dtsPBC is defined as

G ::= E | E | G; E | E; G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a.

Let DynExpr denote the set of all dynamic expressions of dtsPBC.

3 Operational semantics

In this section we construct step operational semantics in terms of labeled transition systems.

3.1 Inaction rules

First, we define inaction rules without preconditions. Let E, F ∈ StatExpr, G ∈ DynExpr and a ∈ Act.

E;F ∅→ E; F E;F ∅→ E; F E; F ∅→ E;F E[]F ∅→ E[]F E[]F ∅→ E[]F

E[]F ∅→ E[]F E[]F ∅→ E[]F E‖F ∅→ E‖F E‖F ∅→ E‖F E[f ] ∅→ E[f ]

E[f ] ∅→ E[f ] E rs a
∅→ E rs a E rs a

∅→ E rs a E sy a
∅→ E sy a E sy a

∅→ E sy a

G
∅→ G

Note that the rule G
∅→ G is intentionally included in the set of rules above. It reflects a non-zero probability

to stay in a state at the next time moment that is an essential feature of discrete time stochastic processes.
Second, we propose inaction rules with preconditions. Let E ∈ StatExpr, G, H, G̃, H̃ ∈ DynExpr and

a ∈ Act.

G
∅→G̃, ◦∈{;,[]}

G◦E ∅→G̃◦E
G
∅→G̃, ◦∈{;,[]}

E◦G ∅→E◦G̃
G
∅→G̃

G‖H ∅→G̃‖H
H
∅→H̃

G‖H ∅→G‖H̃
G
∅→G̃

G[f ]
∅→G̃[f ]

G
∅→G̃, ◦∈{rs,sy}
G◦a ∅→G̃◦a

A dynamic expression G is operative if no inaction rule can be applied to it, with exception of G
∅→ G. Note

that any dynamic expression can be always transformed into a (not unique) operative one using inaction rules.
Let OpDynExpr denote the set of all operative dynamic expressions of dtsPBC.

Let ' = ( ∅→ ∪ ∅←)∗ be dynamic expression isomorphism in dtsPBC. Thus, two dynamic expressions G and
G′ are isomorphic, denoted by G ' G′, if they can be reached each from other by applying inaction rules.

3.2 Action rules

Now we propose action rules that describe expression transformations due to the execution of multisets of
activities. Let (α, ρ), (β, χ) ∈ SL, E ∈ StatExpr, G, H ∈ OpDynExpr, G̃, H̃ ∈ DynExpr and a ∈ Act.
Moreover, let Γ, ∆ ∈ INSL

f . The alphabet of Γ ∈ INSL
f is defined as A(Γ) = ∪(α,ρ)∈ΓA(α).

5



(α,ρ)
{(α,ρ)}−→ (α,ρ)

G
Γ→G̃

G;E
Γ→G̃;E

G
Γ→G̃

E;G
Γ→E;G̃

G
Γ→G̃

G[]E
Γ→G̃[]E

G
Γ→G̃

E[]G
Γ→E[]G̃

G
Γ→G̃

G‖H Γ→G̃‖H
H

Γ→H̃

G‖H Γ→G‖H̃
G

Γ→G̃, H
∆→H̃

G‖HΓ+∆−→ G̃‖H̃
G

Γ→G̃

G[f ]
f(Γ)−→G̃[f ]

G
Γ→G̃, a,â 6∈A(Γ)

G rs a
Γ→G̃ rs a

G
Γ→G̃

G sy a
Γ→G̃ sy a

G sy a
Γ+{(α,ρ)}+{(β,χ)}−→ G̃ sy a, a ∈ A(α), â ∈ A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}−→ G̃ sy a

Note that in the last rule we multiply probabilities of synchronized multiactions since this corresponds to
the probability of event intersection.

3.3 Transition systems

Now we define transition systems associated with dynamic expressions.
Note that expressions of dtsPBC can contain identical activities. To avoid technical difficulties such as

those with proper calculation of state change probabilities for multiple transitions, we can always enumerate
coinciding activities from left to right in the syntax of expressions. In the following, we suppose that all identical
activities are enumerated. In the case new transitions are produced by synchronization, the new enumeration is
added as suffix to the old one, if needed. Note that after such the enumeration the multisets of activities which
change expressions in accordance to the action rules will be proper sets.

Let G be a dynamic expression. Then [G]' = {H | G ' H} is the equivalence class of G with respect to
isomorphism.

Definition 3.1 The derivation set of a dynamic expression G, denoted by DR(G), is the minimal set such that

• [G]' ∈ DR(G);

• if [H]' ∈ DR(G) and ∃Γ H
Γ→ H̃ then [H̃]' ∈ DR(G).

Let G be a dynamic expression and [H]' ∈ DR(G).
The set of all multisets of activities executable from H is defined as Exec(H) = {Γ | ∃J ∈ [H]', J̃ J

Γ→ J̃}.
Let Γ ∈ Exec(H). The conditional probability that the activities from Γ happen in H (the case when no

activities conflicting with those from Γ can happen) is

PF (Γ,H) =
∏

(α,ρ)∈Γ

ρ ·
∏

{(β,χ)6∈Γ|∃∆∈Exec(H) (β,χ)∈∆}
(1− χ).

Thus, PF (Γ, H) could be interpreted as a joint probability of independent events. Each such an event is
interpreted as executing or not executing of a particular activity from Γ. The multiplication in the definition is
because it reflects the probability of event intersection.

The normalized probability that the activities from Γ happen in H is

PT (Γ, H) =
PF (Γ, H)∑

∆∈Exec(H) PF (∆,H)
.

Thus, PT (Γ,H) is the probability that the multiset of activities Γ is executed normalized by the probability
that any executable from H multiset occurs. The denominator of the fraction above is a summation since it
reflects the probability of the event union. The definition of PT (Γ,H), unlike that of PF (Γ,H), respects the
fact that some activities from a multiset belonging to Exec(H) could be in conflict with those from another
executable multiset and, hence, cannot be fired together.

Let us note that for all derivations of a dynamic expression G the sum of outgoing probabilities from the
expressions belonging to the derivations is equal to one. More formally, ∀H ∈ DR(G)

∑
Γ∈Exec(H) PT (Γ,H) =

1. This obviously follows from the definition of PT (Γ,H) and guarantees that PT (Γ,H) defines a probability
distribution.

The probability that the execution of any activities changes H by H̃ is

PM(H, H̃) =
∑

{Γ|∃J∈[H]',J̃∈[H̃]' J
Γ→J̃}

PT (Γ, J).
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Since PM(H, H̃) is a probability for any multiset of activities to change H by H̃, we use summation in
the definition. Note that for every H holds

∑
{H̃|H→H̃} PM(H, H̃) = 1. This follows from the fact that

∑
{H̃|H→H̃} PM(H, H̃) =

∑
{H̃|H→H̃}

∑
{Γ∈Exec(H)|H Γ→H̃} PT (Γ,H) =

∑
Γ∈Exec(H) PT (Γ,H) = 1.

Definition 3.2 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple
TS(G) = (SG, LG, ΩG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSL
f ;

• the transition probability function is ΩG : SG×LG×SG → [0; 1] defined as follows: ΩG([H]', Γ, [H̃]') =
PT (Γ,H), if [H]' ∈ DR(G), H

Γ→ H̃}, otherwise, it is equal to zero;

• the initial state is sG = [G]'.

Thus, the transition system TS(G) associated with a dynamic expression G describes all steps that happen
at discrete moments of time with some probability and consist of multisets of activities. These steps change
states, and the states are the isomorphism classes of dynamic expressions obtained by application of action rules
starting from the expressions belonging to [G]'. If ΩG(s, Γ, s̃) = P, the corresponding transition is written as
s

Γ→P s̃. This notation indicates that the probability to change the state s by s̃ as a result of executing Γ is P.

We write s
Γ→ s̃ if ∃P > 0 s

Γ→P s̃. For one-element multiset Γ = {(α, ρ)} we write s
(α,ρ)−→P s̃ and s

(α,ρ)−→ s̃.
Note that Γ could be the emptyset, and its execution does not change equivalence classes. This corresponds

to the application of inaction rules to the expressions from the equivalence classes. We have to keep track of
such executions called empty loops, because they have nonzero probabilities.

Transition systems of static expressions are defined in the following way. For E ∈ StatExpr let TS(E) =
TS(E).

Definition 3.3 Two dynamic expressions G and G′ are isomorphic w.r.t. transition systems, denoted by G =ts

G′, if TS(G) ' TS(G′).

Definition 3.4 Let G be a dynamic expression. The underlying discrete time Markov chain (DTMC) of G,
denoted by DTMC(G), has the state space DR(G) and transitions [H]' →PM(H,H̃)

[H̃]', if ∃Γ [H]'
Γ→ [H̃]'.

Note that for a dynamic expression G and [H]' ∈ DR(G) we have PM(H, H̃) =
∑
{Γ|[H]'

Γ→P [H̃]'}
P, i.e.,

the probability of each DTMC(G) transition from a state s to s̃ is a sum of probabilities of TS(G) transitions
from s to s̃.

Example 3.1 Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ) and E = E1; E2. The identical activities of the com-
posite static expression are enumerated as follows: E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ). In Figure 1 the transition
system TS(E) and the underlying DTMC DTMC(E) are presented. Note that for the reason of simplicity in
the graphical representation states are depicted by expressions belonging to the corresponding equivalence classes,
and singleton multisets of activities are written without braces.

4 Denotational semantics

In this section we construct denotational semantics in terms of a subclass of labeled DTSPNs called discrete time
stochastic Petri boxes (dts-boxes). Since we propose stochastic extension of finite part of PBC, the dts-boxes
will have finite observable behaviour.

4.1 Labeled DTSPNs

Now we introduce a class of labeled discrete time stochastic Petri nets.

Definition 4.1 Labeled DTSPN (LDTSPN) is a tuple N = (PN , TN ,WN , ΩN , LN ,MN ), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;
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Figure 1: The transition system and the underlying DTMC of E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ)

• WN : (PN × TN ) ∪ (TN × PN ) → IN is a function describing the weights of arcs between places and
transitions and vice versa;

• ΩN : TN → (0; 1) is the transition probability function;

• LN : TN → Actτ is the transition labeling function assigning labels from a finite set of visible actions Act
or an invisible action τ to transitions (i.e., Actτ = Act ∪ {τ});

• MN ∈ INPN

f is the initial marking.

A graphical representation of LDTSPNs is as that for standard labeled Petri nets but with conditional
probabilities written near the corresponding transitions. In the case the probabilities are not specified in the
picture, they are considered to be of no importance in the corresponding examples, such as those used to describe
stationary behaviour. The names of places and transitions are depicted near them when needed. If the names
are omitted but used, it is supposed that the places and transitions are numbered from left to right and from
top to down.

Let N be an LDTSPN and t ∈ TN , U ∈ INTN

f . The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the
postcondition U• of U are the multisets of places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t•.
A transition t ∈ TN is enabled in a marking M ∈ INPN

f of LDTSPN N if •t ⊆ M . Let Ena(M) be the set
of all transitions that are enabled in a marking M . A set of transitions U ⊆ Ena(M) is enabled in a marking
M if •U ⊆ M . Firings of transitions are atomic operations, and transitions may fire concurrently in steps. We
assume that all transitions participating in a step should differ, hence, only sets (not multisets) of transitions
may fire. Thus, we do not allow self-concurrency, i.e., firing of transitions concurrently to themselves. This
restriction is because we would like to avoid technical difficulties while calculating probabilities for multisets of
transitions as we shall see after the following formal definitions.

Let M be a marking of an LDTSPN N . A transition t ∈ Ena(M) fires with conditional probability ΩN (t)
when no other transitions conflicting with it are enabled. Let U ⊆ Ena(M). The conditional probability that
the transitions from U fire (the case when no transitions conflicting with those from U are enabled) is

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

t∈Ena(M)\U
(1− ΩN (t)).

Thus, PF (U,M) could be interpreted as a joint probability of independent events. Each such an event
is interpreted as firing or not firing of a particular transition from U . The multiplication in the definition is
because it reflects the probability of event intersection.

Let U be a transition set that is enabled in M . Concurrent firing of the transitions from U changes marking
M by M̃ = M − •U + U•, denoted by M

U→P M̃ . The probability of this step P = PT (U,M) is

PT (U,M) =
PF (U,M)∑

{V⊆Ena(M)|•V⊆M} PF (V, M)
.

Thus, PT (U,M) is the probability that the set U fires normalized by the probability that any enabled in
M set fires. The denominator of the fraction above is a summation since it reflects the probability of the event
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Figure 2: LDTSPN, its reachability graph and the underlying DTMC

union. The definition of PT (U,M), unlike that of PF (U,M), respects the fact that some transitions from
Ena(M) could be in conflict and hence cannot be fired together in some set.

We write M
U→ M̃ if ∃P > 0 M

U→P M̃ . For one-element transition set U = {t} we write M
t→P M̃ and

M
t→ M̃ .
Let us note that for all markings of an LDTSPN N the sum of outgoing probabilities is equal to one. More

formally, ∀M ∈ INPN

f such that Ena(M) 6= ∅ we have
∑
{U⊆Ena(M)|•U⊆M} PT (U,M) = 1. This obviously

follows from the definition of PT (U,M) and guarantees that it defines a probability distribution.

Definition 4.2 Let N be an LDTSPN.

• The reachability set of N , denoted by RS(N), is the minimal set of markings such that

– MN ∈ RS(N);

– if M ∈ RS(N) and M
U→ M̃ then M̃ ∈ RS(N).

• The reachability graph of N , denoted by RG(N), is a directed labeled graph with the set of nodes RS(N)
and an arc labeled with (U,P) between nodes M and M̃ if ∃P > 0 M

U→P M̃ .

• The underlying discrete time Markov chain (DTMC) of N , denoted by DTMC(N), has the state space
RS(N) and transitions M →

PM(M,M̃)
M̃ , if ∃U M

U→ M̃ , where the transition probability is

PM(M, M̃) =
∑

{U⊆Ena(M)|M U→M̃}

PT (U,M).

Thus, PM(M, M̃) is a probability for any transition set to change marking M by M̃ , hence we use summation
in the definition. Note that for every marking M holds

∑
{M̃ |M→M̃} PM(M, M̃) = 1. This follows from the

fact that
∑
{M̃ |M→M̃} PM(M, M̃) =

∑
{M̃ |M→M̃}

∑
{U⊆Ena(M)|M U→M̃} PT (U,M) =∑

{U⊆Ena(M)|•U⊆M} PT (U,M) = 1.

Example 4.1 In Figure 2 an LDTSPN with two visible transitions t1 (labeled by a), t2 (labeled by b) and and
one invisible transition t3 (labeled by τ) is depicted. Transition probabilities of N are denoted by ρi = ΩN (ti) (1 ≤
i ≤ 3). In the figure one can see the reachability graph RG(N) and the underlying DTMC DTMC(N) as well.
The reachability set consists of markings M1 = (1, 1, 0), M2 = (0, 1, 1), M3 = (1, 0, 1), M4 = (0, 0, 2).

4.2 Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes and associated algebraic operations to define a net repre-
sentation of dtsPBC expressions.

Definition 4.3 A plain discrete time stochastic Petri box (plain dts-box) is a tuple N = (PN , TN ,WN ,ΛN ),
where
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• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;
• WN : (PN × TN ) ∪ (TN × PN ) → IN is a function describing the weights of arcs between places and

transitions and vice versa;

• ΛN is the place and transition labeling function such that ΛN : PN → {e, i, x} (it specifies entry, internal
and exit places, respectively) and ΛN : TN → SL (it associates activities with transitions).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•, •t ∩ t• = ∅. In addition, if we define the set of entry places of N as

◦N = {p ∈ PN | ΛN (p) = e}, and the set of exit places of N as N◦ = {p ∈ PN | ΛN (p) = x}, then the following
holds: ◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A marked plain dts-box is a pair (N,MN ), where N is a plain dts-box and MN ∈ INPN

f is the initial marking.
Note that a marked plain dts-box (PN , TN ,WN , ΛN ,MN ) could be interpreted as the LDTSPN
(PN , TN ,WN ,ΩN , LN ,MN ), where functions ΩN and LN are defined as follows: ∀t ∈ TN ΩN (t) = Ω(ΛN (t)),
LN (t) = L(ΛN (t)). In this case, the label τ of silent transitions from the LDTSPN corresponds to the multiaction
part ∅ of activities that label unobservable transitions of the the corresponding dts-box. The behaviour of
marked dts-boxes follows to the firing rule of LDTSPNs. A plain dts-box N is safe, if (N, •N) is, i.e., ∀M ∈
RS(N, ◦N) M ⊆ PN . A safe plain dts-box N is clean if N◦ ⊆ M ⇒ M = N◦, i.e., if there are tokens in exit
places then all and only exit places have tokens.

To define semantic function that associates a plain dts-box with every static expression of dtsPBC, we
need to propose the enumeration function Enu : TN → IN∗. It imposes the numbers with transitions of plain
dts-box N in accordance to the enumeration of activities from left to right in the syntax of the underlying
static expression. In the case of synchronization, the function associates the concatenation of the numbers of
the transitions it comes from with the resulting new transition.

The structure of the plain dts-box corresponding to a static expression is constructed as in PBC, i.e., via
refinement and labeling. Thus, the resulting dts-boxes are safe and clean. In the definition of denotational
semantics we shall use standard constructions used for PBC in [12, 13, 6]. For convenience, we only use slightly
different notation: %, Θ and u stand for ρ,Ω and v from PBC setting, respectively.

The relabeling relations % ⊆ INSL
f × SL are defined as follows:

• %id = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL};
• %[f ] = {({(α, ρ)}, (f(α), ρ) | (α, ρ) ∈ SL};
• %rs a = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL, a, â 6∈ A(α)};
• %sy a is the least relabeling relation contained in %id such that if (Γ, {(α + {a}, ρ)} ∈ %sy a and (∆, {(β +
{â}, χ)} ∈ %sy a then (Γ + ∆, {(α + β, ρ · χ)} ∈ %sy a.

Now we define enumeration function Enu for every operator of dtsPBC. Let Boxdts(E) =
(PE , TE ,WE , ΩE , LE) be the plain dts-box corresponding to a static expression E, and EnuE be the enumeration
function for TE .

• Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖}. Since we do not introduce new transitions, we
preserve the initial enumeration:

Enu(t) =
{

EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only change label of some multiactions by a bijection, we
preserve the initial enumeration:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled with a multiaction containing
a or â, this does not change the enumeration of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ LE(t).

10



(α, ρ)

±°
²¯

±°
²¯

?

?

N(α,ρ)i

e

x

ti %[f ]

±°
²¯

±°
²¯

?

?

Θ[f ]

e

x

u[f ] %rs a

±°
²¯

±°
²¯

?

?

Θrs a

e

x

urs a
%sy a

±°
²¯

±°
²¯

?

?

Θsy a

e

x

usy a %id

±°
²¯

±°
²¯

?

?

Θ;

e

u1
;

%id

±°
²¯

?

?
x

u2
;

i

%id

±°
²¯

±°
²¯

?

?

Θ‖

e

u1
‖

x

%id

±°
²¯

±°
²¯

?

?

e

u2
‖

x

%idu1
[]

%id u2
[]

Θ[]

±°
²¯

±°
²¯

e

x

¡¡ª @@R

S
Sw

¶
¶/

Figure 3: The plain and operator dts-boxes

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE such that LE(v) = α+ {a}, LE(w) = β + {â},
the new transition t resulting from synchronization of v and w has label L(t) = α + β, conditional
probability Ω(t) = ΩE(v) ·ΩE(w) and enumeration Enu(t) = EnuE(v) ·EnuE(w). Thus, the enumeration
is defined as

Enu(t) =
{

EnuE(t), t ∈ TE ;
EnuE(v) · EnuE(w), t results from synchronization of v and w.

To avoid introducing redundant transitions generated by synchronizing in different order the same tran-
sition set, we only consider a single one of them in the plain dts-box.

The plain and operator dts-boxes are presented in Figure 3.
Now we can formally define denotational semantics as a homomorphism.

Definition 4.4 Let (α, ρ) ∈ SL and E, F,∈ StatExpr. The denotational semantics dtsPBC is a mapping
Boxdts from StatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i
;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};
3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy}.

Isomorphism is a coincidence of systems up to renaming of their components or states. We denote iso-
morphism of transition systems by ', and the same symbol denotes isomorphism of reachability graphs and
DTMCs. Moreover, ' will denote an isomorphism between transition systems and reachability graphs. Note
that in this case, the names of transitions of the dts-box corresponding to a static expression could be identified
with the enumerated activities of the latter.

Theorem 4.1 For any static expression E

TS(E) ' RG(Boxdts(E), ◦Boxdts(E)).

Proof. What concerns qualitative (functional) behaviour, we have the same isomorphism as in PBC.
The quantitative behaviour is equal by the following reasons. First, the activities of a static expression have

probability parts coinciding with conditional probabilities of the transitions belonging to the corresponding
plain dts-box. Second, in both semantics conflicts are resolved via the same probability functions. ut
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Figure 4: The transition system and the underlying DTMC of E = (({a}, ρ)‖({â}, χ)) sy a

Proposition 4.1 For any static expression E

DTMC(E) ' DTMC(Boxdts(E), ◦Boxdts(E)).

Proof. By Theorem 4.1 and definitions of underlying DTMC for dynamic expressions and LDTSPNs, since
transition probabilities of the associated DTMCs are the sums of those belonging to transition systems or
reachability graphs. ut

The dts-boxes of dynamic expressions can be defined as well. For E ∈ StatExpr let Boxdts(E) = Boxdts(E)
and Boxdts(E) = Boxdts(E). Note that any dynamic expression can be decomposed into pure, overlined or
underlined static expressions, and the definition of dts-boxes is compositional.

Example 4.2 Let E1 = ({a}, ρ), E2 = ({â}, χ) and E = (E1‖E2) sy a = (({a}, ρ)‖({â}, χ)) sy a. In Figure
4 the transition system TS(E) and the underlying DTMC DTMC(E) are presented. In Figure 5 the marked
dts-box N = (Boxdts(E), ◦Boxdts(E)), its reachability graph RG(N) and the underlying DTMC DTMC(N) are
presented. It is easy to see that TS(E) and RG(N) are isomorphic as well as DTMC(E) and DTMC(N).

The probabilities Pij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding
to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N = 1

1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1− ρ)(1− χ)(1− ρχ) P12 = Nρ(1− χ)(1− ρχ) P13 = Nχ(1− ρ)(1− ρχ)
P sy

14 = Nρχ(1− ρ)(1− χ) P‖14 = Nρχ(1− ρχ) P22 = 1− χ
P24 = χ P33 = 1− ρ P34 = ρ

P44 = 1 P14 = P sy
14 + P‖14 = Nρχ(2− ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P11 = P12 = P13 = P‖14 =
3
13

, P sy
14 =

1
13

, P22 = P24 = P33 = P34 =
1
2
, P44 = 1, P14 =

4
13

.

5 Probabilistic equivalences

In this section we propose a number of probabilistic equivalences of expressions. Semantic equivalence =ts is
too strict in many cases, hence, we need weaker equivalence notions to compare behaviour of processes specified
by algebraic formulas.

To identify processes with intuitively similar behavior, and to be able to apply standard constructions and
techniques, we should abstract from infinite behaviour. Since dtsPBC is a stochastic extension of finite PBC,
the only source of infinite behaviour are empty loops, i.e., the transitions which do not change states and have
empty multiaction parts of their labels. During such the abstraction, we should collect the probabilities of the
empty loops. Note that the resulting probabilities are those defined for infinite number of empty steps. In the
following, we explain how to abstract form empty loops both in the algebraic setting of dtsPBC and in the net
one of LDTSPNs.
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Figure 5: The marked dts-box N = (Boxdts(E), ◦Boxdts(E)), its reachability graph and the underlying DTMC

5.1 Empty loops in transition systems

Let G be a dynamic expression. Transition system TS(G) can have loops going from a state to itself which

are labeled by an emptyset and have non-zero probability. Such the empty loop s
∅→P s, P > 0 appears when

no activities occur at a time step, and this happens with some positive probability. Obviously, in this case the
current state remains unchanged.

Let G be a dynamic expression and [H]' ∈ DR(G).
The probability to stay in [H]' due to k (k ≥ 0) empty loops is

(PT (∅, H))k.

The probability to execute in [H]' a non-empty multiset of activities Γ after possible empty loops is

PT ∗(Γ,H) = PT (Γ,H) ·
∞∑

k=0

(PT (∅,H))k =
PT (Γ,H)

1− PT (∅, H)
.

Definition 5.1 The (labeled probabilistic) transition system without empty loops TS∗(G) has the state space
DR(G) and the transitions [H]'

Γ→→PT∗(Γ,H) [H̃]', if [H]'
Γ→ [H̃]', Γ 6= ∅.

Note that TS∗(G) describes the viewpoint of a person who observes steps only if they include non-empty
multisets of activities.

We write s
Γ→→ s̃ if ∃P > 0 s

Γ→→P s̃. For one-element transition set Γ = {(α, ρ)} we write s
(α,ρ)→→ P s̃ and

s
(α,ρ)→→ s̃.

We decided to consider only an empty loop followed by a non-empty step just for convenience. Alternatively,
we could consider a non-empty step succeeded by an empty loop or a non-empty step preceded and succeeded
by empty loops. In both cases our sequence begins or/and ends with loops that do not change states. Only
overall probabilities of these three evolutions can differ since empty loops have positive probabilities. To avoid
inconsistency of definitions and too complex description, we consider sequences ending with a non-empty step
that resembles in some sense a construction of branching bisimulation [27].

Transition systems without empty loops of static expressions are defined in the following way. For E ∈
StatExpr let TS∗(E) = TS∗(E).

Definition 5.2 Two dynamic expressions G and G′ are isomorphic w.r.t. transition systems without empty
loops, denoted by G =ts∗ G′, if TS∗(G) ' TS∗(G′).

Definition 5.3 The underlying DTMC without empty loops DTMC∗(G) has the state space DR(G) and
transitions [H]' →→PM∗(H,H̃)

[H̃]', if ∃Γ [H]'
Γ→ [H̃]', where the transition probability is

PM∗(H, H̃) =
∑

{Γ|[H]'
Γ→→[H̃]'}

PT ∗(Γ,H).
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Let us note that PT ∗(Γ,H) defines a probability distribution, i.e., ∀H ∈ DR(G)
∑

Γ∈Exec(H)\∅ PT ∗(Γ,H) =
1.

In some cases, interleaving behaviour is to be considered. Interleaving semantics abstracts from steps with
more than one element. After such an abstracting, one has to normalize probabilities of the remaining one-
element steps. We need to do it since the sum of outgoing probabilities should always be equal to one for each
marking to form a probability distribution. For this, a special interleaving transition relation is proposed. Let

G be a dynamic expression and s, s̃ ∈ DR(G), (α, ρ) ∈ Exec(H). We write s
(α,ρ)
⇀⇀ Q s̃ if s

(α,ρ)→ P s̃ and

Q =
P∑

{(β,χ)∈Exec(H)), s̃∈DR(G)|s(β,χ)→ P′ s̃}
P ′ .

5.2 Empty loops in reachability graphs

Let N be an LDTSPN and M be its marking. Reachability graph RG(N) can have loops going from a state to

itself which are labeled by an emptyset and have non-zero probability. Such the empty loop M
∅→P M, P > 0

appears when no transitions fire at a time step, and this happens with some positive probability. Obviously, in
this case the current marking remains unchanged.

The probability to stay in M due to k (k ≥ 0) empty loops is

(PT (∅, M))k.

The probability to execute in M a non-empty transition set U after possible empty loops is

PT ∗(U,M) = PT (U,M) ·
∞∑

k=0

(PT (∅, M))k =
PT (U,M)

1− PT (∅,M)
.

Definition 5.4 The reachability graph without empty loops RG∗(N) with the set of nodes RS(N) and the set
of arcs corresponding to the transitions M

U→→PT∗(U,M) M̃ , if M
U→ M̃, U 6= ∅.

Note that RG∗(N) describes the viewpoint of a person who observes steps only if they include non-empty
transition sets.

We write M
U→→ M̃ if ∃P > 0 M

U→→P M̃ . For one-element transition set U = {t} we write M
t→→P M̃ and

M
t→→ M̃ .
We decided to consider only an empty loop followed by a non-empty step just for convenience. Alternatively,

we could consider a non-empty step succeeded by an empty loop or a non-empty step preceded and succeeded
by empty loops. In both cases our sequence begins or/and ends with loops that do not change markings. Only
overall probabilities of these three evolutions can differ since empty loops have positive probabilities. To avoid
inconsistency of definitions and too complex description, we consider sequences ending with a non-empty step
that resembles in some sense a construction of branching bisimulation [27].

Definition 5.5 The underlying DTMC without empty loops DTMC∗(N) has the state space RS(N) and
transitions M →→

PM∗(M,M̃)
M̃ , if ∃U M

U→ M̃ , where the transition probability is

PM∗(M, M̃) =
∑

{U∈Ena(M)|M U→→M̃}

PS∗(U,M).

Note that PT ∗(U,M) defines a probability distribution, i.e., ∀M ∈ RS(N)
∑

U∈Ena(M)\∅ PT ∗(U,M) = 1.
In some cases, interleaving behaviour is to be considered. Interleaving semantics abstracts from steps with

more than one element. After such an abstracting, one has to normalize probabilities of the remaining one-
element steps. For this, a special interleaving transition relation is proposed. Let N be an LDTSPN and
M, M̃ ∈ RS(N), t ∈ Ena(M). We write M

t→→Q M̃ if M
t→→P M̃ and

Q =
P∑

{u∈Ena(M), M̃∈RS(N)|M u→→P′M̃} P ′
.

Theorem 5.1 For any static expression E

TS∗(E) ' RG∗(Boxdts(E), ◦Boxdts(E)).

14



®


©
ª

(E1‖E2) sy a

(E1‖E2) sy a

TS∗(E)

?

¶
¶

¶¶/

S
S

SSw

J
J

J
Ĵ
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Figure 6: The transition system and the underlying DTMC without empty loops of E from Example 4.2

Proof. As Theorem 4.1. ut
Proposition 5.1 For any static expression E

DTMC∗(E) ' DTMC∗(Boxdts(E), ◦Boxdts(E)).

Proof. As Proposition 4.1. ut
Note that Theorem 5.1 guarantees that the net versions of algebraic equivalences could be easily defined.

For every equivalence on the empty loops free transition system of a dynamic expression, a similarly defined
analogue exists on the empty loops free reachability graph of the corresponding dts-box.

Example 5.1 Let E and N be those from Example 4.2. In Figure 6 the transition system TS∗(E) and the
underlying DTMC DTMC∗(E) without empty loops are presented. In Figure 7 the reachability graph RG∗(N)
and the underlying DTMC DTMC∗(N) without from empty loops are presented. It is easy to see that TS∗(E)
and RG∗(N) are isomorphic as well as DTMC∗(E) and DTMC∗(N).

The probabilities P∗ij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding
to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N ∗ = 1

ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 . Note that the probabilities Pij (1 ≤ i, j ≤ 4) are taken from Example 4.2.

P∗12 = P12
1−P11

= N ∗ρ(1− χ)(1− ρχ) P∗13 = P13
1−P11

= N ∗χ(1− ρ)(1− ρχ)

P sy∗
14 = P sy

14
1−P11

= N ∗ρχ(1− ρ)(1− χ) P‖∗14 = P‖14
1−P11

= N ∗ρχ(1− ρχ)
P∗24 = P24

1−P22
= 1 P∗34 = P34

1−P33
= 1

P∗14 = P sy∗
14 + P‖∗14 = P sy

14+P‖14
1−P11

= N ∗ρχ(2− ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P∗12 = P∗13 = P‖∗14 =
3
10

, P sy∗
14 =

1
10

, P∗24 = P∗34 = 1, P∗14 =
2
5
.

5.3 Probabilistic trace equivalences

Trace equivalences are the least distinctive ones. In the trace semantics, behavior of a system is associated with
the set of all possible sequences of activities, i.e., protocols of work or computations. Thus, the points of choice
of an external observer between several extensions of a particular computation are not taken into account.

Formal definitions of probabilistic trace relations resemble those of trace equivalences for standard Petri
nets [63] or process algebras, but additionally we have to take into account the probabilities of sequences of
(multisets of) multiactions. First, we have to multiply occurrence probabilities for all (multisets of) activities
along every path starting from the initial state of the transition system corresponding to a dynamic expression.
The product is the probability of the sequence of multiaction parts of the (multisets of) activities along the
path. Second, we should calculate a sum of probabilities for all paths corresponding to the same sequence of
multiaction parts.

For Γ ∈ INSL
f , we define its multiaction part by L(Γ) =

∑
(α,ρ)∈Γ α. Note that L(Γ) ∈ INL

f , i.e, L(Γ) is a
multiset of multiactions.
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Figure 7: The reachability graph and the underlying DTMC without empty loops of N from Example 4.2

Definition 5.6 An interleaving probabilistic trace of a dynamic expression G with TS(G) = (SG, LG,ΩG, sG)
is a pair (σ,P), where σ = α1 · · ·αn ∈ L∗ and

P =
∑

{(α1,ρ1),...,(αn,ρn)|sG

(α1,ρ1)
⇀⇀ P1s1

(α2,ρ2)
⇀⇀ P2 ···

(αn,ρn)
⇀⇀ Pnsn}

n∏

i=1

Pi.

We denote a set of all interleaving probabilistic traces of a dynamic expression G by IntProbTraces(G).
Two dynamic expressions G and G′ are interleaving probabilistic trace equivalent, denoted by G ≡ip G′, if

IntProbTraces(G) = IntProbTraces(G′).

Definition 5.7 A step probabilistic trace of a dynamic expression G with TS(G) = (SG, LG, ΩG, sG) is a pair
(Σ,P), where Σ = A1 · · ·An ∈ (INL

f )∗ and

P =
∑

{Γ1,...,Γn|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn→→Pnsn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

Pi.

We denote a set of all step traces of a dynamic expression G by StepProbTraces(G). Two dynamic expres-
sions G and G′ are step probabilistic trace equivalent, denoted by G ≡sp G′, if

StepProbTraces(G) = StepProbTraces(G′).

5.4 Probabilistic bisimulation equivalences

Bisimulation equivalences respect completely the particular points of choice in the behavior of a modeled system.
We intend to present a parameterized definition of probabilistic bisimulation equivalences.

To define probabilistic bisimulation equivalences, we have to consider a bisimulation as an equivalence relation
which partitions the states of the union of the transition systems TS(G) and TS(G′) of two dynamic expressions
G and G′ to be compared. For G and G′ to be bisimulation equivalent, the initial states of their transition
systems, sG and sG′ , are to be related by a bisimulation having the following transfer property: two states are
related if in each of them the same (multisets of) multiactions can occur, and the resulting states belong to the
same equivalence class. In addition, sums of probabilities for all such occurrences should be the same for both
states. Thus, in our definitions, we follow the approach of [39, 40]. Hence, the difference between bisimulation
and trace equivalences is that we do not consider all possible occurrences of (multisets of) multiactions from the
initial states, but only such that lead (stepwise) to the states belonging to the same equivalence class.

First, we introduce several helpful notations. Let for a dynamic expression G we have H ⊆ DR(G). Then
for some s ∈ DR(G) and A ∈ INL

f we write s
A→→Q H if

Q =
∑

{Γ|s Γ→→P s̃, L(Γ)=A, s̃∈H}

P.

We write s
A→→ H if ∃Q > 0 s

A→→Q H.
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In similar way, we define the notion s
α
⇀⇀Q H based on the interleaving transition relation.

Let X be some set. We denote the cartesian product X ×X by X2. Let E ⊆ X2 be an equivalence relation
on X. Then an equivalence class (w.r.t. E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The
equivalence E partitions X in the set of equivalence classes X/E = {[x]E | x ∈ X}.

Definition 5.8 Let G be a dynamic expression and TS(G) = (SG, LG,ΩG, sG) be its transition system. An
equivalence relation R ⊆ DR(G)2 is a ?-probabilistic bisimulation between states s1 and s2 of TS(G),
? ∈{interleaving, step}, denoted by R : s1↔?ps2, ? ∈ {i, s}, if ∀H ∈ DR(G)/R

• ∀x ∈ L and ↪→=⇀⇀, if ? = i;

• ∀x ∈ INL
f and ↪→=→→, if ? = s;

s1
x
↪→Q H ⇔ s2

x
↪→Q H.

Two states s1 and s2 are ?-probabilistic bisimulation equivalent, ? ∈{interleaving, step}, denoted by s1↔?ps2,
if ∃R : s1↔?ps2, ? ∈ {i, s}.

To introduce bisimulation between dynamic expressions G and G′, we should consider a “composite” set of
states DR(G) ∪DR(G′).

Definition 5.9 Let G,G′ be dynamic expressions and TS(G) = (SG, LG, ΩG, sG),
TS(G′) = (SG′ , LG′ ,ΩG′ , sG′) be their transition systems. A relation R ⊆ (DR(G) ∪DR(G′))2 is a
?-probabilistic bisimulation between G and G′, ? ∈{interleaving, step}, denoted by R : G↔?pG

′, if
R : sG↔?psG′ , ? ∈ {i, s}.

Two dynamic expressions G and G′ are ?-probabilistic bisimulation equivalent, ? ∈{interleaving, step},
denoted by G↔?pG

′, if ∃R : G↔?pG
′, ? ∈ {i, s}.

5.5 Stochastic isomorphism

Stochastic isomorphism is a relation that is weaker than the equivalence with respect to the isomorphism of the
associated transition systems without empty loops. The main idea of the following definition is to summarize
probabilities of all transitions between the same pair of states such that the transition labels have the same
multiaction parts. We use summation, since it is the probability of event union.

Definition 5.10 Let G,G′ be dynamic expressions and TS(G) = (SG, LG, ΩG, sG),
TS(G′) = (SG′ , LG′ ,ΩG′ , sG′) be their transition systems. A mapping β : SG → SG′ is a stochastic isomorphism
between G and G′, denoted by β : G =sto G′, if

1. β is a bijection such that β(sG) = β(sG′);

2. if s
Γ→→P s̃ then there exists Γ′ such that β(s) Γ′→→P′ β(s̃), L(Γ) = L(Γ′) and

∑

{∆|s ∆→→Qs̃, L(Γ)=L(∆)}

Q =
∑

{∆′|β(s)
∆′→→Q′β(s̃), L(Γ)=L(∆′)}

Q′;

3. if s′ Γ′→→G′ s̃′ then there exists Γ such that β−1(s′) Γ→→G β−1(s̃′), L(Γ) = L(Γ′) and

∑

{∆′|s′∆
′

→→Q′ s̃′, L(Γ)=L(∆′)}

Q′ =
∑

{∆|β−1(s′)
∆→→Qβ−1(s̃′)), L(Γ)=L(∆)}

Q.

Two dynamic expressions G and G′ are stochastically isomorphic, denoted by G =sto G′, if ∃β : G =sto G′.
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Figure 8: Interrelations of the probabilistic equivalences

5.6 Interrelations of the probabilistic equivalences

Now we intend to compare the introduced probabilistic equivalences and obtain the lattice of their interrelations.

Proposition 5.2 Let ? ∈ {i, s}. For dynamic expressions G and G′ the following holds:

G↔?G
′ ⇒ G ≡? G′.

Proof. See Appendix A. ut
In the following, the symbol ‘ ’ will denote “nothing”, and the equivalences subscribed by it are considered

as those without any subscription.

Theorem 5.2 Let ↔,↔↔∈ {≡,↔,=,'} and ?, ?? ∈ { , ip, sp, sto, ts∗, ts}. For dynamic expressions G and G′

G ↔? G′ ⇒ G ↔↔?? G′

iff in the graph in Figure 8 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) Let us check the validity of implications in the graph in Figure 8.

• The implications ↔sp→↔ip, ↔∈ {≡,↔} are valid, since single activities are one-element multisets.

• The implications ↔? →≡?, ? ∈ {ip, sp}, are valid by Proposition 5.2.

• The implication =sto→↔sp is proved as follows. Let β : G =sto G′. Then it is easy to see that S : G↔spG
′,

where S = {(s, β(s)) | s ∈ DR(G)}.
• The implication =ts∗→=sto is valid, since stochastic isomorphism is that of empty loops free transition

systems up to merging of transitions with labels having identical multiaction parts.

• The implication =ts→=ts∗ is valid, since abstraction from empty loops is based on transition probabilities
which are the same for isomorphic transition systems.
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• The implication '→=ts is valid, since the transition system of a dynamic formula is defined based on its
isomorphism class.

(⇒) Absence of additional nontrivial arrows in the graph in Figure 8 is proved by the following examples.
As in the previous examples, we assume that conflicting transitions have equal weights and probabilities.

• Let G = ({a}, 1
2 )‖({b}, 1

2 ) and G′ = (({a}, 1
2 ); ({b}, 1

2 ))[](({b}, 1
2 ); ({a}, 1

2 )). Then G↔ipG
′, but G 6≡sp G′,

since only in TS(G′) multiactions {a} and {b} cannot be executed concurrently.

• Let G = ({a}, 1
2 ); (({b}, 1

2 )[]({c}, 1
2 )) and G′ = (({a}, 1

2 ); ({b}, 1
2 ))[](({a}, 1

2 ); ({c}, 1
2 )). Then G ≡sp G′, but

G↔/ ipG
′, since only in TS(G′) a multiaction {a} can be executed so that no multiaction {b} can occur

afterwards.

• Let G = ({a}, 1
2 ); ({b}, 1

2 ) and G′ = ({a}, 1
2 ); ({b}, 1

2 )[]({a}, 1
2 ); ({b}, 1

2 ). Then G↔spG
′, but G 6=sto G′,

since only in TS(G′) there is a transition with multiaction part of label {a} and probability 1 that is
single one between its start and final states such that the transition has no corresponding transition set in
TS(G′). Note that in TS(G′), the only transition with the same multiaction part of label has probability
1
2 .

• Let G = ({a}, 1
2 ) and G′ = ({a}, 1

2 )[]({a}, 1
2 ). Then G =sto G′, but G 6=dts∗ G′, since only TS(G′) has

two transitions.

• Let G = ({a}, 1
2 ) and G = ({a}, 1

3 ). Then G =ts∗ G′, but G 6=dts G′, since only in TS(G′) there is a
transition with multiaction part of label {a} and probability 1

3 .

• Let G = ({a}, 1
2 ) and G′ = ({a}, 1

2 ); ({â}, 1
2 ) sy a. Then G =ts G′, but G 6' G′, since G and G′ cannot be

reached each from other by applying inaction rules. ut

Example 5.2 In Figure 9 the marked dts-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 5.2 are presented, i.e., E = G, N = (Boxdts(E), ◦Boxdts(E)) and E′ = G′, N ′ =
(Boxdts(E′), ◦Boxdts(E′)) for each picture (a)–(f). Since all the equivalences of dynamic expressions can be
transferred to the corresponding marked dts-boxes, we depict also which the net analogues (denoted by the same
symbols) of the algebraic equivalences relate the nets.

6 Conclusion

In this paper, we have proposed a discrete time stochastic extension of PBC called dtsPBC with concurrent
step operational semantics based on transition systems and denotational semantics in terms of a subclass
of LDTSPNs. An accordance of operational and denotational semantics was established. In addition, we
have defined a number of probabilistic algebraic equivalences which have natural net analogues on LDTSPNs.
The equivalences abstract from empty loops in transition systems corresponding to dynamic expressions. The
diagram of interrelations for the algebraic equivalences was constructed.

Future work consists in the construction a congruence relation based on some probabilistic algebraic equiv-
alence we defined. We can also abstract from the silent activities, i.e., those with empty multiaction part in the
definitions of the equivalences. The abstraction from empty loops and that from silent activities could be done
in one step as well. The main point is that we should collect probabilities during such the abstractions from the
internal activity. As a result, we shall have the algebraic analogues of the net probabilistic equivalences from
[15, 16]. Moreover, we plan to extend dtsPBC with infiniteness constructs such as iteration and recursion.
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A Proof of Proposition 5.2

It is enough to prove it for ? = s, since ? = i is a particular case of the previous one with one-element multisets
of multiactions and interleaving transition relation.

Let R : G↔spG
′ and (s1, s2) ∈ R. By the definition of ↔sp, we have ∀A ∈ INL

f ∀H̃ ∈ (DR(G)∪DR(G′))/R

s1
A→→Q H̃ ⇔ s2

A→→Q H̃.

Let H = [s1]R = [s2]R. Then we can rewrite the above identity as

H A→→Q H̃,

since for all states from the equivalence class H their probabilities of moving into H̃ as a result of execution
of the multiset of multiactions A coincide (they are equal to Q).

Note also that, starting from states of TS∗(G) (TS∗(G′)) to some set of states H ⊆ (DR(G)∪DR(G′)), we
can reach only states of the same transition system, since the transition systems of two dynamic expressions do
not communicate.

Let (A1 · · ·An,P) ∈ StepProbTraces(G). Taking into account the previous notes and R : G↔spG
′, we have

sG
A1→→Q1 H1 ∩DR(G) A2→→Q2 · · · An→→Qn Hn ∩DR(G) ⇔ sG′

A1→→Q1 H1 ∩DR(G′) A2→→Q2 · · · An→→Qn Hn ∩DR(G′).

Now we intend to prove that the sum of probabilities of all the paths going through the states from H1 ∩
DR(G), . . . ,Hn ∩DR(G) coincides with the product of Q1, . . . ,Qn, which is essentially the probability of the
“composite” path going through the equivalence classes H1, . . . ,Hn in TS∗(G).

Lemma A.1 For a dynamic expression G and all n (1 ≤ n ≤ |DR(G)/R|) the following holds:

n∏

i=1

Qi =
∑

{Γ1,...,Γn|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn→→Pnsn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

Pi.

Proof. (of the lemma) We shall prove by induction on n.
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• n = 1

We should prove that

Q1 =
∑

{Γ1|sG

Γ1→→P1s1, L(Γ1)=A1, s1∈H1}

P1.

This follows from the definition of the transition relation between a state and a set of states.

• n → n + 1

By induction hypothesis, we have the equality

n∏

i=1

Qi =
∑

{Γ1,...,Γn|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn→→Pn sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

Pi.

In addition, we have

Qn+1 =
∑

{Γn+1|sn

Γn+1→→ Pn+1sn+1, L(Γn+1)=An+1, sn+1∈Hn+1}

Pn+1,

again by the definition of the transition relation between a state and a set of states. Let us note that the
sum above does not depend on particular sn ∈ Hn, i.e., it is the same for all paths of TS∗(G) starting at
sG and going through H1, . . . ,Hn.

As a result of multiplying the left and the right part of the two above equalities, we obtain

n∏

i=1

Qi · Qn+1 =




∑

{Γ1,...,Γn|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn→→Pnsn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

Pi


 ·

∑

{Γn+1|sn

Γn+1→→ Pn+1sn+1, L(Γn+1)=An+1, sn+1∈Hn+1}

Pn+1.

By distributivity and taking into account the note above on independence of the sum of current probabil-
ities from the concrete state sn, we conclude that

n+1∏

i=1

Qi =
∑

{Γ1,...,Γn+1|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn+1→→ Pn+1sn+1, L(Γi)=Ai, si∈Hi (1≤i≤n+1)}

n+1∏

i=1

Pi.

This ends the proof of the lemma. ut (the lemma)
Note that the result of this lemma can also be applied to G′.
Now we only need to see that summation over all equivalence classes is the same as summation over all

states, hence, over all multisets of activities, since their executions result the states, i.e.,

∑

{Γ1,...,Γn|sG

Γ1→→P1s1
Γ2→→P2 ···

Γn→→Pnsn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

Pi =

∑

{H1,...,Hn|sG

A1→→Q1H1∩DR(G)
A2→→Q2 ···

An→→QnHn∩DR(G)}

n∏

i=1

Qi =

∑

{H1,...,Hn|sG′
A1→→Q1H1∩DR(G′)

A2→→Q2 ···
An→→QnHn∩DR(G′)}

n∏

i=1

Qi =
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∑

{Γ′1,...,Γ′n|sG′
Γ′
1→→P′

1
s′1

Γ′
2→→P′

2
···Γ

′
n→→P′ns′n, L(Γ′

i
)=Ai (1≤i≤n)}

n∏

i=1

P ′i.

Hence, (A1 · · ·An,P) ∈ StepProbTraces(G′), and we have StepProbTraces(G) ⊆ StepProbTraces(G′).
The reverse inclusion is proved by symmetry. ut
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