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Abstract

The paper is devoted to the investigation of behavioural equivalences of concurrent systems modelled by
Petri nets with silent transitions. Basic τ -equivalences and back-forth τ -bisimulation equivalences known
from the literature are supplemented by new ones, giving rise to complete set of equivalence notions in
interleaving / true concurrency and linear / branching time semantics. Their interrelations are examined
for the general class of nets as well as for their subclasses of nets without silent transitions and sequential
nets (nets without concurrent transitions). In addition, the preservation of all the equivalence notions by
refinements (allowing one to consider the systems to be modelled on a lower abstraction levels) is investigated.

Key words & phrases: Petri nets with silent transitions, sequential nets, basic τ -equivalences, back-
forth τ -bisimulation equivalences, refinement.

1 Introduction

The notion of equivalence is central in any theory of systems. It allows to compare systems taking into account
particular aspects of their behaviour.

Petri nets [14] became a popular formal model for design of concurrent and distributed systems. One of the
main advantages of Petri nets is their ability for structural characterization of three fundamental features of
concurrent computations: causality, nondeterminism and concurrency.

Silent transitions are transitions labelled by special silent action τ which represents an internal activity of
a system to be modelled and it is invisible for external observer. It is well-known that Petri nets with silent
transitions are more powerful than usual ones.

Equivalences which abstract of silent actions are called τ -equivalences (these are labelled by the symbol τ
to distinguish them of relations not abstracting of silent actions). In recent years, a wide range of semantic
equivalences was proposed in concurrency theory. Some of them were either directly defined or transferred from
other formal models to Petri nets. The following basic notions of τ -equivalences are known from the literature.

• τ -trace equivalences (they respect only protocols of behaviour of systems): interleaving (≡τ
i ) [15], step

(≡τ
s ) [15], partial word (≡τ

pw) [21] and pomset (≡τ
pom) [16].

• Usual τ -bisimulation equivalences (they respect branching structure of behaviour of systems): interleaving
(↔τ

i ) [12], step (↔τ
s ) [15], partial word (↔τ

pw) [20] and pomset (↔τ
pom) [16].

• ST-τ -bisimulation equivalences (they respect the duration or maximality of events in behaviour of systems):
interleaving (↔τ

iST ) [20], partial word (↔τ
pwST ) [20] and pomset (↔τ

pomST ) [20].

• History preserving τ -bisimulation equivalences (they respect the “past” or “history” of behaviour of sys-
tems): pomset (↔τ

pomh) [8, 9].

• History preserving ST-τ -bisimulation equivalences (they respect the “history” and the duration or maxi-
mality of events in behaviour of systems): pomset (↔τ

pomhST ) [8, 9].
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• Usual branching τ -bisimulation equivalences (they respect branching structure of behaviour of systems
taking a special care for silent actions): interleaving (↔τ

ibr) [10, 11].

• History preserving branching τ -bisimulation equivalences (they respect “history” and branching structure
of behaviour of systems taking a special care for silent actions): pomset (↔τ

pomhbr) [8].

• Isomorphism (') (i.e. coincidence of systems up to renaming of their components).

Back-forth bisimulation equivalences are based on the idea that bisimulation relation do not only require systems
to simulate each other behaviour in the forward direction (as usually) but also when going back in history. They
are closely connected with equivalences of logics with past modalities.

These equivalence notions were initially introduced in [13]. In the framework of transition systems without
silent actions interleaving back-forth bisimulation equivalence was defined. On transition systems with silent
actions it was shown that back-forth variant (↔τ

ibif ) of interleaving τ -bisimulation equivalence coincide with
↔τ

ibr.
In [5, 6, 7] the new variants of step, partial word and pomset back-forth bisimulation equivalences were

defined in the framework of prime event structures without silent actions.
In [17] the new idea of differentiating the kinds of back and forth simulations appeared (following this idea,

it is possible, for example, to define step back pomset forth bisimulation equivalence). The set of all possible
back-forth equivalence notions was proposed in interleaving, step, partial word and pomset semantics for prime
event structures without silent actions. The new notion of τ -equivalence was proposed for event structures
with silent actions: pomset back pomset forth (↔τ

pombpomf ) τ -bisimulation equivalence. Its coincidence with
↔τ

pomhbr was proved.
To choose most appropriate behavioural viewpoint on systems to be modelled, it is very important to have a

complete set of equivalence notions in all semantics and understand their interrelations. This branch of research
is usually called comparative concurrency semantics. To clarify the nature of equivalences and evaluate how
they respect internal activity and concurrency in systems to be modelled, it is actual to consider also correlation
of these notions on nets without silent transitions and concurrency-free (sequential) ones. Treating equivalences
for preservation by refinements allows one to decide which of them may be used for top-down design.

Working in the framework of Petri nets with silent transitions, in this paper we continue the research of [19]
and extend the set of basic notions of τ -equivalences by τ -conflict preserving ones (completely respect conflicts
in nets): we introduce multi event structure equivalence (≡τ

mes).
We complete back-forth τ -equivalences from [17] by 6 new notions: interleaving back step forth (↔τ

ibsf ),
interleaving back partial word forth (↔τ

ibpwf ), interleaving back pomset forth (↔τ
ibpomf ), step back step forth

(↔τ
sbsf ), step back partial word forth (↔τ

sbpwf ) and step back pomset forth (↔τ
sbpomf ) bisimulation equivalences.

We compare all back-forth τ -equivalences with the set of basic behavioural relations.
We also all the considered τ -equivalences with equivalences which do not abstract of silent actions.
In addition, we investigate the interrelations of all the τ -equivalence notions on nets without silent transitions

and sequential nets. We prove that on nets without silent transitions τ -equivalences coincide with equivalence
notions which do not abstract of silent actions. We demonstrate that on sequential nets interleaving and pomset
τ -equivalences are merged, and back-forth τ -equivalences coincide with forth τ -equivalence relations.

In [4], SM-refinement operator for Petri nets was proposed, which “replaces” their transitions by SM-nets,
a special subclass of state machine nets. We treat all the considered τ -equivalence notions for preservation by
SM-refinements.

The rest of the paper is organized as follows. Basic definitions are introduced in Section 2. In Section
3 we propose basic τ -equivalences and investigate their interrelations. In Section 4 back-forth τ -bisimulation
equivalences are defined and compared with basic τ -equivalence notions. All the considered τ -equivalences are
compared with ones which do not abstract of silent actions in Section 5. In Section 6 we establish which τ -
equivalence relations are preserved by SM-refinements. Section 7 is devoted to comparison of the τ -equivalences
on nets without silent transitions and sequential nets. Concluding Section 8 contains a review of the main
results obtained and some directions of further research.

2 Basic definitions

In this section we give some basic definitions used further.

2.1 Multisets

Definition 2.1 Let X be some set. A finite multiset M over X is a mapping M : X → N (N is a set of
natural numbers) s.t. |{x ∈ X | M(x) > 0}| < ∞.
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M(X) denotes the set of all finite multisets over X. When ∀x ∈ X M(x) ≤ 1, M is a proper set. Cardinality
of multiset M is defined in such a way: |M | =

∑
x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′, if

∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}.

2.2 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels. The symbol τ 6∈ Act denotes a special silent action
which represents internal activity of system to be modelled and invisible to external observer. We denote
Actτ = Act ∪ {τ}.
Definition 2.2 A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• FN : (PN ×TN )∪ (TN ×PN ) → N is the flow relation with weights (N denotes a set of natural numbers);

• lN : TN → Actτ is a labelling of transitions with action names.

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉. A mapping β : PN ∪ TN →
PN ′ ∪ TN ′ is an isomorphism between N and N ′, denoted by β : N ' N ′, if:

1. β is a bijection s.t. β(PN ) = PN ′ and β(TN ) = TN ′ ;

2. ∀p ∈ PN ∀t ∈ TN FN (p, t) = FN ′(β(p), β(t)) and FN (t, p) = FN ′(β(t), β(p));

3. ∀t ∈ TN lN (t) = lN ′(β(t)).

Labelled nets N and N ′ are isomorphic, denoted by N ' N ′, if ∃β : N ' N ′.
Given a labelled net N and some transition t ∈ TN , the precondition and postcondition of t, denoted by •t and

t• respectively, are the multisets defined in such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous
definitions are introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈ PN | •p = ∅} is
a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} is a set of final (output) places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN s.t. t•i−1 ∩ •ti 6= ∅ (1 ≤ i ≤ n) and
t0 = tn. A labelled net N is ordinary if ∀p ∈ PN

•p and p• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN∪TN . Let us introduce the following

notions.

• x ≺N y ⇔ xF+
N y, where F+

N is a transitive closure of FN (strict causal dependence relation);

• x ¹N y ⇔ (x ≺N y) ∨ (x = y) (a relation of causal dependence);

• x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t ¹N x, u ¹N y) (a relation of conflict);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x).

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

2.3 Marked nets

A marking of a labelled net N is a multiset M ∈M(PN ).

Definition 2.3 A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,MN 〉, where 〈PN , TN , FN , lN 〉 is a labelled
net and MN ∈M(PN ) is the initial marking.

Given nets N = 〈PN , TN , FN , lN , MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ , MN ′〉. A mapping β : PN ∪ TN →
PN ′ ∪ TN ′ is an isomorphism between N and N ′, denoted by β : N ' N ′, if:

1. β : 〈PN , TN , FN , lN 〉 ' 〈PN ′ , TN ′ , FN ′ , lN ′〉;
2. ∀p ∈ PN MN (p) = MN ′(β(p)).

Nets N and N ′ are isomorphic, denoted by N ' N ′, if ∃β : N ' N ′.
Let M ∈ M(PN ) be a marking of a net N . A transition t ∈ TN is fireable in M , if •t ⊆ M . If t is fireable

in M , its firing yields a new marking M̃ = M − •t + t•, denoted by M
t→ M̃ . A marking M of a net N is

reachable, if M = MN or there exists a reachable marking M̂ of N s.t. M̂
t→ M for some t ∈ TN . Mark(N)

denotes a set of all reachable markings of a net N .
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2.4 Partially ordered sets

Definition 2.4 A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;

• l : X → Actτ is a labelling function.

Let ρ = 〈X,≺, l〉 be lposet and Y ⊆ X. A restriction of ρ to the set Y is defined as follows:
ρ|Y = 〈Y,≺ ∩(Y × Y ), l|Y 〉.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, denoted by β : ρ ³ ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ³ ρ′, if ∃β : ρ ³ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by β : ρ v ρ′, if:

1. β : ρ ³ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ v ρ′, if ∃β : ρ v ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by β : ρ ' ρ′, if β : ρ v ρ′ and

β−1 : ρ′ v ρ. Lposets ρ and ρ′ are isomorphic, denoted by ρ ' ρ′, if ∃β : ρ ' ρ′.

Definition 2.5 Partially ordered multiset (pomset) is an isomorphism class of lposets.

2.5 Event structures

Definition 2.6 A labelled event structure (LES) is a quadruple ξ = 〈X,≺, #, l〉, where:

• X = {x, y, . . .} is a set of events;

• ≺⊆ X ×X is a strict partial order, a causal dependence relation, which satisfies to the principle of finite
causes: ∀x ∈ X | ↓ x| < ∞;

• # ⊆ X × X is an irreflexive symmetrical conflict relation, which satisfies to the principle of conflict
heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z;

• l : X → Actτ is a labelling function.

Let ξ = 〈X,≺, #, l〉 be LES and Y ⊆ X. A restriction of ξ to the set Y is defined as follows:
ξ|Y = 〈Y,≺ ∩(Y × Y ), # ∩ (Y × Y ), l|Y 〉.

Let ξ = 〈X,≺, #, l〉 and ξ′ = 〈X ′,≺′, #′, l′〉 be LES’s. A mapping β : X → X ′ is an isomorphism between
ξ and ξ′, denoted by β : ξ ' ξ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x));

3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);

4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

LES’s ξ and ξ′ are isomorphic, denoted by ξ ' ξ′, if ∃β : ξ ' ξ′.

Definition 2.7 A multi-event structure (MES) is an isomorphism class of LES’s.
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2.6 C-processes

Definition 2.8 A causal net is an acyclic ordinary labelled net C = 〈PC , TC , FC , lC〉, s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. ∀x ∈ PC ∪ TC | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can define lposet ρC = 〈TC ,≺N

∩(TC × TC), lC〉.
The fundamental property of causal nets is [2]: if C is a causal net, then there exists a sequence of transition

fireings ◦C = L0
v1→ · · · vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n

i=0Li and TC = {v1, . . . , vn}. Such a
sequence is called a full execution of C.

Definition 2.9 Given a net N and a causal net C. A mapping ϕ : PC ∪ TC → PN ∪ TN is an embedding of
C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈M(PN ) and ϕ(TC) ∈M(TN ), i.e. sorts are preserved;

2. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected;

3. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if ◦C v1→ · · · vn→ C◦ is a full execution of C, then M = ϕ(◦C)
ϕ(v1)−→

· · · ϕ(vn)−→ ϕ(C◦) = M̃ is a sequence of transition fireings in N .

Definition 2.10 A fireable in marking M C-process (process) of a net N is a pair π = (C,ϕ), where C is a
causal net and ϕ : C → N is an embedding s.t. M = ϕ(◦C). A fireable in MN process is a process of N .

We write Π(N,M) for a set of all fireable in marking M processes of a net N and Π(N) for the set of all
processes of a net N . The initial process of a net N is πN = (CN , ϕN ) ∈ Π(N), s.t. TCN = ∅. If π ∈ Π(N, M),
then firing of this process transforms a marking M into M̃ = M−ϕ(◦C)+ϕ(C◦) = ϕ(C◦), denoted by M

π→ M̃ .
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)). A process π is a prefix of a process π̃, if

TC ⊆ T
C̃

is a left-closed set in C̃. A process π̂ is a suffix of a process π̃, if T
Ĉ

= T
C̃
\ TC . In such a case a

process π̃ is an extension of π by process π̂, and π̂ is an extending process for π, denoted by π
π̂→ π̃. We write

π → π̃, if π
π̂→ π̃ for some π̂.

A process π̃ is an extension of a process π by one transition, denoted by π
v→ π̃ or π

a→ π̃, if π
π̂→ π̃, T

Ĉ
= {v}

and l
Ĉ

(v) = a .
A process π̃ is an extension of a process π by sequence of transitions, denoted by π

σ→ π̃ or π
ω→ π̃, if

∃πi ∈ Π(N) (1 ≤ i ≤ n) π
v1→ π1

v2→ . . .
vn→ πn = π̃, σ = v1 · · · vn and l

Ĉ
(σ) = ω.

A process π̃ is an extension of a process π by multiset of transitions, denoted by π
V→ π̃ or π

A→ π̃, if
π

π̂→ π̃, ≺
Ĉ

= ∅, T
Ĉ

= V and l
Ĉ

(V ) = A.

2.7 O-processes

Definition 2.11 An occurrence net is an acyclic ordinary labelled net O = 〈PO, TO, FO, lO〉, s.t.:

1. ∀r ∈ PO |•r| ≤ 1, i.e. there are no backwards conflicts;

2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e. conflict relation is irreflexive;

3. ∀x ∈ PO ∪ TO | ↓O x| < ∞, i.e. set of causes is finite.

Let O = 〈PO, TO, FO, lO〉 be occurrence net and N = 〈PN , TN , FN , lN , MN 〉 be some net. A mapping ψ :
PO ∪ TO → PN ∪ TN is an embedding O into N , notation ψ : O → N , if:

1. ψ(PO) ∈M(PN ) and ψ(TO) ∈M(TN ). i.e. sorts are preserved;

2. ∀v ∈ TO lO(v) = lN (ψ(v)), i.e. labelling is preserved;

3. ∀v ∈ TO
•ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e. flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w, i.e. there are no “superfluous” conflicts.
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Definition 2.12 An O-process of a net N is a pair $ = (O, ψ), where O is an occurrence net and ψ : O → N
is an embedding s.t. MN = ψ(◦O).

We write ℘(N) for a set of all O-processes of a net N . The initial O-process of a net N coincides with its
initial C-process, i.e. $N = πN .

Let $ = (O, ψ), $̃ = (Õ, ψ̃) ∈ ℘(N), O = 〈PO, TO, FO, lO〉, Õ = 〈P
Õ

, T
Õ

, F
Õ

, l
Õ
〉. A process $ is a prefix

of a process $̃, if TO ⊆ T
Õ

is a left-closed set in Õ. In such a case O-process $̃ is an extension of $, and $̂ is
an extending O-process for $, denoted by $ → $̃.

An O-process $ of a net N is maximal, if it cannot be extended, i.e. ∀$ = (O, ψ) s.t. $ → $̃ : T
Õ
\TO = ∅.

A set of all maximal O-processes of a net N consists of the unique (up to isomorphism) O-process $max =
(Omax, ψmax). In such a case an isomorphism class of occurrence net Omax is an unfolding of a net N , notation
U(N).

Let us note that on the basis of any occurrence net O one can define LES ξO = 〈TO,≺O ∩(TO × TO), #O ∩
(TO × TO), lO〉. Then on the basis of unfolding U(N) of a net N one can define MES E(N) = ξU(N) which is an
isomorphism class of LES ξO for O ∈ U(N).

3 Basic τ-equivalences

In this section we propose basic τ -equivalences: trace, bisimulation and conflict preserving.

3.1 τ-trace equivalences

We denote the empty string by the symbol ε.
Let σ = a1 · · · an ∈ Act∗τ . We define vis(σ) as follows (in the following definition a ∈ Actτ ).

1. vis(ε) = ε;

2. vis(σa) =
{

vis(σ)a, a 6= τ ;
vis(σ), a = τ.

Definition 3.1 A visible interleaving trace of a net N is a sequence vis(a1 · · · an) ∈ Act∗ s.t. πN
a1→ π1

a2→
. . .

an→ πn, where πN is the initial process of a net N and πi ∈ Π(N) (1 ≤ i ≤ n). We denote a set of all visible
interleaving traces of a net N by V isIntTraces(N). Two nets N and N ′ are interleaving τ -trace equivalent,
denoted by N ≡τ

i N ′, if V isIntTraces(N) = V isIntTraces(N ′).

Let Σ = A1 · · ·An ∈ (M(Actτ ))∗. We define vis(Σ) as follows (in the following definition A ∈M(Actτ )).

1. vis(ε) = ε;

2. vis(ΣA) =
{

vis(Σ)(A ∩Act), A ∩Act 6= ∅;
vis(Σ), otherwise.

Definition 3.2 A visible step trace of a net N is a sequence vis(A1 · · ·An) ∈ (M(Act))∗ s.t. πN
A1→ π1

A2→
. . .

An→ πn, where πN is the initial process of a net N and πi ∈ Π(N) (1 ≤ i ≤ n). We denote a set of all
visible step traces of a net N by V isStepTraces(N). Two nets N and N ′ are step τ -trace equivalent, denoted
by N ≡τ

s N ′, if V isStepTraces(N) = V isStepTraces(N ′).

Let ρ = 〈X,≺, l〉 is lposet s.t. l : X → Actτ . We denote vis(X) = {x ∈ X | l(x) ∈ Act} and vis(ρ) = ρ|vis(X).

Definition 3.3 A visible pomset trace of a net N is a pomset vis(ρ), an isomorphism class of lposet vis(ρC)
for π = (C, ϕ) ∈ Π(N). We denote a set of all visible pomsets of a net N by V isPomsets(N). Two nets N
and N ′ are partial word τ -trace equivalent, denoted by N ≡τ

pw N ′, if V isPomsets(N) v V isPomsets(N ′) and
V isPomsets(N ′) v V isPomsets(N).

Definition 3.4 Two nets N and N ′ are pomset τ -trace equivalent, denoted by N ≡τ
pom N ′, if V isPomsets(N)

= V isPomsets(N ′).

3.2 τ-bisimulation equivalences

Let C = 〈PC , TC , FC , lC〉 be C-net. We denote vis(TC) = {v ∈ TC | lC(v) ∈ Act} and
vis(≺C) =≺C ∩(vis(TC)× vis(TC)).
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3.2.1 Usual τ-bisimulation equivalences

Definition 3.5 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) is a ?-τ -bisimulation between N
and N ′, ? ∈{interleaving, step, partial word, pomset}, denoted by R : N↔τ

?N ′, ? ∈ {i, s, pw, pom}, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
π̂→ π̃,

(a) |vis(T
Ĉ

)| = 1, if ? = i;
(b) vis(≺

Ĉ
) = ∅, if ? = s;

⇒ ∃π̃′ : π′ π̂′→ π̃′, (π̃, π̃′) ∈ R and

(a) vis(ρ
Ĉ′

) v vis(ρ
Ĉ

), if ? = pw;
(b) vis(ρ

Ĉ
) ' vis(ρ

Ĉ′
), if ? ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ?-τ -bisimulation equivalent, ? ∈{interleaving, step, partial word, pomset}, denoted by
N↔τ

?N ′, if ∃R : N↔τ
?N ′, ? ∈ {i, s, pw, pom}.

3.2.2 ST-τ-bisimulation equivalences

Definition 3.6 ST-τ -process of a net N is a pair (πE , πP ) s.t. πE , πP ∈ Π(N), πP
πW→ πE and ∀v, w ∈

TCE
(v ≺CE

w) ∨ (lCE
(v) = τ) ⇒ v ∈ TCP

.

In such a case πE is a process which began working, πP corresponds to the completed part of πE , and
πW — to the still working part. Obviously, ≺CW

= ∅. We denote a set of all ST-τ -processes of a net N by
ST τ −Π(N). (πN , πN ) is the initial ST-τ -process of a net N . Let (πE , πP ), (π̃E , π̃P ) ∈ ST τ −Π(N). We write
(πE , πP ) → (π̃E , π̃P ), if πE → π̃E and πP → π̃P .

Definition 3.7 Let N and N ′ be some nets. A relation R ⊆ ST τ −Π(N)× ST τ −Π(N ′)×B, where B = {β |
β : vis(TC) → vis(TC′), π = (C, ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)} is a ?-ST-τ -bisimulation between N and
N ′, ? ∈{interleaving, partial word, pomset}, denoted by R : N↔τ

?ST N ′, ? ∈ {i, pw, pom}, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : vis(ρCE
) ³ vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′
P
).

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) : (π′E , π′P ) → (π̃′E , π̃′P ), β̃|vis(TCE
) =

β, ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R, and if πP
π→ π̃E , π′P

π′→ π̃′E , γ = β̃|TC , then:

(a) γ−1 : vis(ρC′) v vis(ρC), if ? = pw;
(b) γ : vis(ρC) ' vis(ρC′), if ? = pom.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ?-ST-τ -bisimulation equivalent, ? ∈{interleaving, partial word, pomset}, denoted by
N↔τ

?ST N ′, if ∃R : N↔τ
?ST N ′, ? ∈ {i, pw, pom}.

3.2.3 History preserving τ-bisimulation equivalences

Definition 3.8 Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′)×B, where B = {β | β : vis(TC) →
vis(TC′), π = (C, ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving τ -bisimulation between
N and N ′, denoted by N↔τ

pomhN ′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ' vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|vis(TC) = β, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving τ -bisimulation equivalent, denoted by N↔τ
pomhN ′, if ∃R :

N↔τ
pomhN ′.
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3.2.4 History preserving ST-τ-bisimulation equivalences

Definition 3.9 Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) × ST τ − Π(N ′) × B, where B =
{β | β : vis(TC) → vis(TC′), π = (C, ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving
ST-τ -bisimulation between N and N ′, denoted by R : N↔τ

pomhST N ′, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : vis(ρCE
) ' vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′
P
).

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) : (π′E , π′P ) → (π̃′E , π̃′P ), β̃|vis(TCE
) =

β, ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving ST-τ -bisimulation equivalent, denoted by N↔τ
pomhST N ′, if

∃R : N↔τ
pomhST N ′.

3.2.5 Usual branching τ-bisimulation equivalences

For some net N and π, π̃ ∈ Π(N) we write π ⇒ π̃ when ∃π̂ = (Ĉ, ϕ̂) s.t. π
π̂→ π̃ and vis(T

Ĉ
) = ∅.

Definition 3.10 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) is an interleaving branching
τ -bisimulation between N and N ′, denoted by N↔τ

ibrN
′, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
a→ π̃ ⇒

(a) a = τ and (π̃, π′) ∈ R or

(b) a 6= τ and ∃π̄′, π̃′ : π′ ⇒ π̄′ a→ π̃′, (π, π̄′) ∈ R, (π̃, π̃′) ∈ R.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are interleaving branching τ -bisimulation equivalent, denoted by N↔τ
ibrN

′, if ∃R :
N↔τ

ibrN
′.

3.2.6 History preserving branching τ-bisimulation equivalences

Definition 3.11 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) × B, where B = {β | β : TC →
TC′ , π = (C, ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving branching τ -bisimulation
between N and N ′, denoted by N↔τ

pomhbrN
′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ' vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒
(a) (π̃, π′, β) ∈ R or

(b) ∃β̃, π̄′, π̃′ : π′ ⇒ π̄′ → π̃′, β̃|vis(TC) = β, (π, π̄′, β) ∈ R, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving branching τ -bisimulation equivalent, denoted by
N↔τ

pomhbrN
′, if ∃R : N↔τ

pomhbrN
′.

3.3 Conflict preserving τ-equivalences

Let ξ = 〈X,≺,#, l〉 be a LES s.t. l : X → Actτ . We denote vis(X) = {x ∈ X | l(x) ∈ Act} and vis(ξ) = ξ|vis(X).

Definition 3.12 A visible MES-trace of a net N , denoted by vis(ξ), is an isomorphism class of LES vis(ξO)
for $ = (O,ψ) ∈ ℘(N). We denote a set of all visible MES-traces of a net N by V isMEStructs(N). Two
nets N and N ′ are MES-τ -conflict preserving equivalent, denoted by N ≡τ

mes N ′, if V isMEStructs(N) =
V isMEStructs(N ′). Let us note that, due to uniqueness of maximal O-process, this is the same as to require
vis(E(N)) = vis(E(N ′)).
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Figure 1: Interrelations of basic τ -equivalences

3.4 Interrelations of basic τ-equivalences

Let us compare basic τ -equivalences.

Theorem 3.1 Let ↔,↔↔∈ {≡τ ,↔τ ,'}, ?, ?? ∈ {i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr,
pomhbr,mes}. For nets N and N ′ N ↔? N ′ ⇒ N
doublelra??N

′ iff in the graph in Figure 1 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) Let us check t he validity of the implications in the graph in Figure 1.

• The implications ↔τ
s→↔τ

i , ↔∈ {≡τ ,↔τ}, are valid since isomorphism of lposets with empty precedence
relation is isomorphism of singleton ones.

• The implications ↔τ
pw→↔τ

s , ↔∈ {≡τ ,↔τ}, are valid since homomorphism of lposets is isomorphism of
lposets with empty precedence relation.

• The implication ↔τ
pwST →↔τ

iST is valid since homomorphism of lposets is isomorphism of singleton ones.

• The implications ↔τ
pom→↔τ

pw, ↔∈ {≡τ ,↔τ}, are valid since isomorphism of lposets is homomorphism.

• The implication ≡τ
mes→≡τ

pom is valid since isomorphic LES’s have isomorphic sets of lposets.

• The implication ↔τ
i →≡τ

i is proved as follows. Let R : N↔τ
i N ′. If πN

a1→ π1
a2→ . . .

an→ πn, then there

exists a sequence (πN , πN ′), . . . , (πn, π′m) ∈ R s.t. πN ′
a′1→ π′1

a′2→ . . .
a′m→ π′m, vis(a1 · · · an) = vis(a′1 · · · a′m),

and vice versa, due to the symmetry of bisimulation.

• The implication ↔τ
s →≡τ

s is proved as the previous one but with use of A1, . . . , An ∈M(Actτ ) instead of
a1, . . . , an ∈ Actτ .

• The implication ↔τ
pw →≡τ

pw is proved as follows. Let R : N↔τ
pwN ′ and π = (C, ϕ) ∈ Π(N). Since

πN
π→ π, then ∃(π, π′) ∈ R s.t. π′ = (C ′, ϕ′) and vis(ρC′) v vis(ρC). Hence, V isPomsets(N ′) v

V isPomsets(N). The inclusion V isPomsets(N) v V isPomsets(N ′) is proved similarly, due to the
symmetry of bisimulation.

• The implication ↔τ
pom →≡τ

pom is proved as the previous one but with use of isomorphism instead of
homomorphism.

• The implication ↔τ
iST →↔τ

s is proved as previous ones with use of the fact that a step π
A→ π̃, where A =

{a1, . . . , an} ∈ M(Act), corresponds to the sequence of ST-τ -processes (π0, π0), . . . , (πn, π0), . . . , (πn, πn)
s.t. π = π0

a1→ . . .
an→ πn = π̃.

• The implications ↔τ
?ST → ↔τ

? , ? ∈ {pw, pom} are proved with constructing on the basis of the relation
R : N↔τ

?ST N ′ the new relation S : N↔τ
?N ′, defined as follows: S = {(π, π′) | ∃β ((π, π), (π′, π′), β) ∈ R}.
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• The implication ↔τ
pomhST → ↔τ

pomh is proved with constructing on the basis of the relation R :
N↔τ

pomhST N ′ the new relation S : N↔τ
pomhN ′, defined as follows: S = {(π, π′, β) | ((π, π), (π′, π′), β) ∈

R}.
• The implication ↔τ

pomh →↔τ
pom is proved with constructing on the basis of the relation R : N↔τ

pomhN ′

the new relation S : N↔τ
pomN ′, defined as follows: S = {(π, π′) | ∃β ((π, π), (π′, π′), β) ∈ R}.

• The implication ↔τ
pomhST →↔τ

pomST follows from the definitions.

• The implication ↔τ
ibr →↔τ

i follows from the definitions.

• The implication ↔τ
pomhbr →↔τ

pomh follows from the definitions.

• The implication ↔τ
pomhbr →↔τ

ibr is proved with constructing on the basis of the relation
R : N↔τ

pomhbrN
′ the new relation S : N↔τ

ibrN
′, defined as follows: S = {(π, π′) | ∃β (π, π′, β) ∈ R}.

• The implication '→↔τ
pomhbr is obvious.

• The implication '→↔τ
pomhST is obvious.

• The implication '→≡τ
mes is obvious.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 1 is proved by the following examples.

• In Figure 2(a) N↔τ
ibrN

′, but N 6≡τ
s N ′, since only in the net N ′ actions a and b cannot happen concur-

rently.

• In Figure 2(c) N↔τ
iST N ′, but N 6≡τ

pw N ′, since for the pomset corresponding to the net N there is no
even less sequential pomset in N ′.

• In Figure 2(b) N↔τ
pwST N ′, but N 6≡τ

pom N ′, since only in the net N ′ action b can depend on action a.

• In Figure 4(a) N ≡τ
mes N ′, but N↔/ τ

i N ′, since only in the net N ′ action τ can happen so that in the
corresponding initial state of the net N action a cannot happen.

• In Figure 3(a) N↔τ
pomN ′, but N↔/ τ

iST N ′, since only in the net N ′ action a can start so that no action b
can begin to work until finishing a.

• In Figure 3(b) N↔τ
pomST N ′, but N↔/ τ

pomhN ′, since only in the net N ′ after action a action b can happen
so that action c must depend on a.

• In Figure 4(b) N↔τ
pomhN ′, but N↔/ τ

iST N ′, since only in the net N ′ action a can start so that the action
b can never occur.

• In Figure 4(c) N↔τ
pomhST N ′, but N↔/ τ

ibrN
′, since in the net N ′ an action a can happen so that it will

be simulated by sequence of actions τa in N . Then the state of the net N reached after τ must be related
with the initial state of a net N , but in such a case the occurrence of action b from the initial state of N ′

cannot be imitated from the corresponding state of N .

• In Figure 4(d) N↔τ
pomhbrN

′, but N↔/ τ
iST N ′, since in the net N ′ an action c may start so that during

work of the corresponding action c in the net N an action a may happen in such a way that the action b
never occur.

• In Figure 3(c) N↔τ
pomhST N ′, but N 6≡τ

mes N ′, since only the MES corresponding to the net N ′ has two
conflict actions a.

• In Figure 3(c) N↔τ
pomhbrN

′, but N 6≡τ
mes N ′.

• In Figure 3(d) N ≡τ
mes N ′, but N 6' N ′, since unfireable transitions of the nets N and N ′ are labelled by

different actions (a and b). ut

4 Back-forth τ-bisimulation equivalences

In this section we propose back-forth τ -bisimulation equivalences.
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4.1 Sequential runs

Definition 4.1 A sequential run of a net N is a pair (π, σ), where:

• a process π ∈ Π(N) contains the information about causal dependencies of transitions which brought to
this state;

• a sequence σ ∈ T ∗C s.t. πN
σ→ π, contains the information about the order in which the transitions occur

which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).
The initial sequential run of a net N is a pair (πN , ε), where ε is an empty sequence. Let us denote by |σ|

a length of a sequence σ.
Let (π, σ), (π̃, σ̃) ∈ Runs(N). We write (π, σ) π̂→ (π̃, σ̃), if π

π̂→ π̃, ∃σ̂ ∈ T ∗
C̃

π
σ̂→ π̃ and σ̃ = σσ̂. We write

(π, σ) → (π̃, σ̃), if (π, σ) π̂→ (π̃, σ̃) for some π̂.
Let (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and σ = v1 · · · vn, σ′ = v′1 · · · v′n. Let us define a mapping

βσ′
σ : TC → TC′ as follows: βσ′

σ = {(vi, v
′
i) | 1 ≤ i ≤ n}. Let βε

ε = ∅.
Let (π, σ) ∈ Runs(N) and σ = v1 · · · vn, πN

v1→ . . .
vi→ πi (1 ≤ i ≤ n).

Let us introduce the following notations:

• π(0) = πN ,

π(i) = πi (1 ≤ i ≤ n);

• σ(0) = ε,

σ(i) = v1 · · · vi (1 ≤ i ≤ n).

4.2 Definitions of back-forth τ-bisimulation equivalences

Now we are ready to present definitions of back-forth τ -bisimulation equivalences.

Definition 4.2 Let N and N ′ be some nets. A relation R ⊆ Runs(N) × Runs(N ′) is a ?-back ??-forth τ -
bisimulation between N and N ′,
?, ?? ∈{interleaving, step, partial word, pomset}, denoted by R : N↔τ

?b??fN ′, ?, ?? ∈ {i, s, pw, pom}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R
• (back)

(π̃, σ̃) π̂→ (π, σ),
(a) |vis(T

Ĉ
)| = 1, if ? = i;

(b) vis(≺
Ĉ

) = ∅, if ? = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′) π̂′→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and
(a) vis(ρ

Ĉ′
) v vis(ρ

Ĉ
), if ? = pw;

(b) vis(ρ
Ĉ

) ' vis(ρ
Ĉ′), if ? ∈ {i, s, pom};

• (forth)

(π, σ) π̂→ (π̃, σ̃),
(a) |vis(T

Ĉ
)| = 1, if ?? = i;

(b) vis(≺
Ĉ

) = ∅, if ?? = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′) π̂′→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and
(a) vis(ρ

Ĉ′
) v vis(ρ

Ĉ
), if ?? = pw;

(b) vis(ρ
Ĉ

) ' vis(ρ
Ĉ′

), if ?? ∈ {i, s, pom}.
3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ?-back ??-forth τ -bisimulation equivalent, ?, ?? ∈ {interleaving, step, partial word,
pomset}, denoted by N↔τ

?b??fN ′, if ∃R : N↔τ
?b??fN ′, ?, ?? ∈ {i, s, pw, pom}.

Let us note that back extensions of sequential runs are deterministic, i.e. for (π, σ) ∈ Runs(N) there exists
only one (π̃, σ̃) ∈ Runs(N) s.t. (π̃, σ̃) π̂→ (π, σ) and |σ̃| = i (0 ≤ i ≤ |σ|). In such a case (π̃, σ̃) = (π(i), σ(i)).
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4.3 Interrelations of back-forth τ-bisimulation equivalences

Let us compare back-forth τ -bisimulation equivalences.

Proposition 4.1 Let ? ∈ {i, s, pw, pom}. For nets N and N ′ N↔τ
pwb?fN ′ ⇔ N↔τ

pomb?fN ′.

Proof. (⇐) Isomorphism of lposets is homomorphism.
(⇒) Let R : N↔pwb?fN ′. Let us prove R : N↔τ

pomb?fN ′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)

Let (π̃, σ̃) π̂→ (π, σ). Then ∃(π̃′, σ̃′) : (π̃′, σ̃′) π̂′→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and vis(ρ
Ĉ′

) v vis(ρ
Ĉ

).

Due to the symmetry of a bisimulation, the back extension (π̃′, σ̃′) π̂′→ (π′, σ′) must be imitated by
some extension (˜̄π, ˜̄σ) π̌→ (π, σ) s.t. vis(ρČ) v vis(ρ

Ĉ′
). Due to determinism of back extensions,

vis(T
Ĉ

) = vis(TČ). Then vis(ρ
Ĉ

) = vis(ρČ). Consequently, vis(ρ
Ĉ

) ' vis(ρ
Ĉ′

).

• (forth)
Obviously.

3. As item 2, but the roles of N and N ′ are reversed. ut

Proposition 4.2 Let ? ∈ {i, s, pw, pom}. For nets N and N ′ N↔τ
?bifN ′ ⇔ N↔τ

?b?fN ′.

Proof. (⇐) Isomorphism of causal nets, isomorphism and homomorphism of lposets of causal nets, isomorphism
of lposets of causal nets with empty precedence relation imply label preserving bijection of lposets of causal
nets.

(⇒) Let R : N↔τ
?bifN ′. Let us prove R : N↔τ

?b?fN ′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)
Obviously.

• (forth)

Let (π, σ) π̂→ (π̃, σ̃). The extension by π̂ corresponds to the extension by some sequence of transitions.

Then ∃(π̃′, σ̃′) : (π′, σ′) π̂′→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R, where the extension by π̂′ corresponds to
the extension by sequence of transitions which imitates the corresponding one in the net N .

Due to the symmetry of a bisimulation, the back extension (π, σ) π̂→ (π̃, σ̃) must be imitated by some

extension (π′, σ′) π̌′→ (˜̄π′, ˜̄σ′), s.t.

(a) vis(ρČ′) v vis(ρ
Ĉ

), if ? = pw;
(b) vis(ρ

Ĉ
) ' vis(ρČ′), if ? ∈ {i, s, pom}.

Due to determinism of back extensions, vis(T
Ĉ′) = vis(TČ′). Then vis(ρ

Ĉ′) = vis(ρČ′).

3. As item 2, but the roles of N and N ′ are reversed. ut
In Figure 5 dashed lines embrace coinciding back-forth τ -bisimulation equivalences.
Hence, interrelations of back-forth τ -bisimulation equivalences may be represented by graph in Figure 6.
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↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf
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Figure 5: Merging of back-forth τ -bisimulation equivalences

↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf

???

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

?

↔τ
pombpomf

¾

¾

¾

¾

¾

Figure 6: Interrelations of back-forth τ -bisimulation equivalences

4.4 Interrelations of back-forth τ-bisimulation equivalences with basic
τ-equivalences

Let us consider compare back-forth τ -bisimulation equivalences with basic τ -equivalences.
For some net N and (π, σ), (π̃, σ̃) ∈ Runs(N) we write (π, σ) ⇒ (π̃, σ̃) when (π, σ) → (π̃, σ̃) and π ⇒ π̃.
Let for some nets N and N ′ (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′).
We write (π, σ)↔τ

ibif (π′, σ′) if ∃R : N↔τ
ibifN ′ s.t. ((π, σ), (π′, σ′)) ∈ R and analogously for ↔τ

pombpomf .
We write π↔ibrπ

′ if ∃R : N↔τ
ibrN

′ s.t. (π, π′) ∈ R.
We write π↔τ

pomhbrπ
′ if ∃R : N↔τ

pomhbrN
′ ∃β s.t. (π, π′, β) ∈ R.

Lemma 4.1 (X-lemma 1) Let for nets N and N ′ N↔τ
ibifN ′ and (π, σ), (π̃, σ̃) ∈ Runs(N), (π′, σ′), (π̃′, σ̃′) ∈

Runs(N ′) s.t. (π, σ) ⇒ (π̃, σ̃), (π′, σ′) ⇒ (π̃′, σ̃′). Then (π, σ)↔τ
ibif (π̃′, σ̃′) and (π̃, σ̃)↔τ

ibif (π′, σ′) implies
(π, σ)↔τ

ibif (π′, σ′) and (π̃, σ̃)↔τ
ibif (π̃′, σ̃′).

Proof. As proof of the following lemma but using process extensions by one action only. ut
Lemma 4.2 (X-lemma 2) Let for nets N and N ′ N↔τ

pombpomfN ′ and (π, σ), (π̃, σ̃) ∈ Runs(N), (π′, σ′),
(π̃′, σ̃′) ∈ Runs(N ′) s.t. (π, σ) ⇒ (π̃, σ̃), (π′, σ′) ⇒ (π̃′, σ̃′). Then (π, σ)↔τ

pombpomf (π̃′, σ̃′) and (π̃, σ̃)↔τ
pombpomf

(π′, σ′) implies (π, σ)↔τ
pombpomf (π′, σ′) and (π̃, σ̃)↔τ

pombpomf (π̃′, σ̃′).

Proof. It is enough to prove (π̃, σ̃)↔τ
pombpomf (π̃′, σ̃′), since the fact (π, σ)↔τ

pombpomf (π′, σ′) is proved similarly.
Let (π, σ) ⇒ (π̃, σ̃), (π′, σ′) ⇒ (π̃′, σ̃′) and (π, σ)↔τ

pombpomf (π̃′, σ̃′), (π̃, σ̃)↔τ
pombpomf (π′, σ′). We have only

to check similation of the net N by N ′ in back and forth directions, since simulation of N ′ by N is proved by
symmetry.

• (back)

Let (π̄, σ̄) π̂→ (π̃, σ̃), π̂ = (Ĉ, ϕ̂). Then, since (π̃, σ̃)↔τ
pombpomf (π′, σ′), ∃π̌′ = (Č ′, ϕ̌′), (π̄′, σ̄′) s.t.

(π̄′, σ̄′) π̌′→ (π′, σ′), (π̄, σ̄)↔τ
pombpomf (π̄′, σ̄′) and vis(ρ

Ĉ
) ' vis(ρČ′).

Let us note if (π̄′, σ̄′) π̂′→ (π̃′, σ̃′), π̂′ = (Ĉ ′, ϕ̂′) then we have vis(ρČ′) = vis(ρ
Ĉ′

). Consequently, vis(ρ
Ĉ

) '
vis(ρ

Ĉ′
).

• (forth)

Let (π̃, σ̃) π̂→ (π̄, σ̄), π̂ = (Ĉ, ϕ̂). Let us note if (π, σ) π̌→ (π̄, σ̄), π̌ = (Č, ϕ̌) then we have vis(ρ
Ĉ

) = vis(ρČ).

Since (π, σ)↔τ
pombpomf (π̃′, σ̃′), ∃π̂′ = (Ĉ ′, ϕ̂′), (π̄′, σ̄′) s.t. (π̃′, σ̃′) π̂′→ (π̄′, σ̄′), (π̄, σ̄)↔τ

pombpomf (π̄′, σ̄′) and
vis(ρČ) ' vis(ρ

Ĉ′
). Consequently, vis(ρ

Ĉ
) ' vis(ρ

Ĉ′
). ut
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Proposition 4.3 For nets N and N ′ N↔τ
ibifN ′ ⇔ N↔τ

ibrN
′.

Proof. As proof of the following proposition but using process extensions by one action only. ut
Proposition 4.4 For nets N and N ′ N↔τ

pombpomfN ′ ⇔ N↔τ
pomhbrN

′.

Proof. For π ∈ Π(N) we denote [π] = {π̄ | π̄ ∈ Π(N), π↔τ
pomhbrπ̄}. Let (π, σ) ∈ Runs(N) and σ = v1 · · · , vn.

A trace of (π, σ) is defined by trace(π, σ) = [πN ]lC(v1)[π(1)] · · · [π(n−1)]lC(vn)[π(n)]. A trace modulo stuttering
of (π, σ), denoted by stutt(π, σ), is obtained from trace(π, σ) by replacing all triples of a kind RτR by R.

(⇐) Let N↔τ
pomhbrN

′, (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and stutt(π, σ) = R1a1R2 · · ·Rn−1anRn,
stutt(π′, σ′) = R′1a

′
1R

′
2 · · ·R′m−1a

′
mR′m. We say that stutt(π, σ) and stutt(π′, σ′) are isomorphic, denoted by

stutt(π, σ) ' stutt(π′, σ′), if:

1. n = m;

2. ∀i (1 ≤ i ≤ n) ai = a′i;

3. ∀i (1 ≤ i ≤ n) and πi ∈ Ri, π′i ∈ R′i : πi↔τ
pomhbrπ

′
i.

Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′), stutt(π, σ)
' stutt(π′, σ′)}. Let us prove S : N↔τ

pombpomfN ′.

1. ((πN , ε), (πN ′ , ε)) ∈ S, since πN↔τ
pomhbrπN ′ .

2. Let ((π, σ), (π′, σ′)) ∈ S.

• (back)

We have ∃β : vis(ρC) ' vis(ρC′). Let (π̃, σ̃) π̂→ (π, σ). Then ∃i (1 ≤ i ≤ n) (π̃, σ̃) ∈ Ri

from trace(π, σ). Since stutt(π, σ) ' stutt(π′, σ′), then ∃k (1 ≤ k ≤ n) s.t. Ri corresponds
to R′k from trace(π′, σ′). Then π̃↔τ

pomhbrπ
′(k). Consequently, ((π̃, σ̃), (π′(k), σ′(k))) ∈ S and

∃β : vis(ρ
C̃

) ' vis(ρC′(k)). Let us consider the back extension (π′(k), σ′(k)) π̂′→ (π′, σ′). Since β

and β̃ are isomorphisms, we have vis(ρ
Ĉ

) ' vis(ρ
Ĉ′

).

• (forth) Obviously.

3. As item 2, but the roles of N and N ′ are reversed.

(⇒) Let N↔τ
pombpomfN ′. Let us define a relation S as follows: S = {(π, π′, βσ′

σ ) | (π, σ)↔τ
pombpomf (π′, σ′)}.

Let us prove S : N↔τ
pomhbrN

′.

1. (πN , πN ′ , ∅) ∈ S since βε
ε = ∅ and (πN , ε)↔τ

pombpomf (πN ′ , ε).

2. Let (π, π′, βσ′
σ ) ∈ S. Then by definition of S, (π, σ)↔τ

pombpomf (π′, σ′) and back extension (πN , ε) π→ (π, σ)

is imitated by (π̄′, ε) π̄′→ (π′, σ′) for some π̄′ s.t. πN ′ ⇒ π̄′ . If π = (C, ϕ) and π̄′ = (C, ϕ̄), we have
βσ′

σ : vis(ρC) ' vis(ρ
C
′). Since vis(T ′C) = vis(T

C
′), where π′ = (C ′, ϕ′), we have βσ′

σ : vis(ρC) ' vis(ρC′).

3. Let (π, π′, βσ′
σ ) ∈ S and π

v→ π̃. Then by definition of S, (π, σ)↔τ
pombpomf (π′, σ′) and (π, σ) → (π̃, σv).

The following two cases are possible.

(a) l
C̃

(v) 6= τ .

Since N↔τ
pombpomfN ′, we have ∃v′i, w′j (1 ≤ i ≤ n, 1 ≤ j ≤ m), v′, π′1, π

′
2 s.t. (π′, σ′)

v′1→ · · · v′n→
(π′1, σ

′v′1 · · · v′n) v′→ (π′2, σ
′v′1 · · · v′nv′)

w′1→ · · · w′m→ (π̃′, σ′v′1 · · · v′nv′w′1 · · ·w′m), (π̃, σv)↔τ
pombpomf

(π̃′, σ′v′1 · · · v′nv′w′1 · · ·w′m) and l
C̃

(v) = l
C̃′

(v′), ∀i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m) l
C̃′

(v′i) = l
C̃′

(w′j) = τ .

Consequently, π′
v′1→ · · · v′n→ π′1

v′→ π′2
w′1→ · · · w′m→ π̃′.

The back extension (π′2, σ
′v′1 · · · v′nv′) → (π̃′, σ′v′1 · · · v′nv′w′1 · · ·w′m) is imitated by empty back exten-

sion of (π̃, σv). Hence, (π̃, σv)↔τ
pombpomf (π′2, σ

′v′1 · · · v′nv′). Therefore (π̃, π′2, β
σ′v′1···v′nv′
σv ) ∈ S.

Let us consider the back extension (π′1, σ
′v′1 · · · v′n) → (π′2, σ

′v′1 · · · v′nv′). It is imitated by some
back extension (π̄, σ̄) ⇒ (π, σ) → (π̃, σv) s.t. (π̄, σ̄)↔τ

pombpomf (π′1, σ
′v′1 · · · v′n). Since (π′, σ′) ⇒

(π′1, σ
′v′1 · · · v′n) and (π, σ)↔τ

pombpomf (π′, σ′), by X-lemma 2 we have (π, σ)↔τ
pombpomf

(π′1, σ
′v′1 · · · v′n). So, we obtain (π, π′1, β

σ′v′1···v′n
σ ) ∈ S.

Hence, we have simulation, since π′ ⇒ π′1
a→ π̃′2 and (π, π′1, β

σ′v′1···v′n
σ ) ∈ S, (π̃, π′2, β

σ′v′1···v′nv′
σv ) ∈ S.
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Figure 7: Interrelations of back-forth τ -bisimulation equivalences with basic τ -equivalences

(b) l
C̃

(v) = τ .
Since N↔τ

pombpomfN ′, we have ∃π′i (1 ≤ i ≤ n) s.t. (π′, σ′) ⇒ (π′1, σ
′v1) ⇒ · · · ⇒ (π′n, σ′v′1 · · · v′n) =

(π̃′, σ′v′1 · · · v′n) and (π̃, σv)↔τ
pombpomf (π̃′, σ′v′1 · · · v′n).

i. If n = 0, we have proved.
ii. If n ≥ 1, and the back extension (π′n−1, σ

′v′1 · · · v′n−1) ⇒ (π′n, σ′v′1 · · · v′n) is simulated by the
empty back extension of (π̃, σv) we have proved for n = 1, and for n ≥ 2 we shall continue such
a reasoning. Two cases are possible.
In the first case, we shall obtain (π̃, σv)↔τ

pombpomf (π′, σ′) and (π̃, π′, βσ′
σv) ∈ S.

In the second case, we shall obtain ∃m (1 ≤ m ≤ n− 1) s.t. (π̃, σv)↔τ
pombpomf (π′m, σ′v′1 . . . v′m)

and (π̃, π′m, β
σ′v′1...v′m
σv ) ∈ S.

The back extension (π′m−1, σ
′v′1 · · · v′m−1) ⇒ (π′m, σ′v′1 · · · v′m) is imitated by some back ex-

tension (π̄, σ̄) ⇒ (π, σ) s.t. (π̄, σ̄)↔τ
pombpomf (π′m−1, σ

′v′1 · · · v′m−1). By X-lemma 2 we have

(π, σ)↔τ
pombpomf (π′m−1, σ

′v′1 · · · v′m−1). So, we obtain (π, π′m−1, β
σ′v′1···v′m−1
σ ) ∈ S.

Hence, we have simulation, since π′ ⇒ π′m−1
τ→ π̃′m and (π, π′m−1, β

σ′v′1···v′m−1
σ ) ∈ S,

(π̃, π′m, β
σ′v′1...v′m
σv ) ∈ S. ut

4. As item 3, but the roles of N and N ′ are reversed.

Theorem 4.1 Let ↔,↔↔∈ {≡τ ,↔τ ,'} and ?, ?? ∈ {i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr,
pomhbr,mes, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N and N ′ N ↔? N ′ ⇒ N ↔↔?? N ′ iff in
the graph in Figure 7 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) A consequence of Theorem 3.1 and the following substantiations.

• The implication ↔τ
ibsf →↔τ

ibr is valid since by Proposition 4.3 ↔τ
ibr = ↔τ

ibif and isomorphism of lposets
with empty precedence relation is isomorphism of singleton ones.

• The implications ↔τ
?bpwf →↔τ

?bsf , ? ∈ {i, s} is valid since homomorphism is isomorphism of lposets with
empty precedence relation.

• The implications ↔τ
?bpomf →↔τ

?bpwf , ? ∈ {i, s} is valid since isomorphism of lposets is homomorphism.

• The implications ↔τ
ib?f →↔τ

? , ? ∈ {s, pw, pom} is proved with constructing on the basis of the relation
R : N↔τ

sb?fN ′ the new relation S : N↔τ
?N ′, defined as follows: S = {(π, π′) | ∃σ, σ′ ((π, σ), (π′, σ′)) ∈ R}.
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Figure 8: Example of back-forth τ -bisimulation equivalences

• The implications ↔τ
sb?f → ↔τ

ib?f , ? ∈ {s, pw, pom} are valid since isomorphism of lposets with empty
precedence relation is isomorphism of singleton ones.

• The implication ↔τ
pomhbr →↔τ

sbpomf is valid since by Proposition 4.4 ↔τ
pomhbr = ↔τ

pombpomf and homo-
morphism is isomorphism of lposets with empty precedence relation.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 7 is proved by the following examples.

• In Figure 2(c) N↔τ
sbsfN ′, but N 6≡τ

pw N ′.

• In Figure 8 N↔τ
sbpwfN ′, but N 6≡τ

pom N ′.

• In Figure 3(a) N↔τ
ibpomfN ′, but N↔/ τ

sbsfN ′. ut

5 Interrelations of equivalences with τ-equivalences

In this section we compare equivalences which do not abstract of silent actions with all the considered τ -
equivalencees.

Proposition 5.1 Let ↔∈ {≡,↔}, ? ∈ {i, s, pw, pom, iST, pwST, pomST, mes, sbsf, sbpwf, sbpomf}, ?? ∈
{s, pw, pom}. For nets N and N ′:

1. N ↔? N ′ ⇒ N ↔τ
? N ′;

2. N↔pomhN ′ ⇒ N↔τ
pomhST N ′;

3. N↔iN
′ ⇒ N↔τ

ibrN
′;

4. N↔pomhN ′ ⇒ N↔τ
pomhbrN

′;

5. N↔??N
′ ⇒ N↔τ

ib??fN ′.

and all the implications are strict.

Proof.

1. By definitions.

2. We prove with construction one the basis of the relation R : N↔pomhN ′ the new relation
S : N↔τ

pomhST N , defined as follows: S = {((πE , πP ), (π′E , π′P ), β) | (πE , π′E , β) ∈ R, (πE , πP ) ∈ ST τ −
Π(N), (π′E , π′P ) ∈ ST τ −Π(N ′), β(TCP ) = TC′

P
}.

3. By definitions.

4. By definitions.

5. We prove with construction one the basis of the relation R : N↔??N
′ the new relation S : N↔τ

ib??fN ′,
defined as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′), |σ| = |σ′|, lC(σ) =
lC′(σ′), ∀i (0 ≤ i ≤ |σ|) (π(i), π′(i)) ∈ R}.
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Figure 9: Example of interrelations of equivalences and τ -equivalences

The strictness of the implications is proved by the following examples.

1. In Figure 4(c) N↔τ
pomhST N ′, but N 6≡i N ′, since only in the net N ′ an action a can happen in the initial

state.

2. In Figure 4(a) N ≡τ
mes N ′, but N 6≡i N ′, since only in the net N ′ an action τ can happen in the initial

state.

3. In Figure 9 N↔τ
pomhbrN

′, but N 6≡i N ′, since only in the net N ′ a sequence of actions aτ can happen
from the initial state. ut

6 Preservation of the τ-equivalences by refinements

In this section we treat the considered τ -equivalences for preservation by transition refinements. We use SM-
refinement, i.e. refinement by a special subclass of state-machine nets introduced in [4].

Definition 6.1 An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one output place;

2. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D has unique input and unique
output place.

3. MD = {pin}, i.e. at the beginning there is unique token in pin.

Definition 6.2 Let N = 〈PN , TN , FN , lN ,MN 〉 be some net, a ∈ lN (TN ) and D = 〈PD, TD, FD, lD,MD〉 be
SM-net. An SM-refinement, denoted by ref(N, a, D), is (up to isomorphism) a net N = 〈PN , TN , FN , lN ,MN 〉,
where:

• PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

• TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

• FN (x̄, ȳ) =





FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

• lN (ū) =
{

lN (ū), ū ∈ TN \ l−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1
N (a);
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Figure 10: The τ -equivalences between ≡τ
i and ↔τ

s are not preserved by SM-refinements

• MN (p) =
{

MN (p), p ∈ PN ;
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equivalent after applying any refinement
operator to them accordingly.

The following proposition demonstrates that some considered in the paper equivalence notions are not
preserved by SM-refinements.

Proposition 6.1 Let ? ∈ {i, s}, ?? ∈ {i, s, pw, pom, pomh, ibr, pomhbr, ibsf, ibpwf, ibpomf, sbsf, sbpwf,
sbpomf}. Then the τ -equivalences ≡τ

? , ↔τ
?? are not preserved by SM-refinements.

Proof.

• In Figure 10 N↔τ
sN ′, but ref(N, c, D) 6≡τ

i ref(N ′, c,D), since only in ref(N ′, c, D) the sequence of
actions c1abc2 can happen. Consequently, the τ -equivalences between ≡τ

i and ↔τ
s are not preserved by

SM-refinements.

• In Figure 11 N↔τ
pomN ′, but ref(N, a, D)↔/ τ

i ref(N ′, a, D), since only in ref(N ′, a, D) after occurrence
of action a1 action b can not happen. Consequently, no equivalence between ↔τ

i and ↔τ
pom is preserved

by SM-refinements.

• In Figure 12 N↔τ
pomhbrN

′, but ref(N, a, D)↔/ τ
i ref(N ′, a,D), since only in ref(N ′, a, D) an action c1

may happen so that after the corresponding action c1 in the net N an action a may happen in such a
way that the action b never occur. Consequently, no equivalence between ↔τ

i and ↔τ
pomhbr is preserved

by SM-refinements.

In Figure 13 lines embrace τ -equivalences which are not preserved by SM-refinements due to examples in
Figures 10–12. ut
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Figure 12: The τ -equivalences between ↔τ
i and ↔τ

pomhbr are not preserved by SM-refinements

Theorem 6.1 Let ↔∈ {≡τ ,↔τ ,'} and ? ∈ {i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr,
pomhbr,mes, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N, N ′ s.t. a ∈ lN (TN ) ∩ lN ′(TN ′) ∩Act and
SM-net D the following holds: N ↔? N ′ ⇒ ref(N, a, D) ↔? ref(N ′, a, D) iff the equivalence ↔? is in oval
in Figure 14.

Proof. Omitted. ut

7 The τ-equivalences on some net subclasses

In this section we consider the τ -equivalences on nets without silent transitions and sequential nets.

7.1 The τ-equivalences on nets without silent transitions

Let us consider the τ -equivalences on nets without silent transitions, where no transition is labelled by the
action τ .

Proposition 7.1 Let ↔∈ {≡,↔}, ? ∈ {i, s, pw, pom, iST, pwST, pomST, mes, sbsf, sbpwf, sbpomf}, ?? ∈
{s, pw, pom}. For nets without silent transitions N and N ′:
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Figure 13: The τ -equivalences which are not preserved by SM-refinements
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Figure 14: Preservation of the τ -equivalences by SM-refinements
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Figure 15: Merging of the τ -equivalences on nets without silent transitions

1. N ↔? N ′ ⇔ N ↔τ
? N ′;

2. N↔pomhN ′ ⇔ N↔τ
pomhST N ′;

3. N↔iN
′ ⇔ N↔τ

ibrN
′;

4. N↔pomhN ′ ⇔ N↔τ
pomhbrN

′;

5. N↔??N
′ ⇔ N↔τ

ib??fN ′.

Proof. (⇐)

1. By definitions.

2. We prove with construction one the basis of the relationR : N↔τ
pomhST N ′ the new relation S : N↔pomhN ,

defined as follows: S = {(π, π′, β) | ((π, π), (π′, π′), β) ∈ R}.
3. By definitions.

4. By definitions.

5. We prove with construction one the basis of the relation R : N↔τ
ib??fN ′ the new relation S : N↔??N

′,
defined as follows: S = {(π, π′) | ∃σ, σ′ ((π, σ), (π′, σ′)) ∈ R}.

(⇒) By Proposition 5.1, because nets without silent transitions are a subclass of that of with silent transi-
tions. ut

In Figure 15 dashed lines embrace the τ -equivalences coinciding on nets without silent transitions.

Theorem 7.1 Let ↔,↔↔∈ {≡,↔,'}, ?, ?? ∈ {i, s, pw, pom, iST, pwST, pomST, pomh, ibr,mes, sbsf, sbpwf,
sbpomf}. For nets without silent transitions N and N ′ N ↔? N ′ ⇒ N ↔↔?? N ′ iff in the graph in Figure 16
there exists a directed path from ↔? to ↔↔??.

Proof. By Proposition 7.1 and Theorem 3.1 from [19]. ut
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Figure 16: Interrelations of the τ -equivalences on nets without silent transitions

7.2 The τ-equivalences on sequential nets

Let us consider the τ -equivalences on sequential nets, where no two transitions can be fired concurrently.

Definition 7.1 A net N = 〈PN , TN , FN , lN ,MN 〉 is sequential, if ∀M ∈ Mark(N) ¬∃t, u ∈ TN : •t+•u ⊆ M .

Proposition 7.2 For sequential nets N and N ′:

1. N ≡τ
i N ′ ⇔ N ≡τ

pom N ′;

2. N↔τ
i N ′ ⇔ N↔τ

pomhN ′;

3. N↔τ
iST N ′ ⇔ N↔τ

pomhST N ′;

4. N↔τ
ibrN

′ ⇔ N↔τ
pomhbrN

′.

Proof.

1. See [18].

2. See [4].

3. Similar to the item 2.

4. Similar to the item 2. ut
In Figure 17 dashed lines embrace the τ -equivalences coinciding on sequential nets.

Theorem 7.2 Let ↔,↔↔∈ {≡τ ,↔τ ,'}, ?, ?? ∈ {i, iST, ibr,mes}. For sequential nets N and N ′ N ↔? N ′ ⇒
N ↔↔?? N ′ iff in the graph in Figure 18 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) By Theorem 4.1.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 18 is proved by the following examples

on sequential nets.

• In Figure 4(a) N ≡τ
mes N ′, but N↔/ τ

i N ′.

• In Figure 4(c) N↔τ
i N ′, but N↔/ τ

ibrN
′.

• In Figure 4(b) N↔τ
i N ′, but N↔/ τ

iST N ′.

• In Figure 3(c) N↔τ
ibrN

′, but N 6≡τ
mes N ′.

• In Figure 3(c) N↔τ
iST N ′, but N 6≡τ

mes N ′. ut
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Figure 17: Merging of the τ -equivalences on sequential nets
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8 Conclusion

In this paper, we supplemented by new ones and examined a group of basic τ -equivalences and back-forth
τ -bisimulation equivalences. We compared them with relations which do not abstract of silent actions. We also
compared them on the whole class of Petri nets as well as on their subclasses of nets without silent transitions
and sequential nets. All the considered τ -equivalences were checked for preservation by SM-refinements. So,
we can use the τ -equivalence notions that are preserved by SM-refinements, for top-down design of concurrent
systems.

Further research may consist in the investigation of τ -variants of place bisimulation equivalences [2] which
are used for effective semantically correct reduction of nets. In [3, 1] a notion of interleaving place τ -bisimulation
equivalence was proposed, and its usefulness for simplification of concurrent systems was demonstrated.
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