
Bull. Nov. Comp. Center, Comp. Science, 3 (1995), 89–100
c© 1995 NCC Publisher

An investigation of equivalence notions on some

subclasses of Petri nets ∗

I.V. Tarasyuk

Abstract. In this paper a variety of Petri net equivalences is examined. A corre-
lation of all the considered equivalences is established, and a lattice of implications
is obtained. In addition, the equivalences are treated for some subclasses of Petri
nets: sequential nets, T-nets and nets with strict labelling.

1. Introduction

In recent years, a wide range of semantic equivalences were defined and investi-
gated in concurrency theory. In linear time semantics, where a process is fully
determined by the set of its possible (partial) runs, interleaving, step and pomset
trace equivalences [3] are known.

In branching time semantics the information is preserved where two courses
of actions diverge. Bisimulation is a fundamental behavioural equivalence in this
semantics. Interleaving [6], step [5], partial word [11], pomset [4] and process [1]
bisimulation equivalences were proposed in the literature.

(Interleaving) ST-bisimulation equivalence [4] respects the duration of transition
occurences. A definition of the equivalence was extended to partial words and
pomsets in [11].

(Pomset) history preserving bisimulation equivalence, which respects the “past”
of the processes, was first defined in [8] under the name “bisimulation equivalence
of behaviour structures”.

In this paper the above mentioned definitions are supplemented by partial word
history preserving and by process (ST- and history preserving) bisimulation equiv-
alences. The equivalences are considered in the framework of Petri nets with finite
processes. The correlation between all the equivalences is examined on usual Petri
nets and their subclasses: sequential nets, T-nets and strictly labelled nets.

In Section 2 the basic definitions are given. Trace equivalences are described
in Section 3. Bisimulation equivalences are presented in Section 4. In Section 5
the theorem establishing a correlation between all the introduced equivalences is
proved. Section 6 is devoted to the examination of the equivalences on different
net subclasses. The concluding Section 7 contains some ideas about further devel-
opment of the theme. Most of the proofs are omitted because of absence of space.
The early results can be found in [9].

∗The work is supported in part by International Association for the Promotion of
Cooperation with Scientists from the Independent States of the Former Soviet Union
(INTAS), contract N 1010-CT93-0048.



90 I.V. Tarasyuk

2. Basic definitions

2.1. Multisets

Let X be some set. A multiset M over X is a mapping M : X → N, where N is
a set of natural numbers. For x ∈ X, M(x) is a multiplicity x in M . We write
x ∈ M if M(x) > 0.

When ∀x ∈ X M(x) ≤ 1, M is a proper set. M is finite if M(x) = 0 for
all x ∈ X , except maybe a finite number of them. Cardinality of multiset M is
defined in such a way: |M | =

∑
x∈X M(x). From now on we will consider only

finite multisets. M(X) denotes the set of all finite multisets over X .
Set-theotetic notions are extended to finite multisets in the standard way. If

M,M ′ ∈ M(X), we define M + M ′ by (M + M ′)(x) = M(x) + M ′(x). We
write M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). When M ′ ⊆ M , we define M −M ′ by
(M−M ′)(x) = M(x)−M ′(x). Notation M+x−y is used instead ofM+{x}−{y}.
We write symbol ∅ for empty multiset.

2.2. Marked nets

A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {u, v, . . .} is a set of transitions;

• FN : (PN × TN ) ∪ (TN × PN ) → N is the flow relation with weights;

• lN : TN → Act is a labelling of transitions with action names.

It is believed that PN ∩ TN = ∅.
Given a labelled net N and some transition u ∈ TN , the precondition and

postcondition u, written respectively •u and u•, are the multisets defined in such
a way: (•u)(p) = FN (p, u) and (u•)(p) = FN (u, p). Analogous definitions are
introduced for places: (•p)(u) = FN (u, p) and (p•)(u) = FN (p, u). A transition
u is unstable if •u = ∅. A labelled net is stable if it has no unstable transitions.
Further we will deal only with stable labelled nets. A labelled net N is ordinary if
∀p ∈ PN

•p and p• are proper sets. A labelled net N is finite if PN ∪ TN is. Let
◦N = {p ∈ PN |•p = ∅} is a set of initial places of N and N◦ = {p ∈ PN |p• = ∅} is
a set of final places of N .

Let N be a labelled net. A marking of N is a multiset M ∈ M(PN ). A marked
net is a tuple N = 〈PN , TN , FN , lN ,MN〉 so that 〈PN , TN , FN , lN〉 is a labelled net
and MN ∈ M(PN ) is an initial marking. We write “net” instead of “marked net”.
Let M ∈ M(PN ) be a marking of a net N . A transition u ∈ TN is firable in M if
•u ⊆ M . If u is firable in M , firing it yields a new marking M ′ = M − •u + u•,
written M

u
→ M ′. We write M → M ′ if M

u
→ M ′ for some u. A marking M ′ of a

net N is reachable from marking M of the net, if:

1. M ′ = M or

2. there exists a reachable fromM markingM ′′ of a netN , such thatM ′′ → M ′.

A marking M of a net N is reachable, if it is reachable from MN .
Mark(N,M) denotes a set of all reachable from M markings of a net N , and
Mark(N) denotes a set of all reachable markings of a net N .



An investigation of equivalence notions on Petri nets 91

An action a ∈ Act is autoconcurrent in N if ∃M ∈ Mark(N) ∃t, u ∈ TN such
that lN (u) = lN (t) = a and •u + •t ⊆ M . A net N is autoconcurrency free if no
action is autoconcurrent in N .

2.3. Processes

A causal net is a labelled net C = 〈PC , TC , FC , lC〉, where:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched and C is an
ordinary labelled net;

2. FC is well-founded, i.e. there is no backward infinite chain
· · · (rn, vn)(vn, rn−1) · · · (r1, v1)(v1, r0) in FC .

The fundamental property of causal nets is known: if C is a causal net, then there
exists a transition sequence ◦C = L0

v1→ · · ·
vn→ Ln = C◦ so that Li ⊆ PC (0 ≤ i ≤

n), PC = ∪n
i=0Li and TC = {v1, . . . , vn}. Such a sequence is called a full execution

of C.
Given a net N and a causal net C. A mapping f : PC ∪ TC → PN ∪ TN is an

embedding C into N , written f : C → N , if:

1. f(PC) ∈ M(PN ) and f(TC) ∈ M(TN);

2. ∀v ∈ TC lC(v) = lN (f(v));

3. ∀v ∈ TC
•f(v) = f(•v) and f(v)• = f(v•).

Point 3 means that embeddings respect the flow relation. Consequently, if ◦C
v1→

· · ·
vn→ C◦ is a full execution of C, then M = f(◦C)

f(v1)
−→ · · ·

f(vn)
−→ f(C◦) = M ′ is a

transition sequence in N , corresponding to this full execution, written M
C,f
→ M ′.

Conversely, for any transition sequence M
u1→ · · ·

un→ M ′ of a net N there exists a
causal net C and an embedding f : C → N so that M = f(◦C), M ′ = f(C◦), ui =

f(vi) (0 ≤ i ≤ n) and ◦C
v1→ · · ·

vn→ C◦ is a full execution of C.
A firable in marking M process of a net N is a pair π = (C, f), where C is a

causal net and f : C → N is an embedding so that M = f(◦C). A firable in MN

process is a process of N . We write Π(N,M) for a set of all firable in M processes
of N and Π(N) for a set of all processes of N . Processes and reachable markings of
a net N are connected in the following way: Mark(N,M) = {f(C◦)|π = (C, f) ∈
Π(N,M)}. Further we will deal only with finite processes, i.e. with processes
having finite causal nets.

If π ∈ Π(N,M), then firing of this process transforms a marking M into

M ′ = M − f(◦C) + f(C◦) = f(C◦), written M
π
→ M ′. A causal net sets

an ordering on transitions (the causal dependence relation) ≺C , defined in such
a way: ≺C= F+

C ⌈TC×TC
, where F+

C is a transitive closure of FC . The initial
process of a net N is πN = (CN , fN) ∈ Π(N), where TCN

= ∅. Let π =

(C, f), π̃ = (C̃, f̃) ∈ Π(N), π̂ = (Ĉ, f̂) ∈ Π(N, f(C◦)), C = 〈PC , TC , FC , lC〉, C̃ =
〈PC̃ , TC̃ , FC̃ , lC̃〉, Ĉ = 〈P

Ĉ
, T

Ĉ
, F

Ĉ
, l

Ĉ
〉.

We write π
π̂
→ π̃, if:

1. PC ∪ P
Ĉ
= PC̃ , TC ∪ T

Ĉ
= TC̃ , FC ∪ F

Ĉ
= FC̃ , lC ∪ l

Ĉ
= lC̃ ;



92 I.V. Tarasyuk

2. f ∪ f̂ = f̃ .

In such a case π̃ is an extension of π by process π̂, and π̂ is an extending process for

π. We write π → π̃, if π
π̂
→ π̃ for some extending process π̂.

Let π
π̂
→ π̃. A process π̃ is an extension of π by one action, if |T

Ĉ
| = 1. In such

a case we write π
v
→ π̃ or π

a
→ π̃, if T

Ĉ
= {v} and lC̃(v) = a. A process π̃ is an

extension of π by multiset of actions, or step, if ≺
Ĉ
= ∅. In such a case we write

π
V
→ π̃ or π

A
→ π̃, if V = T

Ĉ
, l

Ĉ
(T

Ĉ
) = A, A ∈ M(Act).

2.4. Mappings

Given nets N = 〈PN , TN , FN , lN ,MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉. We
call β a mapping of N into N ′, written β : N → N ′, if β : PN ∪ TN → PN ′ ∪ TN ′ ,
β(PN ) ⊆ PN ′ and β(TN ) ⊆ TN ′ . We write β(N) = N ′, when β(PN ) = PN ′ and
β(TN ) = TN ′ .

A mapping β : N → N ′ is an isomorphism between N and N ′, written β : N ≃
N ′, if:

1. β is a bijection and β(N) = N ′;

2. ∀u ∈ TN lN (u) = lN ′(β(u));

3. ∀u ∈ TN
•β(u) = β(•u) and β(u)• = β(u•).

Nets N and N ′ are isomorphic, written N ≃ N ′, if there exists an isomorphism
β : N ≃ N ′.

Given two labelled causal nets C = 〈PC , TC , FC , lC〉 and
C′ = 〈PC′ , TC′ , FC′ , lC′〉.

A mapping β : TC → TC′ is a label preserving bijection between C and C′ ,
written β : TC ≈ TC′, if:

1. β is a bijection and β(TC) = TC′;

2. ∀v ∈ TC lC(v) = lC′(β(v)).

We write TC ≈ TC′, if there exists a label-preserving bijection β : TC ≈ TC′ .
A mapping β : TC → TC′ is a homomorphism between TC and TC′, written

β : TC ⊑ TC′ , if:

1. β : TC ≈ TC′ ;

2. ∀v, w ∈ TC v ≺C w ⇒ β(v) ≺C′ β(w).

We write TC ⊑ TC′, if there exists a homomorphism β : TC ⊑ TC′ .
A mapping β : TC → TC′ is an isomorphism between TC and TC′ , written

β : TC ≃ TC′ , if β : TC ⊑ TC′ and β−1 : TC′ ⊑ TC . We write TC ≃ TC′ , if there
exists an isomorphism β : TC ≃ TC′ .

3. Trace equivalences

A sequential trace of a net N is a sequence a1 · · · an ∈ Act∗ so that πN
a1→ π1

a2→
. . .

an→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n) and πN is an initial process of N .



An investigation of equivalence notions on Petri nets 93

SeqT races(N) denotes a set of all sequential traces of N . Two nets N and N ′ are
interleaving trace equivalent, written N ≡i N

′, if SeqT races(N) = SeqT races(N ′).

A step trace of a net N is a sequence A1 · · ·An ∈ (M(Act))∗ so that πN
A1→

π1
A2→ . . .

An→ πn, where πi ∈ Π(N) (0 ≤ i ≤ n), and πN is an initial process of N .
StepT races(N) denotes a set of all step traces of N . Two nets N and N ′ are step
trace equivalent, written N ≡s N

′, if StepT races(N) = StepT races(N ′).
A pomset trace of a net N is a pomset ρ, an isomorphism class of TC for π =

(C, f) ∈ Π(N), where C = 〈PC , TC , FC , lC〉. We write ρ ⊑ ρ′, if TC ⊑ TC′ for TC ∈
ρ and TC′ ∈ ρ′. In such a case we say that pomset ρ is less sequential ormore parallel
than ρ′. Let us denote a set of all pomset traces of N by Pomsets(N). Two nets
N and N ′ are partial word trace equivalent, written N ≡pw N ′, if Pomsets(N) ⊑
Pomsets(N ′) and Pomsets(N ′) ⊑ Pomsets(N), i.e. for any ρ′ ∈ Pomsets(N ′)
there exists ρ ∈ Pomsets(N) so that ρ ⊑ ρ′ and vice versa. Two nets N and N ′

are pomset trace equivalent, written N ≡pom N ′, if Pomsets(N) = Pomsets(N ′).
A process trace of a net N is an isomorphism class of C for π = (C, f) ∈

Π(N). ProcessNets(N) denotes a set of all process traces of N . Two nets N
and N ′ are process trace equivalent, written N ≡pr N ′, if ProcessNets(N) =
ProcessNets(N ′).

4. Bisimulation equivalences

In this section we consider the definitions of different bisimulations. A notation
R : N↔αN

′ means that R is a bisimulation of α type between nets N and N ′. Nets
N and N ′ are called α-bisimulation equivalent, written N↔αN

′, if R : N↔αN
′

for some α-bisimulation R.

4.1. Simple bisimulations

Let R ⊆ Π(N)×Π(N ′). In the following definition π̂ = (Ĉ, f̂), π̂′ = (Ĉ′, f̂ ′).
R is a α-bisimulation between N and N ′, α ∈{ interleaving, step, partial word,

pomset, process} , written R : N↔αN
′, α ∈ {i, s, pw, pom, pr}, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |T
Ĉ
| = 1, if α = i;

(b) ≺
Ĉ
= ∅, if α = s;

Then ∃π̃′ : π′ π̂′

→ π̃′, (π̃, π̃′) ∈ R and

(a) T
Ĉ′ ⊑ T

Ĉ
, if α = pw;

(b) T
Ĉ
≃ T

Ĉ′, if α ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ′, if α = pr;

3. As previous item but N and N ′ are transposed.



94 I.V. Tarasyuk

4.2. ST-bisimulations

A ST-process of a net N is a pair (πE , πP ) so that πE , πP ∈ Π(N),

πP
πW→ πE and ∀v, w ∈ TCE

v ≺CE
w ⇒ v ∈ TCP

In such a case πE is a
process which began to work, i.e. all actions of πE began working. A process πP

corresponds to the terminated part of πE , and πW corresponds to the still working
part. Clearly, ≺CW

= ∅. ST−Π(N) denotes a set of all ST-processes ofN . (πN , πN )
will be an initial ST-process of N . Let (πE , πP ), (π̃E , π̃P ) ∈ ST −Π(N). We write
(πE , πP ) → (π̃E , π̃P ), if πE → π̃E and πP → π̃P .

LetR ⊆ ST−Π(N)×ST−Π(N ′)×B, where B = {β|β : TC → TC′, π = (C, f) ∈
Π(N), π′ = (C′, f ′) ∈ Π(N ′)}. In the following definitions πE = (CE , fE), πP =
(CP , fP ), π′

E = (C′

E , f
′

E), π′

P = (C′

P , f
′

P ), π = (C, f), π′ = (C′, f ′).
R is a α-ST-bisimulation between N and N ′, α ∈{ interleaving, partial word,

pomset, process} , written R : N↔αSTN
′, α ∈ {i, pw, pom, pr}, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π
′

E , π
′

P ), β) ∈ R ⇒ β : TCE
≈ TC′

E
and β(TCP

) = TC′

P
;

3. ((πE , πP ), (π
′

E , π
′

P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′

E , π̃
′

P ) :

(π′

E , π
′

P ) → (π̃′

E , π̃
′

P ), β̃⌈TCE
= β, ((π̃E , π̃P ), (π̃

′

E , π̃
′

P ), β̃) ∈ R, and if

πP
π
→ π̃E , π′

P

π′

→ π̃′

E then:

(a) (β̃⌈TC
)−1 : TC′ ⊑ TC , if α = pw;

(b) β̃⌈TC
: TC ≃ TC′, if α ∈ {pom, pr};

(c) C ≃ C′, if α = pr;

4. As previous item but N and N ′ are transposed.

4.3. History preserving bisimulations

Let R ⊆ Π(N)×Π(N ′)×B, where B = {β|β : TC → TC′, π = (C, f) ∈ Π(N), π′ =
(C′, f ′) ∈ Π(N ′)}. In the following definitions π = (C, f), π̃ = (C̃, f̃), π′ =
(C′, f ′), π̃′ = (C̃′, f̃ ′).

R is a α-history preserving bisimulation between N and N ′, α ∈{ partial word,
pomset, process} , written N↔αhN

′, α ∈ {pw, pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : TC ≈ TC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃⌈TC
= β, (π̃, π̃′, β̃) ∈ R and

(a) β̃−1 : TC̃′ ⊑ TC̃ , if α = pw;

(b) β̃ : TC̃ ≃ TC̃′ , if α ∈ {pom, pr};

(c) C̃ ≃ C̃′, if α = pr;

4. As previous item but N and N ′ are transposed.



An investigation of equivalence notions on Petri nets 95

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pwh ↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

✛✛

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄

Figure 1. Correlation of the equivalences

5. A comparison of the equivalences

In this section a theorem establishing correlation between all introduced equiva-
lences is proved.

Theorem 1. Let ∼∈ {≡,↔} and α, β ∈ {i, s, pw, pom, pr, iST ,
pwST, pomST, prST, pwh, pomh, prh}. For nets N and N ′ N ∼α N ′ ⇒ N ∼β

N ′ iff there exists a directed path in a graph in Figure 1 ∼α→ · · · →∼β.

Proof. ⇐ By definitions of the equivalences.
⇒ It is sufficient to consider the following examples.

• In Figure 2.1 N↔iN
′ but N 6≡s N ′ since there exists a step trace {a, b} in

N which is not in N ′.

• In Figure 2.2 N ≡pr N
′ but N↔/ iN

′ since only in N an action a can happen
so that it is impossible to run b after it.

• In Figure 2.3 N↔pwhN
′ but N 6≡pom N ′ since b can depend on a in N .

• In Figure 2.4 N↔pomhN
′ but N 6≡pr N ′ since N is a causal net which is not

isomorphic to causal net N ′.

• In Figure 2.5 N↔iSTN
′ but N 6≡pw N ′ since a net N is corresponded by a

pomset such that there is not even less sequential pomset in N ′.

• In Figure 3.1 N↔prN
′ but N↔/ iSTN

′ since an action a is able to begin
working in N ′ so that no b can start later.

• In Figure 3.2 N↔prSTN
′ but N↔/ pwhN

′ since only in N ′ an actions a and
b can happen so that the next action, c, must depend on a.

6. Equivalences on different net subclasses

In the literature a several subclasses of nets were proposed by introduction some re-
strictions on the initial definition of nets, and merging of equivalences was obtained
on these types of nets. See for example [2, 7]. We will consider the introduced
equivalences on sequential nets, on T-nets and on nets with strict labelling.

A net N = 〈PN , TN , FN , lN ,MN〉 is sequential if ∀π = (C, f) ∈ Π(N),
∀v, w ∈ TC (v ≺C w) ∨ (w ≺C v), i.e. ≺C is a strict (total) ordering on causal net
transitions of any process π = (C, f) of a net N .



96 I.V. Tarasyuk

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

1

N

↔i

6≡s

b a

✍✌
✎☞

✍✌
✎☞

a b

✍✌
✎☞✉

❄

❄

❄

❄

✁
✁☛

❆
❆❯

N ′

2

N

b

✍✌
✎☞
a a

✍✌
✎☞✉
✁
✁☛

❆
❆❯

❄ ❄

❄
✍✌
✎☞

≡pr

↔/ i

b

✍✌
✎☞
a

✍✌
✎☞✉N ′

❄

❄

❄

3

ba

✍✌
✎☞

✍✌
✎☞✉ ✉N

❄ ❄ ↔pwh

6≡pom

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N ′

4

N

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

a

✍✌
✎☞✉
❄

N ′

↔pomh

6≡pr

5

b d

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞✉ ✉

❄

❄

❄

❄

❄

❄

N

↔iST

6≡pw

b b d d

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉N ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄
✚✚❂✚

✚❂

✭✭✭✭✭✭

◗◗s ✑✑✰

❵❵❵❵❵❵

❩
❩⑦

❩
❩⑦

✍✌
✎☞

b

❄

❄

✡
✡

✡
✡

✡
✡

✡✡✢

Figure 2. Examples of nets



An investigation of equivalence notions on Petri nets 97

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a ✍✌
✎☞✉

✍✌
✎☞✉
❄

❄

❄

✛

❄
✚

✚❂
✚

✚❂

1 N

↔pr

↔/ iST

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a ✍✌
✎☞

✍✌
✎☞✉ ✉

✍✌
✎☞✉ a ✍✌

✎☞
b✲ ✲ ✲

✓
✓✓✼

❄

❄

❄

✛

❄
✚✚❂ ✚

✚❂

❇
❇
❇
❇❇▼

N ′

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉

a

✍✌
✎☞✉2 N

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛

↔prST

↔/ pwh

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉

a

✍✌
✎☞✉N ′

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛
b

❏❏❫ ✂✂✌

✍✌
✎☞✉

Figure 3. Examples of nets (continued)

≡i ✛ ≡pr

↔i ↔pr✛ ↔prST ↔prh

❄❄

✛✛

Figure 4. Equivalences on sequential nets

Proposition 1. For sequential nets N and N ′,

1. [2] N↔iN
′ ⇔ N↔pomhN

′;

2. N ≡i N
′ ⇔ N ≡pom N ′.

Theorem 2. Let ∼∈ {≡,↔}, α, β ∈ {i, pr, prST, prh}. For sequential nets N
and N ′ N ∼α N ′ ⇒ N ∼β N ′ iff there exists a directed path ∼α→ · · · →∼β in
graph in Figure 4.

Proof. ⇐ By Theorem 1.
⇒ It is sufficient to consider the following examples on sequential nets.

• In Figure 2.4 N↔iN
′ but N 6≡pr N ′.

• In Figure 2.2 N ≡pr N
′ but N↔/ iN

′.

• In Figure 5.1 N↔prN
′ but N↔/ prSTN

′ since only in N ′ we can begin running
a process with action a so that it may be extended by action b in the only
way (i.e. so that extended process be only one).



98 I.V. Tarasyuk

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a

✍✌
✎☞✉

✉

❄

✟✟✟✙ ❄

❅❅❘ ✡✡✢ ❙❙✇ ��✠

N

↔pr

↔/ prST

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a a

✍✌
✎☞✉

✉

❍❍❍❥

��✠ ❅❅❘ ❄

❅❅❘ ��✠ ❄

N ′1

c c

✍✌
✎☞

✍✌
✎☞

b

✍✌
✎☞

✍✌
✎☞

a

✍✌
✎☞✉

❄

✓✓✴ ❏❏❫

❄

❄

✂✂✌ ❏❏❫

✉
✂✂✌

2 N

↔prST

↔/ prh

c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

bb

✍✌
✎☞

a

✍✌
✎☞✉

✉

❄

��✠ ❩❩⑦

❄ ❄

❄ ❄

❏❏❫

N ′

✚✚❂

✓✓✴

✚✚❂

✏✏✏✏✮

❈
❈
❈
❈
❈
❈
❈❲

✍✌
✎☞

✟✟✟✙

❆
❆
❆
❆
❆
❆
❆❯

Figure 5. Examples of sequential nets

• In Figure 5.2 N↔prSTN
′ but N↔/ prhN

′ since only in N ′ it is possible to run
a process with sequential occuring actions a and b so that the next action,
c, may extend this process only in one way (i.e. causal net with action c,
extending a causal net corresponding to sequence ab, connects with its subnet
containing a, in the only way).

A T-net is a net N = 〈PN , TN , FN , lN ,MN〉 so that ∀p ∈ PN |•p| ≤ 1 and
|p•| ≤ 1.

Proposition 2. For autoconcurrency free T-nets N and N ′,
N ≡i N

′ ⇔ N↔iSTN
′.

No pomset equivalence is a consequence of partial word one, and no process
equivalence is a consequence of pomset one on T-nets without autoconcurrency. It
is demonstrated correspondently by Figure 6.2 where N↔pwhN

′ but N 6≡pom N ′

since only in N ′ an action b can depend on a and by Figure 2.4 where N↔pomhN
′

and N 6≡pr N ′. Let us note that for safe autoconcurrency free T-nets we can use
the results of [10] and establish the coincidence of interleaving and pomset trace
equivalences.

A net N = 〈PN , TN , FN , lN ,MN〉 is a strictly labelled, if its labelling function
is lN bijective, i.e. ∀u, ū ∈ TN u 6= ū ⇒ lN (u) 6= lN (ū).



An investigation of equivalence notions on Petri nets 99

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N

1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉

a b
❄ ❄

✚
✚❂

❩
❩⑦

❇
❇
❇
❇▼

✄
✄
✄
✄✄✗

N ′

↔i

6≡s

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

b

✍✌
✎☞

✍✌
✎☞✉ ✉

a

✍✌
✎☞✉
❄

❄

❄
✚✚❂

N N ′

↔pwh

6≡pom

2

cb

a

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞ ✉

✉

❄

✡
✡✢

❏
❏❫

❄❄

N3

↔pomST

↔/ pwh

cb

a

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞ ✉

✉

❄

✡
✡✢

❏
❏❫

❄❄

N ′

✏✏✏✮
6≡pr

✍✌
✎☞✉

✟✟✟✙
✍✌
✎☞✉

✑
✑✑✰

Figure 6. Examples of strictly labelled nets

Proposition 3. For strictly labelled nets N and N ′, N ≡α N ′ ⇔
N↔αN

′, α ∈ {i, s, pw, pom, pr}.
For strictly labelled nets we can not draw any arrow in a graph in Figure 1

from interleaving to step, from partial word to pomset and from pomset to pro-
cess equivalences. In addition, in all semanticses from interleaving to pomset the
h-bisimulation equivalences are strictly stronger than ST-bisimulation ones. It is
proved by the following examples.

• In Figure 6.1 N↔iN
′ but N 6≡s N ′, since only in N actions a and b can

work concurrently.

• In Figure 6.2 N↔pwhN
′ but N 6≡pom N ′.

• In Figure 2.4 N↔pomhN
′ but N 6≡pr N ′.

• In Figure 6.3 N↔pomSTN
′ but N↔/ pwhN

′, since in N ′ the sequence ab can
happen so that the next action, c, must depend on a.

7. Conclusion

A group of the Petri net equivalences is introduced in the paper. A correlation
between these equivalences on nets with finite processes without λ-actions is found.
In addition, it is considered which equivalences coincide on different subclasses of
nets.

The development of the subject consists in further exploration of the introduced
equivalences on T-nets and strictly labelled nets.



100 I.V. Tarasyuk

The next direction of the development of this theme may be an examination of
the proposed equivalences on the wider net class, exactly, on nets with λ-actions.
Probably some equivalences will not be connected on such nets. In [11] the example
of event structures with λ-actions was considered. It is demonstrated the indepen-
dence of ST-bisimulation equivalences and h-bisimulation equivalence on such event
structures.

Finally it would be interesting to find out how ST- and h-equivalences are con-
nected with place bisimulation equivalences introduced in [1].

Acknowledgements. I would like to thank I.B. Virbitskaite for setting the theme,
supervision in research work and for many helpful discussions which improved the
style and contents of the paper.

References

[1] C. Autant, Ph. Schnoebelen. Place bisimulations in Petri nets. LNCS 616,
p.45–61, June 1992.

[2] E. Best, R. Devillers, A. Kiehn, L. Pomello. Concurrent bisimulations in Petri
nets. Springer Verlag, Acta Informatica 28, p.231–264, 1991.

[3] R.J. van Glabbeek. The refinement theorem for ST-bisimulation semantics. In:
M.Broy and C.B.Jones, editors. Proc. IFIP Working Conference of Program-
ming Concepts and Methods, Sea of Galilee, Israel, 1990, to appear.

[4] R.J. van Glabbeek, F.W. Vaandrager. Petri net models for algebraic theories
of concurrency. LNCS 259, p.224–242, 1987.

[5] M. Nielsen, P.S. Thiagarajan. Degrees of non-determinism and concurrency:
A Petri net view. LNCS 181, p.89–117, December 1984.

[6] D. Park. Concurrency and automata on infinite sequences. LNCS 104, p.167–
183, March 1981.

[7] L. Pomello, G. Rozenberg, C. Simone. A survey of equivalence notions for net
based systems. LNCS 609, p.410–472, 1992.

[8] A. Rabinovitch, B.A. Trakhtenbrot. Behaviour structures and nets. Funda-
menta Informaticae XI, p.357–404, 1988.

[9] I.V. Tarasyuk. Equivalences on Petri nets. In: Specification, verification and
net models of concurrent systems. Institut of Informatics Systems, Novosibirsk,
1994, to appear.

[10] F.W. Vaandrager. Determinism → (event structure isomorphism = step se-
quence equivalence). TCS 79, p.275–294, February 1991.

[11] W. Vogler. Bisimulation and action refinement. LNCS 480, p.309–321, 1991.


