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Abstract: Stochastic Petri nets (SPNs) are an extension of Petri nets (PNs)

with an ability of performance (quantitative) analysis.

Behavior analysis: via stochastic process corresponding to an SPN.

Kinds of SPNs:

discrete and continuous timing,

deterministic and stochastic time transition delays,

inhibitor arcs and transition priorities.

Discrete Time SPNs (DTSPNs):

discrete geometric distribution of transition delays,

concurrent transition firing,

the associated processes are discrete time Markov chains (DTMCs).

Application examples and areas are presented.

Notions of labeling and probabilistic equivalences are discussed.

Keywords: probability distributions, Markov processes and chains, transient and

stationary behaviour, stochastic Petri nets, discrete timing, labeling, probabilistic

equivalences.
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Previous work

Discrete time (subsets of IN ): step semantics

• Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

• Deterministic discrete time stochastic Petri nets (DDTSPNs) [ZCH97,ZFH01]:

geometric and deterministic transition firing delays.
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Foundations of probability theory

Probability theory: [Bor86]. Formal methods: [Mar90,Her01,Hav01].

Definition 1 Probability distribution function (PDSF) of a RV ξ is:

Fξ(x) = P(ξ < x).

Definition 2 Probability mass function (PMF) of a discrete RV:

pξ(xi) = P(ξ = xi) (i ∈ IN).

PMF of a discrete RV in vector form: pξ = (pξ(x1), pξ(x2), . . .).

For discrete RV ξ PDSF is

Fξ(xn) =
n−1∑

i=0

pξ(xi).
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Definition 3 Mean value (MV) of a discrete RV ξ is

M(ξ) =
∞∑

i=0

xipξ(xi),

if the series is absolute summarizable.

Definition 4 Variance of RV ξ is

D(ξ) = M((ξ −M(ξ))2).

For discrete RV ξ its variance is

D(ξ) =
∞∑

i=0

(xi −M(ξ))2pξ(xi).

The following holds: D(ξ) = M(ξ2)− (M(ξ))2.
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Discrete geometric distribution:

Fξ(n) = P(ξ < n) = 1− ρn (ρ ∈ (0; 1), n ∈ IN)

pξ(i) = P(ξ = i) = ρi(1− ρ) (i ∈ IN)

M(ξ) =
∞∑

i=0

ipξ(i) =
ρ

1− ρ

D(ξ) =
∞∑

i=0

(i−M(ξ))2pξ(i) =
ρ

(1− ρ)2
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Stochastic processes

Definitions of Stochastic processes and Markov chains: [Bor86,Mar90,Her01].

Definition 5 Let ∆ be a set of parameters (indices) and S be a set of states.

Stochastic process is a set of RVs {ξ(δ) | δ ∈ ∆} ⊆ S.

Usual interpretation: δ is time, ∆ is a time scale (discrete IN or continuous IR+),

S is a set of all states of RV ξ(δ).

Stochastic processes: discrete or continuous by type of set of states.

Stochastic chain is a stochastic process with discrete set of states.

Stochastic chains: discrete or continuous, depends on time scale.

Stochastic process is stationary, if its properties do not change with simultaneous

shift of all states along time scale.

Probabilistic characterization of stochastic processes: hard task.

Special classes of stochastic processes:

• Gauss: multi-factor processes of nature;

• Markov: dynamic of resource sharing systems.
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Definition 6 Let for sets of indices ∆, states S and numbers i ∈ IN holds

δ0, . . . , δi−1, δi ∈ ∆ (δ0 < . . . < δi−1 < δi), s0, . . . , si−1, si ∈ S.

Markov process (MP) is a stochastic process with

Markov property (post-effect absence, memoryless)

P(ξ(δi) = si | ξ(δ0) = s0, . . . , ξ(δi−1) = si−1) =

P(ξ(δi) = si | ξ(δi−1) = si−1).

Markov chain (MC) is a MP with a discrete set of states.

Discrete time MC (DTMC) is a MC with state changes on finite of countable sets.

MC is (time-)homogeneous, if state change probabilities do not depend on

moments when they happen (δ ∈ IN for DTMCs or δ ∈ IR+ for CTMCs):

P(ξ(δi) = si | ξ(δj) = sj) = P(ξ(δi + δ) = si | ξ(δj + δ) = sj).

Furthermore, all MCs are considered to be homogeneous.
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Discrete time Markov chains (DTMCs)

Geometric distribution is the only discrete one with memoryless property

P(ξ = i + j | ξ > j) = P(ξ = i) (i, j ∈ IN, i ≥ 1).

Complete probabilistic description of a DTMC: PMF over set of states

S = {s1, . . . , sn} at the initial time moment and one-step (along discrete time

scale) transition probabilities ρij (1 ≤ i, j ≤ n) from si to sj .

(One-step) transition probability diagram (TPD) of a DTMC is a labeled oriented

graph with vertices corresponding to states from S, and arcs labeled by one-step

transition probabilities ρij (1 ≤ i, j ≤ n). TPD is a graphical representation of a

DTMC.

j j
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TPD of an example DTMC

(One-step) transition probability matrix (TPM) of a DTMC is a matrix P of n× n

over [0; 1] with one-step transition probabilities

ρij = P(ξ(1) = sj | ξ(0) = si) (1 ≤ i, j ≤ n) as elements.

P =


 1− ρ ρ

χ 1− χ


 .

TPM of an example DTMC
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Matrix Pk has k-step transition probabilities as elements

ρij(k) = P(ξ(k) = sj | ξ(0) = si) (1 ≤ i, j ≤ n). P0 = E.

Chapman-Kolmogorov equation establishes a relation between k + l-step

probabilities (k, l ∈ IN) and k-step and l-step ones:

Pk+l = PkPl.

Probability to stay in si during k steps and state change at step k + 1 is

ρk
ii(1− ρii).

Change a state: success. Stay in a state: failure.

Sojourn time in states of a DTMC is geometrically distributed.
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A DTMC solution: PMF calculation at arbitrary time moment or

at equilibrium conditions.

Transient behaviour: transient states.

Let ψi(k) = P(ξ(k) = si) (1 ≤ i ≤ n) be probability to come in si during k

steps, ψ(k) = (ψ1(k), . . . ψn(k)) be its PMF at the moment k, i.e. its

transient PMF, and P be TPM.

Transient PMF:

ψ(k) = ψ(0)Pk.

Long time system behaviour: state probabilities could stabilize (equilibrate).

Stationary behaviour: steady states.

DTMC is ergodic, if steady state PMF exists.

Let ψi = limk→∞ ψi(k) (1 ≤ i ≤ n) be a probability for an ergodic DTMC to

be in steady state si, ψ = (ψ1, . . . , ψn) be its steady state PMF, and P be

TPM.

Steady state PMF:





ψ(P−E) = 0

ψeT = 1
,

where e is a vector of n numbers 1.
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General analysis of DTMCs

1. Find all states si (1 ≤ i ≤ n) from S.

2. Calculate one-step transition probabilities ρij from its state si to

sj (1 ≤ i, j ≤ n).

3. Iteration system of linear equations to analyze its transient behaviour.

4. Fixpoint system of linear equations to analyze its stationary behaviour.

5. Calculate state probabilities analytically or with numerous methods.

6. Calculate standard performance indices using state probabilities

(throughout, waiting, response time, etc.).
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Formal model

Definition 7 A discrete time SPN (DTSPN) is a tuple

N = (PN , TN , WN , ΩN ,MN ):

• (PN , TN ,WN , MN ) ia an unlabeled PN;

• ΩN : TN → (0; 1) is the transition conditional probability function.

Let M be a marking of a DTSPN N = (PN , TN ,WN , ΩN ,MN ). Then

t ∈ Ena(M) fires in the next time moment with probability ΩN (t), if no other

transition is enabled in M : conditional probability.

Conditional probability to fire in a marking M for a transition set (not a multiset)

U ⊆ Ena(M) s.t. •U ⊆ M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

t∈Ena(M)\U
(1− ΩN (t)).

Concurrent transition firings at discrete time moments.

DTSPNs have step semantics.
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For all DTSPN N = (PN , TN ,WN , ΩN ,MN ) we have

RS(N) = RS(PN , TN ,WN ,MN ): reachability sets of a DTSPN and its

underlying PN coincide.

Qualitative properties of a DTSPNs: analysis of reachability graphs for

underlying PNs.

Quantitative properties of a DTSPNs: analysis of DTMCs for bounded and live

DTSPNs.

DTMC DTMC(N) corresponding to a DTSPN N :

1. Set of states S = RS(N).

2. Probability ρij (1 ≤ i, j ≤ n = |S|) of state change from Mi to Mj is

ρij =

∑
{U⊆Ena(Mi)|Mi

U→Mj}
PF (U,Mi)

∑
{V⊆Ena(Mi)|•V⊆Mi} PF (V, Mi)

.

(One-step) TPM P for DTMC(N) with elements ρij .
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Transient (k-step) PMF for DTMC(N):

ψ(k) = ψ(0)Pk,

where k ∈ IN and ψ(0) = (ψ1(0), . . . , ψn(0)) is a probability of the initial

distribution, ψi(0) (1 ≤ i ≤ n):

ψi(0) =





1 Mi = MN

0 otherwise
.

Here ψ(k) = (ψ1(k), . . . ψn(k)) is a transient PMF over k-step reachable

markings, and ψi(k) (1 ≤ i ≤ n) are transient probabilities of Mi.

Steady state PMF for DTMC(N):





ψ(P−E) = 0

ψeT = 1
.

Here ψ = (ψ1, . . . ψn) is a steady state PMF over reachable markings, and

ψi (1 ≤ i ≤ n) are steady state probabilities of Mi.
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Illustrative example
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DTSPN of restaurant and its DTMC

Restaurant with two-course dinner: DTSPN N .

First, the dinner is ordered.

When both dishes have been cooked, they are served.

Cooking processes of the dishes are independent.

Cooking time is about equal.

Places: PN = {p1, p2, p3, p4}.

Transitions: TN = {t1, t2, t3}.

Conditional probabilities: ΩN (t1) = ΩN (t2) = ρ, ΩN (t3) = χ.

Interpretation of places.

p1: first dish has been ordered (Ordered1).

p2: second dish has been ordered (Ordered2).

p3: first dish has been cooked (Cooked1).

p4: second dish has been cooked (Cooked2).
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Interpretation of markings.

M1 = (1, 1, 0, 0): both dishes have been ordered (Ordered).

M2 = (0, 1, 1, 0): first dish has been cooked (Cooked1).

M3 = (1, 0, 0, 1): second dish has been cooked (Cooked2).

M4 = (0, 0, 1, 1): both dishes have been cooked (Cooked).

Interpretation of transitions and their conditional probabilities.

1. When both dishes have been ordered, first dish is cooked:

t1 with probability ρ.

2. When both dishes have been ordered, second dish is cooked:

t2 with probability ρ.

3. When both dishes have been cooked, they are served:

t3 with probability χ.

One-step TPM for DTMC DTMC(N) is

P =




(1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

0 1− ρ 0 ρ

0 0 1− ρ ρ

χ 0 0 1− χ



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Steady-state PMF for DTMC DTMC(N) is the solution of equation system





ρ(2− ρ)ψ1 = χψ4

ρ(1− ρ)ψ1 = ρψ2

ρ(1− ρ)ψ1 = ρψ3

ρ2ψ1 + ρψ2 + ρψ3 = χψ4

ψ1 + ψ2 + ψ3 + ψ4 = 1

The result is

ψ =
1

χ(3− 2ρ) + ρ(2− ρ)
(χ, χ(1− ρ), χ(1− ρ), ρ(2− ρ)).

The case ρ = χ:

ψ =
1
7
(2, 1, 1, 3).
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Transition labeling

DTSPNs are standardly unlabeled:

acceptable to model logically different activities:

transitions t1 and t3 of DTSPN from restaurant example;

not acceptable to model logically equal activities:

transitions t1 and t2 of DTSPN from restaurant example.

Transition labeling:

LN (t1) = LN (t2) = Cook, LN (t3) = Serve.

Conditional probabilities are associated with actions:

Cook has probability ρ, and Serve has χ.

Transition concurrency in DTSPNs: step semantics for labeled DTSPNs.

Definition of DTSPN transition labeling: [BT01].
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Properties of probabilistic relations
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PP: Properties of probabilistic equivalences

• In Figure PP(a) LDTSPNs N and N ′ could not be related by any (even trace)

probabilistic equivalence, since only in N ′ action a has probability 1
3 .

• In Figure PP(b) LDTSPNs N and N ′ are related by any (even bisimulation)

probabilistic equivalence, since in our model probabilities of consequent

actions are multiplied, and that of alternative ones are summarized.
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Comparing the probabilistic τ -equivalences
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Interrelations of the probabilistic τ -equivalences

Proposition 1 Let ? ∈ {i, s}. For LDTSPNs N and N ′

1. N↔τ
?pN

′ ⇒ N≡τ
?pN

′;

2. N↔τ
?bpN

′ ⇒ N≡τ
?pN

′;

3. N↔τ
?bfpN

′ ⇒ N↔τ
?pN

′ and N↔τ
?bpN

′.

Theorem 1 Let↔,↔↔ ∈ {≡τ ,↔τ ,'} and

?, ?? ∈ { , ip, sp, ibp, sbp, ibfp, sbfp}. For LDTSPNs N and N ′

N↔?N
′ ⇒ N↔↔??N

′

iff in the graph in figure above there exists a directed path from↔? to↔↔??.
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The results reported

Description of DTSPNs.

Analysis methods and illustrative examples.

Transition labeling

Probabilistic equivalences.

The most perspective model: DTSPNs and their extensions,

like DDTSPNs [ZCH97,ZFH01].
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Advantages and disadvantages of SPNs

Advantages

• Convenient for theoretical reasoning on behaviour of systems with shared

resources and for use in development tools.

• Performance can be evaluated from SPN structure, and detailed analysis is

accomplished using MC with well-known algorithms.

• Applicable when synchronization is important: analysis of systems with

interacting components.

Disadvantages

• High complexity of large system specification because of absence of

modularity and intricateness of the corresponding SPNs.

• More abstract SPNs with better expressive power: analytical and structural

restrictions or partitioning, simulation and numerical methods.

• Concurrency of the PN underlining an SPN is reflected only partially in the

corresponding MC: in the best case, it has step semantics that is not “true

concurrent”.
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