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1. INTRODUCTION

A Petri net is a well-known formal model used for
designing concurrent and distributed systems. As is
well known, one of the main advantages of Petri nets is
the possibility to structurally characterize basic aspects
of concurrent computations: causal dependence, non-
determinism, and concurrency.

In recent years, a variety of semantic equivalences
have been introduced in the concurrency theory. Many
of them were either defined directly or were carried
over from other models to Petri nets. The following
basic equivalence notions for Petri nets are known from
the literature:

(1) 

 

Trace equivalences

 

 (which take into account
only protocols of net operation): interleaving equiva-
lence [8], step equivalence [11], and equivalence of
partially ordered multisets [7].

(2) 

 

Ordinary bisimulation equivalences

 

 (which take
into account the branching structure of net operation):
interleaving equivalence [10], step equivalence [9],
equivalence of partial words [15], equivalence of par-
tially ordered multisets [5], and process equivalence [2].

(3) 

 

ST-bisimulation equivalences

 

 (which take into
account the duration of transition action in the net):
interleaving equivalence [7], equivalence of partial
words [15], and equivalence of partially ordered multi-
sets [15].

(4) 

 

History-preserving bisimulation equivalences

 

(which take into account “the past” (history) of net
operation): the equivalence of partially ordered multi-
sets was introduced [12].

(5) 

 

Conflict preserving equivalences

 

 (which take
full account of conflicts in the net): the O-process
equivalence was considered in [7].

(6) 

 

Isomorphism

 

, i.e., the identity of nets up to
renaming places and transitions.

When designing concurrent systems by the top-
down method, the 

 

refinement operator

 

 is used that
endows some of the net’s elementary components with
an internal structure; this makes it possible to consider
such systems at a lower level of abstraction. In [4], the

 

SM-refinement

 

 operator for Petri nets was suggested
that changes their transitions for 

 

SM

 

-nets, which con-
stitute a specialized subclass of automata nets.

In this paper, we introduce a number of new notions
in addition to known ones with the aim of obtaining a
complete set of equivalences for Petri nets. These new
notions are trace equivalences of partial words and pro-
cesses, ST-bisimulation equivalence, history preserv-
ing process bisimulation equivalence, and the equiva-
lence on multistructures of events. Relationships are
established between new and known equivalence
notions both on the whole class of Petri nets and on the
subclass of sequential nets, where the firing of concur-
rent transition actions are not allowed. In addition, for
all behavioral equivalences considered, it is verified
whether they are preserved under SM-refinement.

The paper is organized as follows. In Section 2,
basic definitions are given. In Section 3, behavioral
equivalence notions are introduced. Section 4 is dedi-
cated to the analysis of equivalences on the whole class
of Petri nets, and Section 5 considers equivalences on
the subclass of sequential nets. The invariance of equiv-
alences under refinement is analyzed in Section 6. The
final section, Section 7, contains a brief review of the
results obtained and an outline of lines of further inves-
tigations.
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2. BASIC DEFINITIONS

In this section, we give basic definitions used in the
paper.

 

2.1. Multisets

 

Definition 2.1.

 

 

 

Let X be a set. A mapping M: X

 

 

 

N

 

 (where 

 

N

 

 is the set of non-negative integers) such
that 

 

|

 

{

 

x

 

 

 

∈

 

 

 

X

 

|

 

M

 

(

 

x

 

) > 0}

 

|

 

 < 

 

∞

 

 is called a finite multiset M
over X

 

.
Denote by 

 

�

 

(

 

X

 

) 

 

the set of all finite multisets over

 

 

 

X

 

.
If 

 

∀

 

x

 

 

 

∈

 

 

 

X

 

 

 

M

 

(

 

x

 

) 

 

≤

 

 1, 

 

M

 

 is an ordinary set. The 

 

cardinal-

ity

 

 of a multiset 

 

M

 

 is defined as 

 

|

 

M

 

|

 

 = . We
will write 

 

x

 

 

 

∈

 

 

 

M

 

 if 

 

M

 

(

 

x

 

) > 0 and 

 

M

 

1

 

 

 

⊆

 

 

 

M

 

2

 

 if 

 

∀

 

x

 

 

 

∈

 

 

 

X
M

 

1

 

(

 

x

 

) 

 

≤

 

 

 

M

 

2

 

(

 

x

 

). Introduce the following definitions:
(

 

M

 

1

 

 + 

 

M

 

2

 

)(

 

x

 

) = 

 

M

 

1

 

(

 

x

 

) + 

 

M

 

2

 

(

 

x

 

) and (

 

M

 

1

 

 – 

 

M

 

2

 

)(

 

x

 

) =
max{0, 

 

M

 

1

 

(

 

x

 

) – 

 

M

 

2

 

(

 

x

 

)}.

 

2.2. Labeled nets

 

Definition 2.2.

 

 

 

Let Act = 

 

{

 

a, b, 

 

…}

 

 be a set of
actions or labels. A labeled net is a quadruple N

 

 = 

 

〈

 

P

 

N

 

,

 

T

 

N

 

, 

 

F

 

N

 

, 

 

l

 

N

 

〉

 

, where
(1) P

 

N

 

 = {

 

p

 

, 

 

q

 

, …}

 

 is the set of places;
(2) T

 

N

 

 = {

 

u

 

, 

 

v

 

, …}

 

 is the set of transitions;
(3) F

 

N

 

: (

 

P

 

N

 

 

 

×

 

 

 

T

 

N

 

) 

 

∪

 

 (

 

T

 

N

 

 

 

×

 

 

 

PN)  N is the incidence
relation with weights (N denotes the set of non-negative
integers); and

(4) lN: TN  Act is a label of transition by actions.
Let N = 〈PN, TN, FN, lN〉 and N' = 〈PN', TN', FN', lN'〉 be

labeled nets. A mapping β: N  N' is called isomor-
phism between N and N' (denoted by β: N � N') if β is
a bijection such that β(PN) = PN', β(TN) = TN', ∀p ∈ PN ∀t
∈ TN FN(p, t) = FN'(β(p), β(t)), FN(t, p) = FN'(β(t), β(p)),
and ∀t ∈ TN lN(t) =lN'(β(t)). Labeled nets N and N' are
called isomorphic (denoted by N � N') if ∃β: N � N'.

For a labeled net N and its transition t ∈ TN, define
the precondition and postcondition of t (denoted by •t
and t•, respectively) as multisets (•t)(p) = FN(p, t) and
(t•)(p) = FN(t, p). Similar definitions are introduced for
places: (•p)(t) = FN(t, p) and (p•)(t) = FN(p, t). Denote
by °N = {p ∈ PN | •p = ∅} the set of input places of N
and by N° = {p ∈ PN |p• = ∅}, the set of output places
of N.

A labeled net N is called acyclic if there is no
sequence t0, …, tn ∈ TN such that  ∩ •ti ≠ ∅ (1 ≤ i ≤
n) and t0 = tn. A labeled net N is called ordinary if ∀p ∈
PN, •p and p• are ordinary sets (not multisets).

Let N = 〈PN, TN, FN, lN〉 be an acyclic ordinary
labeled net, and x, y ∈ PN ∪ TN. Introduce the following
notions:

(1) x �N y ⇔ x y, where  is the transitive clo-
sure of FN (the relation of strict causal dependence);

M x( )
x X∈∑

ti 1–
•

FN
+

FN
+

(2) x  y ⇔ (x �N y) ∨ (x = y) (the relation of
causal dependence);

(3) x#Ny ⇔ ∃t, u ∈ TN (t ≠ u, •t ∩ •u ≠ ∅, t  x,
u  y) (the relation of conflict);

(4) ↓N x = {y ∈ PN ∪ TN |y �N x} (the set of strict pre-
decessors of x).

A set T ⊆ TN is closed to the left in N, if ∀t ∈ T (↓N
t) ∩ TN ⊆ T. A set T is conflict-free in N if ∀t, u ∈ T
¬(t#Nu). A set T is a configuration in N if it is finite,
closed to the left, and conflict-free in N.

2.3. Marked Nets

Definition 2.3. A multiset M ∈ �(PN) is called a
marking of a labeled net N. A marked net (net) is a
quintuple, N = 〈PN, TN, FN, lN, ΜΝ〉, where 〈PN, TN, FN,
lN〉 is a labeled net and MN ∈ �(PN) is an initial mark-
ing.

Let N = 〈PN, TN, FN, lN, ΜΝ〉 and N' = 〈PN', TN', FN',
lN', ΜΝ '〉 be marked nets. A mapping β: N  N' is
called an isomorphism between N and N' (denoted by β:
N � N') if β: 〈PN, TN, FN, lN〉 � 〈PN', TN', FN', lN'〉, and
∀p ∈ MN MN(p) = MN'(β(p)). Nets N and N' are called
isomorphic (denoted by N � N'') if ∃β: N � N'.

Let M ∈ �(PN) be a marking of a net N. A transition
t ∈ TN is termed feasible in M if •t ⊆ M. If t is feasible

in M, its action results in a new marking  = M – •t +

t•, denoted by M  . A marking M of a net N is

called attainable if M = MN or an attainable marking 

of N exists such that   M for some t ∈ TN.
Mark(N) denotes the set of all attainable markings of N.

2.4. Partially Ordered Sets

Definition 2.4. A marked partially ordered set is a
triple ρ = 〈X, �, l〉, where

(1) X = {x, y, …} is a set;
(2) �⊆ X × X is a strict partial order (irreflexive

transitive relation) on X;
(3) l: X  Act is a marking function.
Let ρ = 〈X, �, l〉 be a partially ordered set and x ∈ X.

Then, ↓x = {y ∈ X |y � x} is called the set of strict pre-
decessors of x.

Let ρ = 〈X, �, l〉 and ρ' = 〈X', �', l'〉 be labeled par-
tially ordered sets.

A mapping β: X  X' is called a label-preserving
bijection between ρ and ρ' (denoted by β: ρ ≈ ρ' if β is
a bijection such that ∀x ∈ X l(x) = l'(β(x)). We will
write ρ ≈ ρ' if ∃β: ρ ≈ ρ'.

A mapping β: X  X' is called a homomorphism
between ρ and ρ' (denoted by β: ρ  ρ') if β: ρ ≈ ρ' and
∀x, y ∈ X x � y ⇒ β(x) �' β(y). We will write ρ  ρ' if
∃β: ρ  ρ'.

�N

�N

�N

M̃
t M̃

M̂

M̂ t
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A mapping β: X  X' is called an isomorphism
between ρ and ρ' (denoted by β: ρ ≈ ρ' if β: ρ  ρ' and
β–1: ρ  ρ'. Labeled partially ordered sets are called iso-
morphic (denoted by ρ ≈ ρ') if ∃β: ρ � ρ'.

Definition 2.5. A class of isomorphism of labeled
partially ordered sets is called a partially ordered mul-
tiset.

2.5. Structures of Events

Definition 2.6. A labeled structure of events is a
quadruple ξ = 〈X, �, #, l〉, where

(1) X = {x, y, …} is a set of events;
(2) �⊆ X × X is a strict partial order—a relation of

causal dependence satisfying the principle of the finite-
ness of causes: ∀x ∈ X |↓x | < ∞;

(3) # ⊆ X × X is an irreflexive symmetric conflict
relation satisfying the principle of the conflict inherit-
ance: ∀x, y, z ∈ X x#y � z ⇒ x#z;

(4) l: X  Act is a marking function.
Let ξ = 〈X, �, #, l〉 and ξ' = 〈X', �', #', l'〉 be labeled

structures of events. A mapping β: X  X' is called an
isomorphism between ξ and ξ' (denoted by β: ξ � ξ') if
β: 〈X, �, l〉 � 〈X', �', l'〉 and ∀x, y ∈ X x#y ⇔ β(x)#'β(y).
Labeled structures of events ξ and ξ' are called isomor-
phic (denoted by ξ � ξ') if ∃β: ξ � ξ'.

Definition 2.7. A class of isomorphism of labeled
structures of events is called a multistructure of events.

2.5.1. C-processes. A C-process is a process based
on a C-net [3].

Definition 2.8. A C-net is an acyclic ordinary
labeled net C = 〈PC, TC, FC, lC〉 such that

1. ∀r ∈ PC | •r | ≤ 1 and |r• | ≤ 1, i.e., places do not
branch;

2. |↓Cx | < ∞, i.e., the set of causes is finite.
Note that there is a labeled partially ordered set ρC =

〈TC, �N ∩ (TC × TC), lC〉 corresponding to a C-net, C =
〈PC, TC, FC, lC〉. The following property is fundamental
for C-nets [2]: if C is a C-net, then a sequence of tran-

sitions, °C = L0  …  Ln = C° exists such that

Li ⊆ PC (0 ≤ i < n) PC = Li, and TC = {v1, …, vn}.
This sequence is called the complete execution of C.

Definition 2.9. Let a net N and a C-net C be given.
A mapping ϕ: PC ∪ TC  PN ∪ TN is called an embed-
ding of C into N (denoted by ϕ: C  N) if

1. ϕ(PC) ∈ �(PN) and ϕ(TC) ∈ �(TN), i.e., types of
net elements are preserved;

2. ∀v ∈ TC •ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e., the
incidence relation is taken into account; and 

3. ∀v ∈ TC lC(v) = lN(ϕ(v)), i.e., the label is pre-
served.

In view of the fact that embedding takes account of

the incidence relation, we find that, if °C  … 

C° is a complete execution of C, then M = ϕ(°C) 

 
 

v1 vn

Ui 0=
n

v1 vn

ϕ(v1)

…  ϕ(C°) =  is a sequence of transitions in N,

which is denoted by M  .
Definition 2.10. A pair π = (C, ϕ), where C is a C-

net and ϕ: C  N is an embedding such that M =
ϕ(°C), is called the C-process (process) feasible in the
marking M. A process feasible in MN is called the pro-
cess of N.

Denote by Π(N, M) the set of all processes feasible
in the marking M of a set N and by Π(N), the set of all
processes of N. The initial process of N is a process
πN = (CN, ϕN) ∈ Π(N) such that  = ∅. If π ∈
Π(N, M), then the execution of this process transforms

the marking M into  = M – ϕ(°C) + ϕ(C°) = ϕ(C°)

(denoted by M  ).

Let π = (C, ϕ),  = ( , ) ∈ Π(N), and  = ( ,
) ∈ Π(N, ϕ(C°)). The process π is called a prefix of

the process  if TC ⊆  is a set in  closed to the left.

The process  is called a suffix of the process  if  =

\TC. Then,  is an extension of π to the process ,

and  is an extending process for π, which is denoted

by π  . We will write π   if  such that

∃  π  .

A process  is called an extension of π for one oper-

ation if π  ,  = {v}, and (v) = a. This is

denoted by π   or π  .

A process  is called an extension of π for a multi-

set of operations or a step if π  ,  = ∅,  = V,

and (V) = A. This is denoted by π   or π  .

2.5.2. O-processes.
An O-process is a process based on an O-net

(branchy process in the terminology of [6]).
Definition 2.11. An O-net is an acyclic ordinary

labeled net O = 〈PO, TO, FO, lO〉 such that
1. ∀r ∈ PO | •r | ≤ 1, i.e., there is no direct conflict;
2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e., the conflict relation

is irreflexive; and 
3. ∀x ∈ PO ∪ TO |↓Ox | < ∞, i.e., the set of causes is

finite.
Note that, to any O-net, O = 〈PO, TO, FO, lO〉, the

labeled structure of events ξO = 〈TO, �O ∩ (TO × TO),
#O ∩ (TO × TO), lO〉 can be assigned.

Definition 2.12. Let O = 〈PO, TO, FO, lO〉 be an O-net
and N = 〈PN, TN, FN, lN, MN〉 be a net. A mapping ψ:
PO ∪ TO  PN ∪ TN is called an embedding of O into
N (denoted by ψ: O  N) if

1. ψ(PO) ∈ �(PN) and ψ(TO) ∈ �(TN), i.e., types of
nets elements are preserved;

ϕ(vn) M̃
C, ϕ M̃

TCN

M̃
π M̃

π̃ C̃ ϕ̃ π̂ Ĉ
ϕ̂

π̃ TC̃ C̃

π̂ π̃ TĈ

TC̃ π̃ π̂
π̂

π̂ π̃ π̃ π̂
π̂ π̂ π̃

π̃
v π̃ TĈ lĈ

V π̃ A π̃
π̃

A π̃ a
Ĉ

TĈ

lĈ
V π̃ A π̃
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2. ∀v ∈ TO lO(v) = lN(ψ(v)), i.e., the label is pre-
served;

3. ∀v ∈ TO •ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e.,
the incidence relation is taken into account; and 

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w,
i.e., there are no “extra” conflicts.

Definition 2.13. A pair ϖ = (O, ψ), where O is an O-
net and ψ: O  N is an embedding such that MN =
ψ(°O), is called an O-process of the net N.

Denote the set of all O-processes of N by ℘(N). The
initial O-process of N is identical to the C-initial pro-
cess; i.e., ϖN = πN.

Let ϖ = (O, ψ),  = ( , ) ∈ ℘(N). The O-pro-

cess ϖ is called the prefix of the O-process  if TO ⊆
 is a set closed to the left in . Then,  is called an

extension of the O-process ϖ, which is denoted by
ϖ  . Let π = (C, ϕ) ∈ Π(N) and ϖ = (O, ψ) ∈
℘(N). A C-process ϖ is called an evaluation of the O-
process  if TC ⊆ TO is a configuration in O.

An O-process ϖ of a net N is called maximal if

∀  = ( , ) ∈ ℘(N) such that ϖ  , \TO =
∅. Denote by ℘max(N) the set of all maximal O-pro-
cesses of N. Note that ℘max(N) consists of the single O-
process of the form ϖmax = (Omax, ψmax). In this case, the
class of isomorphism of the O-net, Omax, is called a
development of the net N, which is denoted by �(N). A
multistructure of events, �(N) = ξ�(N), which is the
class of isomorphism of the labeled structure of events
ξO for O ∈ �(N), can be assigned to the development
�(N).

3. EQUIVALENCE NOTIONS

In this section, we consider both equivalence
notions for Petri nets that are known from the literature
and new equivalence notions.

3.1. Trace Equivalences

Trace equivalences take into account only the proto-
cols of the net operation and do not take into account
the nondeterministic choice between several extensions
of the process. For this reason, they are called equiva-
lences of linear time.

Definition 3.1. An interleaving trace of a net N is a

sequence a1…an ∈ Act* such that πN  π1  …

 πn, where πi ∈ Π(N) (1 ≤ i ≤ n). IntTraces(N)
denotes the set of all interleaving traces of N. Nets N
and N' are interleaving–trace equivalent (denoted by
N ≡i N') if IntTraces(N) = IntTraces(N').

Definition 3.2. A step trace of a net N is a sequence

A1…An ∈ (�(Act))* such that πN  π1  … 

ϖ̃ Õ ψ̃
ϖ̃

TÕ Õ ϖ̃

ϖ̃

ϖ̃

ϖ̃ Õ ψ̃ ϖ̃ TÕ

a1 a2

an

A1 A2 An

πn, where πi ∈ Π(N) (0 ≤ i ≤ n). StepTraces(N) denotes
the set of all step traces of N. Nets N and N' are step–
trace equivalent (denoted by N ≡s N') if StepTraces(N) =
StepTraces(N').

Definition 3.3. A partially ordered multiset trace of
a net N is the partially ordered multiset ρ that is the
class of isomorphism of the partially ordered multiset
ρC for π = (C, ϕ) ∈ Π(N). We write ρ  ρ' if ρC  ρC',
where ρC ∈ ρ and ρC' ∈ ρ'. In this case, the partially
ordered multiset ρ is more parallel than ρ'. Pomsets(N)
denotes the set of all partially ordered multiset traces of
the net N. Nets N and N' are called trace equivalent on
partial words (denoted by N ≡pw N' if Pomsets(N) 
Pomsets(N') and Pomsets(N')  Pomsets(N); i.e., for
each ρ' ∈ Pomsets(N'), a ρ∈ Pomsets(N) exists such
that ρ  ρ', and vice versa.

Definition 3.4. Nets N and N' are called partially
ordered multiset trace equivalent if Pomsets(N) = Pom-
sets(N'); this is denoted by N ≡pom N'.

Definition 3.5. The class of isomorphism of a C-net
C for π = (C, ϕ) ∈ Π(N) is called the process trace of
N. ProcessNets(N) denotes the set of all process traces
of N. Nets N and N' are called process–trace equivalent
if ProcessNets(N) = ProcessNets(N'); this is denoted by
N ≡pr N'.

3.2. Ordinary Bisimulation Equivalences

Bisimulation equivalences take into account the
moment of nondeterministic choice between several
extensions of a process (branching). For this reason,
they are called branchy time equivalences.

Definition 3.6. A relation � ⊆ Π(N) × Π(N') is
called �-bisimulation between N and N', � ∈ {inter-
leaving, step, on partial words, on partially ordered
multisets, process} (this fact is denoted by �: N 
N', � ∈ {i, s, pw, pom, pr}) if

1. ((πN, πN') ∈ �;

2. (π, π') ∈ �, π  ,

(a)  = 1, if � = i;

(b)  = ∅, if � = s;

⇒ ∃ : π'  , ( , ) ∈ � and

(a)   , if � = pw;

(b)  � , if � = {i, s, pom};

(c)  � , if = pr;

3. The same as item 2, but the roles of N and N' are
interchanged.

Nets N and N' are �-bisimulation equivalent, � ∈
{interleaving, step, on partial words, on partially
ordered multisets, process} if ∃�: N  N', � ∈ {i,
s, pw, pom, pr}; this fact is denoted by N  N'.

  

 
 

 

�

π̂ π̃
TĈ

a
Ĉ

π'˜ π'ˆ π'˜ π̃ π'˜

ρC'ˆ  ρĈ

ρĈ ρC'ˆ

Ĉ C'ˆ

�

�
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3.3. ST-bisimulation Equivalences

To define ST-bisimulation equivalences, we intro-
duce the notion of an ST-process that represents states
of the net with nonzero time of transition actions.

Definition 3.7. An ST-process of a net N is a pair

(πE, πP) such that πE, πP ∈ Π(N), πP  πE, and ∀v,
w ∈  v  w ⇒ v ∈ .

In this case, πE is the process that has started execut-
ing, i.e., all actions of πE started executing. The process
πP corresponds to the part of πE that has finished exe-
cuting, and πW corresponds to the part being executed.
ST – Π(N) denotes the set of all ST-processes of N, and
(πN, πN) denotes the initial ST-process of N. Let (πE,
πP), ( , ) ∈ ST – Π(N). Then, we will write (πE,

πP)  ( , ) if πE   and πP  .

ST-bisimulation equivalences take into account the
duration of transition actions assuming that transitions
that are executing at the moment take dibs from the
input places but do not yet put them into the output
places [7].

Definition 3.8. A relation � ⊆ ST – Π(N) × ST –
Π(N') × �, where � = {β|β: TC  TC', π = (C, ϕ) ∈
Π(N), π' = (C', ϕ') ∈ Π(N')}, is called an �-ST-bisimu-
lation between N and N' (� ∈ {interleaving, on partial
words, on partially ordered multisets, process}) (this is
denoted by �: N  N', � ∈ {i, pw, pom, pr}) if

1. ((πN, πN), (πN', πN'), ∅) ∈ �;

2. ((πE, πP), ( , ), β) ∈ � ⇒ β:  ≈  and

β( ) = ;

3. (πE, πP), ( , ), β) ∈ �, (πE, πP)  ( ,

) ⇒ ∃ , ( , ): ( , )  ( , ),  =

β, (( , ), ( , ), ) ∈ �, and if πP  ,

  , γ = , then

(a) γ–1: ρC'  ρC, if � = pw;
(b) γ: ρC � ρC', if � ∈ {pom, pr};
(c) C � C', if � = pr;
4. The same as item 3, but with the roles of N and N'

being interchanged.
Nets N and N' are called �-ST-bisimulation equiva-

lent, � ∈ {interleaving, on partial words, on partially
ordered multisets, process}, if ∃�: N  N', � ∈
{i, pw, pom, pr}; this is denoted by N  N'.

3.4. History-Preserving Bisimulation Equivalences

History-preserving bisimulation equivalences take
into account the past (history) of the net operation; i.e.,
modeling takes account of the part of the process whose
execution results in the current state.

πW

TCE
aCE

TCP

π̃E π̃P

π̃E π̃P π̃E π̃P

�ST

πE' πP' ρCE
ρ

CE'

TCP
T

CP'

πE' πP' π̃E

π̃P β̃ π̃E' π̃P' πE' πP' π̃E' π̃P' β̃
TCE

π̃E π̃P π̃E' π̃P' β̃ π π̃E

πP'
π' π̃E' β̃

TC

 

�ST

�ST

Definition 3.9. A relation � ⊆ Π(N) × Π(N') × �,
where � = {β|β: TC  TC', π = (C, ϕ) ∈ Π(N), π' =
(C', ϕ') ∈ Π(N')}, is called a �-history preserving
bisimulation between N and N' (� ∈ {on partially
ordered multisets, process}) (this is denoted by �:
N  N', � ∈ {pom, pr}) if

1. (πN, πN', ∅) ∈ �;
2. (π, π', β) ∈ � ⇒
(a) β: ρC � ρC' if � ∈ {pom, pr};
(b) C � C', if � = pr;

3. (π, π', β) ∈ �, π   ⇒ ∃ , : π'  ,

 = β, ( , , ) ∈ �;

4. The same as item 3, but with the roles of N and N'
being interchanged.

Nets N and N' are called �-history preserving equiv-
alent, � ∈ {on partially ordered multisets, process}, if
∃�: N  N', � ∈ {pom, pr}; this is denoted by
N  N'.

3.4.1. Conflict preserving equivalences. Conflict
preserving equivalences take full account of conflicts in
nets.

Definition 3.10. Nets N and N' are called multi-
structure of events equivalent if �(N) = �(N'). This is
denoted by N ≡mes N'.

Definition 3.11. Nets N and N' are called O-process
equivalent if �(N) = �(N'). This is denoted by
N ≡occ N'.

4. COMPARING EQUIVALENCES

In this section, we analyze relationships between
equivalence notions on the whole class of Petri nets.

Theorem 4.1. Let ,  ∈ {≡, ,  �} and
�, �� ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST,
pomh, prh, mes, occ}. For nets N and N', N  N' ⇒
N  N' if and only if a directed route from 
to  in the graph depicted in Fig. 1 exists.

Proof. ⇐ Let us verify that all implications in Fig. 1
are valid.

(1) Relationships between trace and interleaving
equivalences are consequences of the fact that isomor-
phism of labeled partially ordered sets with the empty
precedence relation is isomorphism of one-element
labeled partially ordered sets.

(2) Relationships between partial words and step
equivalences are consequences of the fact that homo-
morphism of labeled partially ordered sets is isomor-
phism of labeled partially ordered sets with the empty
precedence relation.

(3) The relationship    is the
consequence of the fact that homomorphism of labeled
partially ordered sets is a label-preserving bijection.

(4) Relationships between equivalences on partially
ordered multisets and on partial words are conse-

�h

π̃ β̃ π'ˆ π'˜

β̃
TC

π̃ π'˜ β̃

�h

�h

           

�

�� �
      �

pwST iST
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quences of the fact that isomorphism of labeled par-
tially ordered sets is a homomorphism.

(5) Relationships between process equivalences and
equivalences on partial words are consequences of the
fact that labeled partially ordered sets based on C-iso-
morphic nets are also isomorphic.

(6) The relationship 

 

≡

 

occ

 

  

 

≡

 

mes

 

 is valid because
multistructures of events of isomorphic O-nets are
identical.

(7) The relationship   

 

≡

 

i

 

 can be verified as

follows. Let 

 

�

 

: 

 

N

 

 

 

 N

 

'. If 

 

π

 

N

 

  

 

π

 

1

 

  … 

 

π

 

n

 

, then a sequence (

 

π

 

N

 

, 

 

π

 

N

 

'

 

), (

 

π

 

1

 

, ), …, (

 

π

 

n

 

, ) 

 

∈

 

 

 

�

 

exists such that 

 

π

 

N

 

'

 

    …  , and vice
versa, by virtue of the symmetry of bisimulation.

(8) The relationship   

 

≡

 

s

 

 can be validated
similarly to the previous item by using 

 

A

 

1

 

, …, 

 

A

 

n
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�

 

(

 

Act

 

) instead of 
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1

 

, …, 
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n
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Act

 

.
(9) The relationship   

 

≡

 

pw

 

can be proved
as follows. Let 

 

�

 

: 

 

N

 

 

 

 N

 

' and 

 

ρ

 

 be the class of

isomorphism 

 

ρ

 

C

 

 for 

 

π

 

 = (

 

C

 

, 

 

ϕ

 

) 

 

∈

 

 

 

Π

 

(

 

N). Since πN  π,
a pair (π, π') ∈ � exists such that π' = (C', ϕ') and ρC' 
ρC. If ρ' is the class of isomorphism ρC', then ρ'  ρ.
Hence, Pomsets(N')  Pomsets(N). The inclusion Pom-
sets(N)  Pomsets(N') can be proved similarly by using
the symmetry of bisimulation.

(10) The relationship   ≡pom can be
proved as in the previous item by using isomorphism of
labeled partially ordered sets instead of homomor-
phism.

(11) The relationship   ≡pr can be proved
as in the previous item by using process traces instead
of partially ordered multiset traces and isomorphism of
C-nets instead of the isomomorphism of their labeled
partially ordered sets.

(12) The relationship   , � ∈
{pw, pom, pr} can be proved by constructing on the
basis of the relation �: N  N' a relation
S: N  N' defined as S = {(π, π') |∃β ((π, π), (π', π'),
β) ∈ �}.

(13) The relationship    can be val-
idated in the same way as in the previous item taking
into account the fact that the sequence of ST-processes

(π0, π0), …, (πn, π0), …, (πn, πn) such that π = π0  …

 πn =  corresponds to the step π  , where
A = {a1, …, an} ∈ �(Act).

(14) The relationships   , � ∈
{pom, pr} can be proved by constructing, on the basis
of the relation �: N  N', a relation S: N 

N' defined as S = {((πE, πP), ( , ), β) |(πE, , β) ∈
�, (πE, πP) ∈ ST – Π(N), ( , ) ∈ ST – Π(N'),

β( ) = }.

i

i
a1 a2 an

π1' πn'
a1 π1'

a2 an πn'

s

pw

pw

π

 
 

 
 

pom

pr

�ST �

�ST

�

iST s

a1

an π̃ A π̃

�h �ST

�h �ST

πE' πP' πE'

πE' πP'

TCP
T

CP'

(15) The relationship ≡mes   is proved
as follows. Let ϖ = (O, ψ) ∈ ℘max(N), ϖ' = (O', ψ') ∈
℘max(N'), γ: ξO � ξO. Then, �: N  N', where
the relation � is defined as follows: � = {(π, π', β) |π
is a calculation of ϖ and π' is a calculation of ϖ' such
that : ρC � ρC', β = }.

(16) The relationship ≡occ   is proved as
follows. Let ϖ = (O, ψ) ∈ ℘max(N), ϖ' = (O', ψ') ∈
℘max(N'), γ: O � O'. Then, �: N  N', where the
relation � is defined as follows: � = {(π, π', β) |π is a
calculation of ϖ and π' is a calculation of ϖ' such that

: C � C', β = }.

(17) The relationship �  ≡occ is a consequence of
the fact that isomorphic nets have identical develop-
ments.

⇒ The absence of additional nontrivial relation-
ships in Fig. 1 can be proved by the following exam-
ples.

(1) In Fig. 2a, N  N', because only in N �s N'
actions a and b cannot execute concurrently.

(2) In Fig. 2c, N  N', but N �pw N', because a
partially ordered multiset corresponds to N such that
even the more parallel partially ordered multiset cannot
execute in N'.

(3) In Fig. 2b, N  N', but N �pom N', because
b can depend on a in N'.

(4) In Fig. 2d, N ≡mes N', but N �pr N', because the C-
net N' is not isomorphic to the C-net N (due to the addi-
tional output place).

(5) In Fig. 2e, N ≡pr N', but N  N', because, only
in N', can the action a be executed in such a way that
prevents the action b from executing.

(6) In Fig. 3a, N  N', but N  N',
because, in N', the action a can start executing in such
a way that no action b can start until a terminates.

pomh

pomh

γ
TC

γ
TC

prh

prh

γ
PC TC∪( ) γ

TC

i

iST

pwST

i

pr iST

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

≡i ≡s ≡pw ≡pom ≡pr

≡occ≡mes

�

Fig. 1. Relationships between equivalences.
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(7) In Fig. 3b, N  N', but N  N',
because only in N', a and b can be executed in such a
way that the next action c necessarily depends on a.

prST pomh

(8) In Fig. 3c, N  N', but N �mes N', because
a labeled structure of events with two conflicting
actions a corresponds to N'.

(9) In Fig. 3d, N ≡occ N', but N � N', because never
acting transitions of the nets N and N' are labeled by dif-
ferent actions (a and b).

�

5. COMPARING EQUIVALENCES
ON SEQUENTIAL NETS

In this section, relationships between the equiva-
lences introduced are analyzed on sequential nets,
where concurrent transitions cannot act concurrently.

Definition 5.1. A net N = 〈PN, TN, FN, lN, MN〉 is
called sequential if ∀M ∈ Mark(N) ¬∃t, u ∈ TN: •t +
•u ⊆ M; i.e., no two transitions can be feasible together
in any attainable marking.

Proposition 5.1. For sequential nets N and N', the
following holds:

1. N ≡i N' ⇔ N ≡pom N''; and
2. N  N' ⇔ N  N'.
Proof. 1. ⇐ By Theorem 4.1.
⇒ Let N ≡i N'; then, IntTraces(N) = IntTraces(N').

To prove that N ≡pom N', it suffices to prove the equality
Pomsets(N) = Pomsets(N'). It is obvious, since Pom-
sets(N) and Pomsets(N') are linearly ordered multisets
(chains) and a one-to-one correspondence between
IntTraces(N) and Pomsets(N) (IntTraces(N') and Pom-
sets(N'), respectively, exists.

2. Can be proved by using Proposition 5.4 from [4].
Theorem 5.1. Let ,  ∈ {≡, ,  �} and

�, �� ∈ {i, pr, prST, prh, mes, occ}. For sequential
nets N and N  N' ⇒ N  N' if and only if a
directed route from  to ** in the graph
depicted in Fig. 4 exists.

Proof. ⇐ By Theorem 4.1.
⇒ The absence of nontrivial relationships in Fig. 4

can be proved by the following examples on sequential
nets.

(1) In Fig. 2d, N ≡mes N', but N �pr N'.
(2) In Fig. 2e, N ≡pr N', but N  N'.
(3) In Fig. 5a, N  N', but N  N',

because in N', a process c with the action a can start
executing in such a way that it can be extended to the
process with action b in only one way (i.e., the extended
process is unique).

(4) In Fig. 5b, N  N', but N  N',
because only in N', a process with actions a and b exists
such that it can be extended to a process with action c
in only one way (i.e., in such a way that there is only
one kind of link of the C-net containing the action c
with the subnet of the C-net with actions a and b that
contains action a).

(5) In Fig. 3c, N  N', but N �mes N'.
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i pomh
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 Examples of equivalences.

 

≡

 

mes

 

≡

 

occ

 

↔

 

iST

 

a

 

(‡)

 
N

a

N

a

N'

a

b

a

N'

a

c c

ba

bb b

b c c b b c c

a a

 

↔

 

pr

 
(b)

(c)

 

↔

 

prST

 

N N N'

 

↔

 

pomh

 

↔

 

prh

 

�

 

N'

 

(d)

 

Fig. 3. 

 

Examples of equivalences (continuation).
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(6) In Fig. 3d, N ≡occ N', but N � N'. �

6. PRESERVING EQUIVALENCES
UNDER REFINEMENT

In this section, we verify whether the equivalence
notions are preserved under the refinement operation,
i.e., when going to a lower level of abstraction.

Definition 6.1. A net D = 〈PD, TD, FD, lD, MD〉 is
called an SM-net if

1. ∃pin, pout ∈ PD such that pin ≠ pout and °D = {pin},
D° = {pout}; i.e., D has a single input place and a single
output place;

2. MD = {pin} and ∀M ∈ Mark(D) (pout ∈ M ⇒ M =
{pout}); i.e., there is the single dib pin at the beginning
and the single dib pout at the end;

3.  and  are ordinary sets (not multisets);
i.e., pin (respectively, pout) represents the set of all dibs
consumed (respectively, created) for any refined transi-
tion;

4. ∀t ∈ TD | •t | = | t• | = 1, i.e.; there is exactly one
input and one output place.

Definition 6.2. Let N = 〈PN, TN, FN, lN, MN〉 be a net,
a ∈ lN(TN), and D = 〈PD, TD, FD, lD, MD〉 be a SM-net.

SM-refinement is (up to isomorphism) a net,  = 〈 ,

, , , 〉, denoted by ref(N, a, D), such that

1.  = PN ∪ {〈p, u〉 |p ∈ PD\{pin, pout}, u ∈ (a)};

2.  = (TN\ (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ (a)};

3. 

4.  = 

5. (p) = 

A net equivalence is said to be preserved under
refinements if equivalent nets remain equivalent after
any refinement operator is simultaneously applied to
them.

Proposition 6.1. The equivalences ≡�, � ∈ {i, s}
and , �� ∈ {i, s, pw, pom, pr} are not pre-
served under SM-refinements.

pin
• p•

out

N PN

T N FN lN MN

PN lN
1–

T N lN
1–

lN
1–

FN x y,( )

=   

FN x y,( ), x y, PN T N\lN
1–

a( )( )∪∈

FD x y,( ), x x u,〈 〉 , y y u,〈 〉 , u lN
1–

a( )∈= =

FN x u,( ), y y u,〈 〉 , x u• , u lN
1–

a( ), y pin
•∈ ∈ ∈=

FN u y,( ), x x u,〈 〉 , y u• , u lN
1–

a( ), x p•
out∈ ∈ ∈=

0, otherwise;

lN u( )
lN u( ), u T N\lN

1–
a( )∈

lD t( ), u t u,〈 〉 , t TD, u lN
1–

a( );∈ ∈=⎩
⎨
⎧

MN

MN p( ), p PN∈
0, otherwise.⎩

⎨
⎧

��

Proof.
(1) In Fig. 6, N  N' but ref(N, c, D) �i ref(N', c,

D), because the set of actions c1abc2 can be executed
only in ref(N', c, D). Hence, no equivalences between ≡i

and  can be preserved under SM-refinements.
(2) In Fig. 7, N  N' but ref(N, a, D) 

ref(N', a, D), because only in ref(N', a, D), the action b
cannot be executed after a1 has executed. Hence, no
equivalences between  and  can be pre-
served under SM-refinements.

Let us find which net equivalences are preserved
under SM-refinements.

s

s

pr i

i pr

≡i

↔i

↔prST

↔prh

≡pr

↔pr

≡occ≡mes

�

Fig. 4. Relationships between equivalences on sequential
nets.
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Fig. 5. Examples of equivalences on sequential nets.
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Proposition 6.2. Let � ∈ {pw, pom, pr}. For the
nets N = 〈PN, TN, FN, lN, MN〉 and N' = 〈PN', TN', FN', lN',
MN'〉 such that a ∈ lN(TN) ∩ lN'(TN') and for the SM-net
D = 〈PD, TD, FD, lD, MD〉 the following holds: N ≡� N' ⇒
ref(N, a, D) ≡� ref(N', a, D).

Proof. Let  = ref(N, a, D) and  = ref(N', a, D).
Note that C-nets of the processes of SM-nets are simple
chains, i.e., nets where each node has exactly one pre-
decessor (except for the unique input place) and exactly
one successor (except for the unique output place).

Construction (*)

1. Let  = ( , ) ∈ Π( ). Then, any node  that
is not mapped into the set PN ∪ TN by the embedding
function possesses the following properties:

(1) it has the form 〈e, f 〉, (e ∈  ∪ , πD = (CD,
ϕD) ∈ Π(D) and f ∈ TC, π = (C, ϕ) ∈ Π(N)), and is
mapped by the embedding function to the element of

the form 〈x, u〉, x ∈ TD ∪ (PD\{pin, pout}), u ∈ (a);

(2) it has the single predecessor 〈emin, f 〉 mapped by
the embedding function to 〈tmin, u〉, tmin ∈ ;

(3) it belongs to the single maximal chain ϑ (which
corresponds to the net CD) beginning at 〈emin, f 〉, whose
all nodes are mapped to elements of the form 〈y, u〉, y ∈
TD ∪ (PD\{pin, pout}), and whose only links with the
process environment are as follows:

• through input places 〈emin, f 〉 (always);
• (a) through output places of the maximal node of

the chain 〈emax, f 〉, which is the transition mapped to
〈tmax, u〉 by the embedding function tmax ∈ ;

(b) or the chain terminates earlier at the maximal
place.

Hence, any such chain ϑ included into net  can be
changed for:

(a) the transition f mapped to u by the embedding
function, because they have identical inputs and out-
puts;

(b) the transition f, mapped to u by the embedding
function, with new output places corresponding to u,
because they have identical inputs and there is nothing
after f (in this case, f is the maximal transition).

As a result, we obtain the process π = (C, ϕ) ∈ Π(N).
2. Since N ≡� N', � ∈ {pw, pom, pr}, we can choose

π' = (C', ϕ') ∈ Π(N') and β such that
(1) β–1: ρC'  ρC, if � = pw;
(2) β: ρC � ρC', if � = pom;
(3) β: C � C', if � = pr.
3. For any chain ϑ constructed in this way, change

in C' the transition β(f ) embedded into u' for the copy
ϑ' of ϑ, where all nodes of the form 〈e, f 〉 are changed
for 〈e, β(f )〉. The following two cases are possible:

(a) if the chain is complete, then β( f) and ϑ' have
identical outputs (from u');

(b) if the chain is incomplete (terminates at a place),
then we discard all output places of β( f).

In both cases, β(f) and ϑ' have identical inputs (in u').

N N'

π C ϕ N C

PCD
TCD

lN
1–

pin
•

p•
out
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ref(N, c, D) ref(N', c, D)
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a c a a c c

b c cb bb b
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b c2 c1 b b c2 c1 c2

b c2 b c2
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Fig. 6. Equivalences between ≡i and  are not pre-
served under SM-refinements.
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Fig. 7. Equivalences between  and  are not
preserved under SM-refinements.
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It is clear that the object constructed is the process
 = ( , ) ∈ Π( ).

4. Let g ∈ . Define the mapping  as follows:

� (Construction (*))

It remains to prove the following assertions:

(1) :   , if � = pw;

(2) :  � , if � = pom;

(3) :  � , if � = pr.

Consider the case � = pw (the cases � = pom and
� = pr are simpler). Let g, h ∈ . The following five
cases are possible:

1. g and h are included in none of the chains;

2. g is included in a chain ϑ, and h is included in
none of the chains;

3. g is included in none of the chains, and h is
included in a chain ϑ;

4. g and h are included in one and the same chain ϑ;

5. g is included in a chain ϑ1, h is included in a chain
ϑ2, and ϑ1 ≠ ϑ2.

Consider case 5, since cases 1–4 are simpler. In this
case, g = 〈e1, f1〉 and h = 〈e2, f2〉 where e1 ∈  and

e2 ∈  for πD1= (CD1, ϕD1), πD2= (CD2, ϕD2) ∈ Π(D),
f1, f2 ∈ TC for π = (C, ϕ) ∈ Π(N), f1 and f2 are refined in
C into different chains ϑ1 and ϑ2, respectively. We have

(g)  (h) ⇒ (〈e1, f1〉))  (〈e2, f2〉) ⇒ (by

definition of ) 〈e1, β(f1)〉  〈e2, β(f2)〉 ⇒ (because

the chains are linked to the process environment only
through their minimal and maximal transitions) 〈emax1,
β(f1)〉  〈emin2, β(f2)〉 ⇒ (by the construction (*))

β(f1) aC' β(f2) ⇒ (since β–1: ρC'  ρC) f1 aC f2 ⇒ (by the
construction (*)) 〈emax1, f1〉  〈emin2, f2〉 ⇒ 〈e1, f1〉 
〈e2, f2〉 ⇒ g  h. �

Proposition 6.3. Let � ∈ {i, pw, pom, pr}. For nets
N = 〈PN, TN, FN, lN, MN〉 and N' = 〈PN', TN', FN', lN', MN'〉
such that a ∈ lN(TN) ∩ lN'(TN') and for SM-net D = 〈PD,
TD, FD, lD, MD〉, the following holds: N  N' ⇒
ref(N, a, D)  ref(N', a, D).

Proof. Let  = ref(N, a, D),  = ref(N', a, D) and
�: N  N', � ∈ {i, pw, pom, pr}.

π' C' ϕ' N'

TC β

β g( )
β g( ), g is included in none of the chains;

e β f( ),〈 〉 , g e f,〈 〉 is included in chain ϑ.=⎩
⎨
⎧

=

β
1–

ρC'  ρC

β ρC ρC'

β C C'

TC

TCD1

TCD2

β a
C'

β β a
C'

β

β a
C'

a
C'

 
a

C
a

C

a
C

�ST

�ST

N N'

�ST

Construction (**):

1. Let ( , ) ∈ ST – Π( ) and πE, πP ∈ Π(N) be

obtained from  and  by using part 1 of the con-
struction (*) from Proposition 6.2, respectively.

Lemma 1. (πE, πP) ∈ ST – Π(N).
Proof of Lemma 1. Let g, h ∈  and g  h. The

following four cases are possible:
(a) (g) ≠ a ≠ (h);

(b) (g) = a ≠ (h);

(c) (g) ≠ a = (h);

(d) (g) = a = (h).

Consider case (d), since cases (a)–(c) are simpler. In
this case, g and h are refined in  into different chains
ϑ1 and ϑ2 with nodes of the form 〈e1, g〉 and 〈e2, h〉,
respectively, where e1 ∈  and e2 ∈  for πD1 =

(CD1, ϕD1), πD2 = (CD2, ϕD2) ∈ Π(D). We have g  h ⇒
(by the construction (*)) 〈emax1, g〉  〈emin2, h〉 ⇒

(since ( , ) ∈ ST – Π( ), and 〈emin2, h〉 ∈ )

〈emax1, g〉 ∈  ⇒ (by the construction (*)) g ∈ .

� (Lemma 1).

2. Choose ( , ) ∈ ST – Π(N') and β such that

((πE, πP), ( , ), β) ∈ �.

3. Obtain ,  ∈ Π(  from  and , respec-
tively, by using part 3 of the construction (*) from Prop-
osition 6.2.

Lemma 2. ( , ) ∈ ST – Π( ).

Proof of Lemma 2. Let g', h' ∈  and g'  h'.
The following five cases are possible:

(a) g' and h' are included in none of the chains;
(b) g' is included in a chain ϑ', and h' is included in

none of the chains;
(c) g' is included in none of the chains, and h' is

included in a chain ϑ';
(d) g' and h' are included in one and the same chain

ϑ';

(e) g' is included in a chain , h' is included in a

chain , and  ≠ .

Consider case (e), since cases (a)–(d) are simpler. In
this case, g' = 〈e1, 〉 and h' = 〈e2, 〉, where e1 ∈

 and e2 ∈  for πD1 = (CD1, ϕD1), πD2 = (CD2,

ϕD2) ∈ Π(D), ,  ∈  for π' = (C', ϕ') ∈ Π(N'), 

and  are refined in  into different chains  and

, respectively. We have g'  h' ⇒ 〈e1, 〉  〈e2,

πE πP N

πE πP

TCE
aCE

lCE
lCE

lCE
lCE

lCE
lCE

lCE
lCE

CE

TCD1
TCD2

a
CE

a
CE

πE πP N TCE

TCP
TCP

πE' πP'

πE' πP'

πE' πP' N' πE' πP'

πE' πP' N'

TCE'
a

CE'

ϑ1'

ϑ2' ϑ1' ϑ2'

f 1' f 2'

TCD1
TCD2

f 1' f 2' T
C

1 f 1'

f 2' C''E ϑ1'

ϑ2' a
CE'

f 1' a
CE'
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〉 ⇒ (because the chains are linked to the process
environment only through their minimal and maximal
transitions) 〈emax1, 〉  〈emin2, 〉 ⇒ (by the con-

struction (*))    ⇒ (since ( , ) ∈ ST –

Π(N')  ∈  ⇒ (by the construction (*)) g' = 〈e1,

〉 ∈ . � (Lemma 2).

4. Let g ∈ . Define the mapping  as follows:

� (Construction (**))

Let S consist of elements of the form (( , ),

( , ), ), ((πE, πP), ( , ), β) ∈ �. We prove

that S:   .

1. Evidently, (( , ), , , ∅) ∈ S.

2. Let (( , ), ( , ), ) ∈ S. It is apparent

that by the construction (**) :  ≈  and

 =  because β( ) = .

3. Let (( , ), ( , ), ) ∈ S and ( ,

)  ( , ).

The element (( , ), ( , ), ) is obtained by

construction (**) from the element ((πE, πP), ( , ),

β) ∈ �. By part 1 of construction (**), we obtain ( ,

) ∈ ST – Π(N) from ( , ). Evidently, (πE, πP) 

( , ). Since �: N  N', � ∈ {i, pw, pom,

pr}, we have that ∃ , ( , ) such that  = β,

( , )  ( , ), and (( , ), ( , ),

) ∈ �. According to parts 3 and 4 of the construction

(**), we obtain ( , ) ∈ ST – Π( ) and  from

( , ) and , respectively.

Lemma 3. (( , ), ( , ), ) ∈ S.

The Proof of Lemma 3 is evident from construc-
tion (**). � (Lemma 3).

Lemma 4.  = . � (Lemma 4).

Proof of Lemma 4. Let g ∈ . Two cases are pos-

sible:
(a) g is included in none of the chains;
(b) g is included in a chain ϑ.

Consider case (b) (case (a) is trivial). In this case,
g = 〈e, f 〉, where e ∈  for πD = (CD, ϕD), f ∈ TC for
π = (C, ϕ) ∈ Π(N), and f are refined into the chain ϑ in

. We have (〈e, f 〉) = 〈e, (f )〉 = (since f ∈  and

 = β, 〈e, β(f )〉 = (by definition of ) (〈e, f 〉). �

(Lemma 4).

Lemma 5. ( , )  ( , ).

Proof of Lemma 5. The proof follows from the fact
that ( , )  ( , )' and the construction (**).
� (Lemma 5).

Remark 1. Since  =  by Lemma 4, and it fol-

lows from ( , ) ∈ ST – Π( ) that  = ,

we have  = \ . Hence,  = .

� (Remark 1).

Remark 2. Since it follows from f ∈  that 〈e, f 〉
∈ , then 〈e, f 〉 ∉  implies f ∉  . Hence, 〈e,

f 〉 ∈ \  =  implies f ∈ \  = TC. �

(Remark 2).
It remains to prove the following propositions:

(1) :   , if � = pw;

(2) :  � , if � = {i, pom, pr};

(3)  � , if � = pr.
Consider the case � = pr, since the case � = pw can

be considered as in Proposition 6.2, and the case � =

pom is simpler. First, we should prove that :  �

. This can be done similarly to the proof of the case
� = pw of Proposition 6.2 with all implications changed
for symbols “equivalent.”

Now we can prove that  � . Since �:
N  N', we have ∃α: C � C'. Then, the mapping

f 2'

f 1' a
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α g( )
α g( ), if  g  is included in none of the chains 

e

 
α

 

f

 
( ),〈 〉

 

,

 

g e f

 
,〈 〉

 

 is included in a chain  

 
ϑ

 

.=

 

⎩
⎨
⎧  

=
 

4. The same as item 3, but the roles of  and  are
interchanged.

 

Proposition 6.4.
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Proposition 6.5.

 

 

 

For nets N
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〈

 

P

 

N

 

, 

 

T

 

N

 

, 

 

F

 

N

 

, 

 

l

 

N

 

, 

 

MN〉
and N' = 〈PN', TN', FN', lN', MN'〉 such that a ∈ lN(TN) ∩
lN'(TN') and for the SM-net D = 〈PD, TD, FD, lD, MD〉, the
following is valid: N  N' ⇒ ref(N, a, D) 
ref(N', a, D).

Proof. It is sufficient to observe that the construc-
tion that transforms the bisimulation relation on
original nets into the relation on refined nets (this
construction was used in the proof of Proposition 8.5
in [4]) preserves isomorphism of C-nets of pro-
cesses. �

Proposition 6.6. Let � ∈ {mes, occ}. For nets N =
〈PN, TN, FN, lN, MN〉 and N' = 〈PN', TN', FN', lN', MN'〉 such
that a ∈ lN(TN) ∩ lN'(TN') and for the SM-net D = 〈PD,
TD, FD, lD, MD〉, the following is valid: N ≡� N' ⇒ ref(N,
a, D) ≡� ref(N', a, D).

Proof. Let  = ref(N, a, D) and  = ref(N', a, D).
Note that O-nets of O-processes of SM-nets are trees,
i.e., such nets where any node has exactly one prede-
cessor (except for the unique input place).

Construction (***)

1. Let  = ( , ) ∈ ℘max( ). Then, each node 
that is not mapped by the embedding function into the
set PN ∪ TN possesses the following properties:

(1) has the form 〈e, f 〉 (e ∈  ∪ , ϖD = (OD,
ψD) ∈ ℘max(D), and f ∈ TO, ϖ = (O, ψ) ∈ ℘max(N)) and
is mapped by the embedding function to the element of

the form 〈x, u〉, x ∈ TD ∪ (PD\{pin, pout}), u ∈ (a);

N N'

pomh

pomh

prh prh

N N'

ϖ O ψ N O

POD
TOD

lN
1–

(2) has the unique predecessor 〈 , f 〉 (1 ≤ i ≤ n)

that is mapped by the embedding function to 〈 , u〉,

 ∈ ;

(3) belongs to the unique maximal tree ϑi that is a

member of the set of trees ϑ =  corresponding

to the net OD, begins at 〈 , f 〉, all nodes of which are
mapped by the embedding function to elements of the
form 〈y, u〉, y ∈ TD ∪ (PD\{pin, pout}), and whose only
links with the process environment are as follows:

(1) through input places 〈 , f 〉 (always);

(2) through output places of the maximal nodes of

the tree 〈 , f 〉 (1 ≤ j ≤ m), that are the transitions

mapped by the embedding function to 〈 , u〉,  ∈
.

Note that all  (1 ≤ i ≤ n) have identical links with

the process environment (as all  (1 ≤ i ≤ n, 1 ≤ j ≤
m)). Hence, any such set ϑ included in the net  can be
changed for the transition f that is mapped to u by the
embedding function, because they have identical inputs
and outputs. As a result, we obtain the O-process ϖ =
(O, ψ) ∈ ℘max(N).

2. Since N ≡� N', � ∈ {mes, occ}, we can always
choose ϖ' = (O', ψ') ∈ ℘max(N') and β such that

(1) β: ξO � ξO', if � = mes;
(2) β: O � O', if � = occ.
3. For the ϑ constructed by the method described

above, change in O' the transition β(f) that can be
embedded into u' for a copy ϑ' of the set of trees ϑ,
where all nodes of the form 〈e, f 〉 are changed for 〈e,
β(f )〉. Then, β(f) and ϑ' have the same outputs (from u')
and inputs (to u').

It is clear that the constructed object is the O-pro-
cess  = ( , ) ∈ ℘max( ).

4. Let g ∈ . Define the mapping  as follows:

emin
i

tmin
i

tmin
i

pin
•

ϑi

i 1=
n∪

emin
i

emax
i

emax
ij

tmax
ij

tmax
ij

p•
out

emin
i

emin
ij

O

ϖ' O' ψ' N'

TO β

β g( )  
β g( ), if g is included in none of the set of trees

e β f( ),〈 〉 , g e f,〈 〉  is included in the set of trees ϑ= .
=

:  �  can be obtained from α as follows. Let g ∈  ∪ . Then,α C C' PC TC
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� (Construction (***))

It remains to prove the following propositions:

(i) :  � , if � = mes;

(ii) :  � , if � = occ.

Consider the case � = mes, since the case � = occ is
simpler. Let g, h ∈ . The following five cases are
possible:

1. g and h are included in none of the sets of trees;
2. g is included in a set of trees ϑ, and h is included

in none of the sets of trees;
3. g is included in none of the sets of trees, and h is

included in a set of trees ϑ;
4. g and h are included in one and the same set of

trees ϑ;
5. g is included in a set of trees ϑ1, h is included in

a set of trees ϑ2, and ϑ1 ≠ ϑ2.
Consider case 5, since cases 1–4 are simpler. In this

case, g = 〈e1, f1〉 and h = 〈e2, f2〉, where e1 ∈  and

e2 ∈  for ϖD1 = (OD1, ψD1), ϖD2 = (OD2, ψD2) ∈
℘(D), f1, f2 ∈ TO for ϖ = (O, ψ) ∈ ℘(N), f1 and f2 are
refined in O into different sets of trees ϑ1 and ϑ2,
respectively. We prove that the precedence and conflict
relations are preserved.

(1) g  h ⇔ 〈e1, f1〉  〈e2, f2〉 ⇔ (because ϑ1 and
ϑ2 are linked to the process environment only through
their minimal and maximal transitions, and all minimal
(maximal) transitions have identical links to this envi-

ronment) ∀i, j, k 〈 , f1〉  〈 , f2〉 ⇔ (by con-

struction (***)) f1  f2 ⇔ (because β: ξO � ξO')
β(f1)  β(f2) ⇔ (by construction (***)) ∀i, j, k

〈 , β(f1)〉  〈 , β(f2)〉 ⇔ 〈e1, β(f1)〉  〈e2,

β ξO ξO'

β O O'

TO

TOD1

TOD2

a
O

a
O

emax1
ij

a
O

emin2
k

aO

aO'

emax1
ij

a
O'

emin2
k

a
O'

β(f2)〉 ⇔ (by definition of ( 〈e1, f1〉  (〈e2, f2〉) ⇔

(y)  (h).

(2) g h ⇔ 〈e1, f1〉 〈e2, f2〉 ⇔ (because ϑ1 and ϑ2

are linked to the process environment only through
their minimal and maximal transitions, and all minimal
(maximal) transitions have identical links to this envi-

ronment) ∀i, k 〈 , f1〉 〈 , f2〉 ⇔ (by construc-
tion (***)) f1#Of2 ⇔ (because β: ξO � ξO') β(f1)#O'β(f2) ⇔
(by construction (***)) ∀i, k 〈 , β(f1)〉 〈 ,

β(f2)〉 ⇔ 〈e1, β(f1)〉 〈e2, β(f2)〉 ⇔ (by definition of )

(〈e1, f1〉) (〈e2, f2〉) ⇔ (g) (h). �

Proposition 6.7. For nets N = 〈PN, TN, FN, lN, MN〉
and N' = 〈PN', TN', FN', lN', MN'〉 such that a ∈ lN(TN) ∩
lN'(TN') and for the SM-net D = 〈PD, TD, FD, lD, MD〉, the
following is valid: N � N' ⇒ ref(N, a, D) � ref(N', a,
D).

Proof. The proof is evident. �
Theorem 6.1. Let  ∈ {≡, ,  �} and � ∈ {i,

s, pw, pom, pr, iST, pwST, pomST, prST, pomh, prh, mes,
occ}. For nets N = 〈PN, TN, FN, lN, MN〉 and N' = 〈PN',
TN', FN', lN', MN'〉 such that a ∈ lN(TN) ∩ lN'(TN') and for
the SM-net D = 〈PD, TD, FD, lD, MD〉, the following is
valid: N  N' ⇒ ref(N, a, D)  ref(N', a, D) if
and only if the equivalence  is enclosed in an
oval in Fig. 8.�

Proof. Can be performed by using Propositions
6.1−6.7.

7. CONCLUSION

In this paper, a group of basic behavioral equiva-
lences is analyzed and augmented by new notions that
can be used to analyze systems modeled by Petri nets at
various levels of abstraction.

The main result of the paper consists in establishing
relationships between equivalence notions both on the
whole class of Petri nets and on the subclass of sequen-
tial nets. For all equivalences considered, it is verified
whether they are preserved under SM-refinements.
Thus, we can use equivalence notions that are pre-
served under SM-refinements for designing concurrent
systems by the top-down method.

Let us describe some lines of further investigations.
One such line is aimed at obtaining the complete

description of relationships between equivalences on
strictly labeled nets (all transitions are labeled by dif-
ferent actions) and on T-nets (without conflicting tran-
sitions). Note that the author has proved that some
equivalences are identical on these two subclasses of
Petri nets [13, 14].

We also intend to extend the field of investigations
to the nets with τ-transitions (that are labeled by invis-
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 Equivalence preserving under SM-refinements.
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ible 

 

τ

 

-actions). Since this is a wider class of nets, it is
possible that some relationships between equivalences
cease to exist on this class. For example, it has been
shown in [15] that ST-equivalences and history-pre-
serving equivalences are independent on the structures
of events with 

 

τ

 

-actions.
Another line of investigation consists in the analysis

of bisimulation equivalences of places [2]. We are
going to compare them with equivalence relations con-
sidered in this paper (for example, relationships
between bisimulation place equivalences and ST bisim-
ilation history-preserving equivalences are not known
to date). Besides, it is reasonable to verify whether
bisimulation place equivalences are preserved under
refinements in order to find out whether it is possible to
use them for designing multilevel concurrent systems.
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